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Abstract: Water received in rainfall is a crucial natural resource for agricul-
ture, the hydrological cycle, and municipal purposes. The changing rainfall
pattern is an essential aspect of assessing the impact of climate change
on water resources planning and management. Climate change affected the
entire world, specifically India’s fragile Himalayan mountain region, which
has high significance due to being a climatic indicator. The water coming
from Himalayan rivers is essential for 1.4 billion people living downstream.
Earlier studies either modeled temperature or rainfall for the Himalayan area;
however, the combined influence of both in a long-term analysis was not
performed utilizing Deep Learning (DL). The present investigation attempted
to analyze the time series and correlation of temperature (1796–2013) and
rainfall changes (1901–2015) over the Himalayan states in India. The Climate
Deep Long Short-Term Memory (CDLSTM) model was developed and
optimized to forecast all Himalayan states’ temperature and rainfall values.
Facebook’s Prophet (FB-Prophet) model was implemented to forecast and
assess the performance of the developed CDLSTM model. The performance
of both models was assessed based on various performance metrics and shown
significantly higher accuracies and low error rates.
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1 Introduction

Climate change affected India, specifically the fragile Himalayan mountainous region, which has
high significance due to climatic indicators, the origin of rivers, municipal, agricultural, hydroelectric
purposes, minerals, and tourism [1–3]. The Himalayan area is the world’s highest mountain system
that stretches over 2,500 km, covering twelve states of India either partially or fully. These are Jammu
and Kashmir (J&K, now Jammu, Kashmir, and Ladakh), Himachal Pradesh (Him), Uttarakhand
(UK), Nagaland, Manipur, Mizoram, Tripura (NMMT), Assam, and Meghalaya (A&M), Arunachal
Pradesh (Arun) and sub–Himalayan West Bengal and Sikkim (WB&S). The high-altitude area of
the Himalayas is covered with snow and glaciers. The water from snow and glaciers is essential for
municipal, agricultural, and hydroelectric [1–3]. The Himalayan area impacts the climate of the entire
Indian subcontinent by controlling the monsoon and rainfall patterns. The Himalayan ecosystem is
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very fragile and sensitive to climate change parameters such as temperature and rainfall. The criticality
of rainfall analysis is evident from the June 2013 Uttarakhand disaster. The UK state received 847%
extra rainfall in the third week of June, resulting in the Kedarnath flood disaster that took more than
5000 lives.

In current times, the utility of machine learning (ML) approaches has a significant presence in
almost every area, and the successful utilization of deep learning (DL) has opened new dimensions
for efficient time series forecasting. ML/DL has been used extensively for climate analysis and
forecasting [4–9]. A study by [10] provides a comprehensive report on climate change in the Himalayas
and suggests modeling future climate status, especially for the Himalayan region. [11,12] applied Dl
techniques such as DNN and RNN for weather forecasting; however, the scope and data used in
their investigation were limited. However, significant issues with these studies are rigorous parameter
tuning, cross-validation of the model on different data, and computational efficiency. Additionally,
while previous studies have addressed annual climate issues for the entire expanse of India, very few
studies have explicitly focused on all the Himalayan states due to the complexity of data for the
Himalayan region [13–15]. Understanding the climate variability for Himalayan states on a monthly
temporal scale is crucial for hydrological and climatic models [16]. The present study focuses on
all the Himalayan states to provide comprehension of changing temperature and rainfall patterns.
The present investigation contributes to three significant aspects: detecting rainfall and temperature
trends, analyzing the correlation between temperature and rainfall, and forecasting the temperature
and rainfall using a novel CDLSTM model and Facebook Prophet (FB-Prophet) Model.

1.1 LSTM

LSTM networks are a type of Recurrent Neural Network (RNN) that uses special units (cells) and
standard units to overcome the limitation of traditional RNN [17–20]. There are three gates, which
are contained by a cell in LSTM. The first gate is the input gate, the second is termed the forget gate,
whereas the third is the output gate. The LSTM network composition function’s description is based
on the input node, and the three gates are contained by a cell, cell state, and output layer. Eqs. (1)–(7)
are as follows [20,21].

Input node

g(t) = tanh(Wgxx(t) + Wghh(t−1) + bg (1)

Input gate

i(t) = σ(Wixx(t) + Wihh(t−1) + bi (2)

Forget gate

f (t) = σ(Wfxx(t) + Wfhh(t−1) + bf (3)

Output gate

o(t) = σ(Woxx(t) + Wohh(t−1) + bo (4)

Cell state

s(t) = g(t) � i(t) + s(t − 1) � o(t) (5)

Hidden gate

h(t) = tanh(s(t)) � o(t) (6)
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Output layer

y(t) = σ(Whyh(t) + by) (7)

1.2 Facebook’s Prophet Model

Facebook’s Prophet is an open-source forecasting tool based on a decomposable additive model,
similar to a generalized additive model (GAM). Prophet can fit nonlinear time series with seasonality.
The Prophet forecast model can be expressed as Eq. (8).

F(t) = L(t) + S(t) + E(t) + X(t) (8)

where, F(t) = forecast, L(t) = long term trend, S(t)= short term trend, E(t) = error, and X(t) = any
other influencing variable to forecast.

Prophet has two models: logistic growth model (LGM) and piece-wise linear (PWL) model. The
selection of the model depends on the time series data. The LGM model can be used if the time series
shows non-linearity, saturation, and no change after reaching the saturation point. If the time series
exhibits linear tendency and a previous track of shrink and growth, then PWL is a better option. The
LGM can be expressed as Eq. (9).

L(t) = CC
1 + e−g(t−o)

(9)

where CC = carry capacity, g = growth rate, and o is an offset parameter. The PWL can be expressed
as Eq. (10).

y =
{

β0 + β1x x ≤ c

β0 − β2c(β1 + β2) x > c

}
(10)

2 Dataset
2.1 Rainfall

The monthly rainfall dataset was obtained from more than 3000 rain-gauge stations spread over
India, covering 115 years (Jan 1901–Dec 2015). The dataset was released by Indian Meteorological
Department (IMD) (https://www.imdpune.gov.in/).

2.2 Temperature

The Berkeley Earth monthly average data from Jan 1796–Aug 2013 was procured from https://gui
des.lib.berkeley.edu/publichealth/healthstatistics/rawdata. It was generated based on a variety of data,
including bias-corrected station data, regional data. The data was developed from various sources with
quality control, and monthly averages were created from daily data. A standard temporal observation
period of Jan 1901–Aug 2013 was considered to understand the relationship between temperature and
rainfall.

3 Methodology
3.1 Data Preprocessing

For in-depth analysis of seasonal patterns of temperature and rainfall, the data was divided
into four seasons based on India’s meteorological and international standards, i.e., Dec-Feb as
winter, March to May as spring, June-Sep as monsoon, and Oct-Nov as post-monsoon or autumn.

https://www.imdpune.gov.in/
https://guides.lib.berkeley.edu/publichealth/healthstatistics/rawdata
https://guides.lib.berkeley.edu/publichealth/healthstatistics/rawdata


2366 CMC, 2022, vol.71, no.2

Temperature and rainfall data were used; therefore, the term monsoon was used instead of summer for
rainfall analysis purposes. Data transformation is crucial before implementing any ML model. Three
data transformations were applied in the current investigation. The first transformation was removing
missing values and replacing them with average values from the respective records. The second step was
transforming time-series data into input and output so that the output of a step could become the input
for the next step to forecast the value of the current time step. As described earlier, the total common
data in the time series covered 1352 monthly values. The first 980 months’ dataset for all Himalayan
states was taken for the training, while testing took 240 months, and validation used the dataset of
120 months of the LSTM model; the remaining twelve months of data were kept separate from the
training process for the unbiased external validation of the LSTM prediction. The third transforma-
tion was the scaling of time series data from –1 to 1. These three transformations were inverted after
the prediction step to get the values at the original scale so that the uncertainty calculation could be
adequately assessed.

3.2 Trend Analysis

Mann-Kendall tests [22,23] were carried out for trend analysis, detecting trends and changes in
temperature and rainfall over the years of analysis. Sen’s slope values [24] were used to understand the
trend of GWSC change for all Himalayan states from Jan 1901 to Dec 2015. Statistics of Mann-Kendall
S value [22,23] were evaluated for chronologically placed observations in the time series Eq. (11). The
observations VAR(S) variance in the time series was also estimated as per Eq. (13). Standardized test
Z Eq. (14) [25] for the statistical analysis was also performed.

S =
n−1∑
i=1

n∑
j=i+1

Sgn
(
Xj − Xi

)
(11)

Sgn
(
Xj − Xi

) =

⎧⎪⎨
⎪⎩

+1, >
(
Xj − Xi

)
0, = (

Xj − Xi

)
−1, <

(
Xj − Xi

)
,

(12)

VAR (S) = 1
18

[
n (n − 1) (2n + 5) −

q∑
p=1

tp

(
tp − 1

)
(2tp + 5)

]
(13)

Z

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S − 1√
VAR(S)

if S > 0

0 if S = 0

S + 1√
VAR(S)

if S < 0.

(14)

Here, Xi and Xj are chronologically placed values of variables in the time series, n represents the
total count of observations, ties for pth value is shown as tp, and tied values number is shown as q.
When Z is positive, it means an increasing trend in the climatic variable and vice versa.
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3.3 Correlation Analysis Between Variables

An attempt was made to study the correlation analysis based on Moment Correlation Coefficient
(MCC) among temperature and rainfall values for all the twelve Himalayan states from Jan 1901 to
Aug 2013, as per the availability of a common temporal dataset.

The MCC summarizes the direction and degree of linear relations between actual and modeled
datasets. The correlation coefficient can take values between –1 (perfectly negative correlation) through
0 (no correlation) to +1 (perfectly positive correlation). The MCC formula to compute the correlation
coefficient is given in Eq. (15).

R = N
∑

XY − ∑
X

∑
Y√

[N
∑

X 2 − (
∑

X)2](N
∑

Y 2 − (
∑

Y 2)
(15)

Here, N represents the number of pairs of data. The terms X and Y are parameters.

3.4 Development and Tuning of CDLSTM Model

Keras library with TensorFlow and Python version was used to develop the LSTM models in the
current study. The libraries used in the current investigation were Plotly, NumPy, Seaborn, Pandas,
Matplotlib, and scikit-learn. A four-step procedure was applied to develop the LSTM model.

The first step was to define the LSTM network to aid LSTM model development. Eight LSTM
layers were used in the current investigation, in which four layers were dense, and three were the
dropout layers, see Fig. 1. The dropout layer “drops out” inputs to a layer, which may be input variables
from a previous layer. A value of 0.5 was chosen with two dropout layers. The second step was the
network compilation. It required several parameters, such as an optimization algorithm to train the
network and the loss function to evaluate the network. Several optimizers were tested based on their
performances. The third step was the fitting of the LSTM model. The fourth and essential step was
the prediction using the LSTM model. We forecasted the output step by step for the test data. The
model fed the current forecasted value back into the input window by moving it one step forward
to forecast the next step using the moving-forward window technique [26]. Here we used a moving
forward window of size 12. We forecasted the average temperature individually for all Himalayan
states from Sep 2012 to Aug 2013 using one step ahead regression based on window size.

Several hyper-parameters such as optimizer, number of units, learning rate, momentum, and
activation functions must be chosen a priori and then tuned based on the RMSE values. Tuning the
hyper-parameters of any neural network model is essential for evaluating the performance and stability
of the DL model. The first configuration tuned was the number of nodes, which affected the LSTM
model’s learning capability. A higher number of nodes ensures excellent learning ability for complex
data at the cost of computation time and can cause overfitting. Different nodes (2, 4, 6, 8, and 10) were
tested for different configurations. A lesser average RMSE value of 1.4 and the lowest variance based
on 20 experimental runs were obtained with four nodes. However, since it could indicate overfitting,
dropout was applied to prevent overfitting, where the neurons were randomly chosen and ignored
during model training to address the issue of overfitting. The number of epochs (10, 20, 30, 40, and
50), optimization algorithm (Adam, RMSProp, Adagrad, SGD), and individual learning rate (1e-2 to
1e-6) were also rigorously tuned. It was observed that the tuned LSTM model with eight nodes, trained
for 20 epochs with an ADAM optimizer having LR of 1e-2, showed the best performance based on
RMSE and computational efficiency in the current investigation.
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Figure 1: The architecture of the CDLSTM model used in the current investigation

3.5 Facebook’s Prophet Model

The Prophet forecast model looks straightforward; however, the computation can be complex due
to the selection of parameters. The selection of the LGM or PWL model depends on the time series
data. The LGM model was applied for rainfall data due to the time series; however, PWL model was
applied for temperature forecasting as it exhibits linear tendency.

The uncertainty in the forecasting values can be obtained by forwarding the GAM model, which
can be expressed as Eq. (16).

∀j > T ,

[
∂j = 0 where T−S.

T

∂j ∼ Laplace(0, ϕ) where S.

T

]
(16)

where ∂ is a rate scale parameter.

The FB-Prophet model was imported. The Prophet model was fitted with training data, and
forecasting was implemented based on 12 periods and month start (MS) as frequency.
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3.6 Uncertainty Assessment of the LSTM Model

The MCC, Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and
Nash-Sutcliffe coefficient (NSE) were utilized to evaluate the uncertainty of the LSTM model output.
The Mean Absolute Deviation (MAD) was also considered to analyze the LSTM model’s accuracy
between measured and predicted values.

RMSE is a method to calculate the error or accuracy in predicting models based on standard
deviation Eq. (17). The final output is given in the form of the standard deviation of the error’s
magnitude, as per Eq. (17); the individual calculations are outputted as residuals based on [27].

RMSE =

n∑
n=1

(Yi − Oi)
2

n
(17)

Here, P_i is the ith LSTM predicted value, and Oi is the ith original value.

The MAPE method was used to calculate the prediction accuracy of the LSTM forecast. The
calculation was based on the difference between the original values and values forecasted by the LSTM
and dividing the original value difference. It was then multiplied by the number of observations and
100 to obtain the percentage error (18) [28].

MAPE = 100
n

n∑
n=1

∣∣∣∣At − Ft

At

∣∣∣∣ (18)

Here, At represents actual value. Similarly, symbol Ft represents the forecasted value or the
predicted value. MAD was used to calculate the dispersion of LSTM forecasted values, as per Eq. (19).
A lower value of MAD indicates that the forecasted data values are closely concentrated.

MAD =
∑ ∣∣Pi − ĉ

∣∣
n

(19)

where Pi is the ith data value, ĉ is the mean value, and n is the number of samples.

The NSE or efficiency coefficient test determines the magnitude between the residual time series
and variance of actual data, and its value ranges from –∞ to 1, see Eq. (20). An output near one
indicates higher model quality and reliability, while a value below zero suggests unreliable model. NSE
test has been utilized in LSTM and FB-Prophet forecasting models [29].

NSE = 1 −

n∑
m=1

∣∣y (t) − yf (t)
∣∣2

n∑
m=1

|y (t) − y)|2
(20)

where y, y, and yf are the actual time series, mean of the actual time series, and forecasting series,
respectively.
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4 Results and Discussions
4.1 Trend Analysis of Temperature and Rainfall

The monthly precipitation was found to have decreased over the period 1901-2015 in the
Himalayan states. A 20 mm decrease was observed from 180 mm to 160 mm. The decrease in
precipitation occurred after July 1995. The highest monthly precipitation (742 mm) was received in
July 1948. Feb 2005 has the lowest average temperature for the UK, Him, J&K, A&M. The highest avg
temperature was 28.28oC for A&M for June 2013, followed by NMMT (27.87oC) the same month. The
highest rainfall (1347.2 mm) occurred for NMMT among all Himalayan states in Aug 1969, followed
by A&M (995.2 mm) for July 1984. Higher temperatures were increased after the year 2000, and the
occurrences of high rainfall were decreased after the 1990s. It was evident that climate is changing
rapidly, especially in Himalayan states. Results with a confidence factor ≥ of 90% indicate a significant
trend in the rainfall averaged over the Himalayan states, see Tab. 1. Fig. 2 represents the rainfall time
series for all 12 Himalayan states, with subplots shown as (a) J&K; (b) Him; (c) UK; (d) A&M; (e)
WB&S; (f) Arun; (g) NMMT. It is worth noting that both Arun and NMMT showed decreasing trends
for rainfall. However, rainfall over J&K, UK, WB&S showed an increasing trend. Interestingly, the
Himalayan state Arun showed high average rainfall while the lowest for J&K, see Fig. 2.

Table 1: Change in rainfall (1901–2015)

Himalayan
States (R)

Monsoon Autumn Winter Spring Annual

J & K 0.1 0.52 0.68 –0.13 0.41
Him –2.16 –0.37 0.72 –0.37 –0.62
UK 0.33 0.18 –0.29 0.32 0.27
A&M –2.14 0.31 0.16 –0.37 –1.02
WB&S 1.78 0.03 0.09 0.17 0.69
Arun –4.76 –0.73 0.12 –0.31 –2.76
NMMT –1.42 0.08 0.15 0.62 –1.12

The mean annual temperature of Himalayan states was observed to have increased around 1.07◦C
between 1796–2013. Remarkably, it increased only by 0.98◦C for the entire of India for the same period.
The temperature of the Himalayan states is increasing faster than in the rest of the country. The average
winter temperature rose by 1.27◦C over the past century, while post-monsoon temperature increased
by 1.03◦C, see Tab. 2. The intense increase in temperature occurred after July 1998. The temperature
of monsoon and spring did not show a significant difference for West Bengal from 1796–2013.

4.2 Correlation Analysis Between Temperature and Rainfall

The MCC was performed to understand the relationship between temperature for the twelve
Himalayan states from Jan 1901 to Aug 2013 as per the common temporal dataset availability Eq. (16).
There was a strong correlation (0.98) between the average temperature of all Himalayan states, see
Fig. 3. Because the average temperature showed an increasing trend in all Himalayan states. It was
necessary to understand the influence of temperature on rainfall. The correlation coefficient between
temperature and rainfall was significantly strong for Northeastern Himalayan states A&M (0.80),
WB&S (0.78), NMMT (0.76), and Arun (0.62); however, it was weak for Northwestern Himalayan
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states UK (0.5) and Him (0.39) and J&K (0.18). The stronger correlation in the northeastern states is
due to an increase in temperature and decrease in rainfall; however, northwestern states such as J&K
and UK showed an increase in rainfall and temperature in an inconsistent pattern. The primary reason
for the increase in rainfall is the complex assimilation of monsoon and westerlies in the northwestern
Himalayan region.

Figure 2: The average rainfall for different seasons in all Himalayan states from Jan 1901–Aug 2013.
X-axis represent years and y-axis represent rainfall in (mm)
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Table 2: Change in Temperature (1901–2015)

Himalayan
States (T)

Monsoon Autumn Winter Spring Annual

J & K 1.02 1.01 0.94 0.64 0.95
Him 1.65 1.07 0.33 1.21 1.17
UK 1.12 1.17 1.87 1.27 1.34
Assam 1.38 1.82 2.12 1.13 1.63
Meghalaya 0.13 1.16 1.03 1.18 1.03
West Bengal 0.09 0.38 0.94 0.63 0.54
Sikkim 0.11 0.23 0.74 1.05 0.64
Arun 1.67 1.98 2.17 1.11 1.38
Nagaland 1.71 2.12 2.16 0.98 1.83
Manipur 2.07 1.56 1.78 1.21 1.53
Mizoram –0.19 0.12 0.54 1.19 0.51
Tripura –0.12 –0.23 0.67 0.59 0.34

Figure 3: Correlation heatmap of climate variables for all Himalayan states
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4.3 Temperature Forecasting Based on CDLSTM and FB-Prophet

There was a possibility while predicting the future values that the LSTM and FB-Prophet models’
output may be uncertain as the model’s output was fed back into it as input. Therefore, we forecasted
the temperature from Sep 2012 to Aug 2013 and compared them with the actual values based on
the coefficient of determination, RMSE, MSE, MAPE, MAD, and NSE, see Tabs. 3 and 4. The
developed LSTM model was likely to estimate the possible future values of temperature accurately,
given its reliability, see Figs. 4 and 5. The loss of the proposed CDLSTM model for corresponding
epochs showed in Fig. 4. The temperature was forecasted for all twelve Himalayan states. The
loss of the CDLSTM model indicated that the model achieved significantly lower loss after the
first epoch. Fig. 5 shown temperature forecasting using developed novel CDLSTM model and FB-
Prophet for four Himalayan states; J&K, Him, UK, and NMMT. Both CDLSTM and FB-Prophet
model’s performance showed good forecasting values for all months, including Jan 2013, where the
temperature was low due to the peak winter season.

Table 3: Performance evaluation of developed CDLSTM model based on different accuracy metrics

States R2 MSE RMSE MAPE MAD NSE

J & K 0.85 17.64 4.20 4.83% 1.19 0.88
Him 0.92 8.94 2.99 6.74% 1.03 0.90
UK 0.98 0.44 0.66 1.25% 0.32 0.99
Assam 0.95 2.25 1.5 1.86% 0.29 0.94
Meghalaya 0.95 2.50 1.58 1.57% 0.32 0.93
West Bengal 0.95 2.40 1.55 1.23% 0.35 0.94
Sikkim 0.99 0.66 0.81 0.21% 0.13 0.99
Arun 0.93 6.00 2.45 1.16% 0.42 0.95
Nagaland 0.90 5.76 2.4 1.96% 0.58 0.93
Manipur 0.97 0.86 0.93 0.34% 0.32 0.95
Mizoram 0.96 2.50 1.58 0.29% 0.38 0.97
Tripura 0.92 5.20 2.28 1.08% 0.63 0.95

Table 4: Performance evaluation of FB-Prophet LSTM model based on different accuracy metrics

States R2 MSE RMSE MAPE MAD NSE

J & K 0.99 0.37 0.61 –0.30% 0.23 0.99
Him 0.98 0.41 0.64 –0.34% 0.32 0.99
UK 0.99 0.64 0.80 –0.27% 0.30 0.98
Assam 0.97 0.66 0.81 –0.47% 0.48 0.98
Meghalaya 0.95 0.59 0.77 –0.57% 0.59 0.96
West Bengal 0.99 0.20 0.45 –0.29% 0.28 0.97
Sikkim 0.99 0.32 0.57 –0.31% 0.27 0.98
Arun 0.98 0.81 0.90 –0.34% 0.29 0.99

(Continued)
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Table 4: Continued
States R2 MSE RMSE MAPE MAD NSE

Nagaland 0.94 0.86 0.93 –0.51% 0.38 0.96
Manipur 0.91 0.72 0.85 –0.82% 0.73 0.93
Mizoram 0.98 0.59 0.77 –0.42% 0.34 0.95
Tripura 0.98 0.49 0.70 –0.43% 0.46 0.97

Figure 4: Loss vs. no of epochs for developed CDLSTM model for temperature forecasting

4.4 Rainfall Forecasting Based on CDLSTM

The developed CDLSTM model was used to forecast the rainfall values for all Himalayan states.
The training and testing performance of the CDLSTM model is shown in Fig. 6, it represents the
forecasted rainfall for all 12 Himalayan states, with subplots shown as (a) J&K; (b) Him; (c) UK; (d)
A&M; (e) WB&S; (f) Arun; (g) NMMT. It is worth noting that the CDLSTM based forecasted rainfall
shown good matching with actual rainfall for all Himalayan states except J&K and Him. J&K and
Him showed less coherence with forecasted rainfall due to the high complexity of the snowfall and
rainfall pattern due to Indian monsoon in the summer season and westerlies in the winter months.
The CDLSTM model forecasted the temperature for the entire time series as training and testing data
from Jan 1901 to Dec 2015 and compared them with the actual values based on the coefficient of
determination, RMSE, MSE, MAPE, MAD, and NSE, see Tab. 5. The CDLSTM model for rainfall
forecasting showed less accuracy for J&K, which may be due to the inconsistent rainfall pattern for the
J&K state. Best forecasting values were obtained for A&M state using the developed CDLSTM model
based on all performance metrics, see Tab. 5. An interesting observation was that the performance
of the developed CDLSTM model was significantly better for temperature forecasting than rainfall
forecasting. The primary reason behind this difference was the higher fluctuation in rainfall data than
temperature data.

4.5 Comparison with Other Studies

The forecasting performance of the current study was compared with other benchmark studies
based on R2 and RMSE values, see Tab. 6. Based on performance metrics, the present study’s models
showed better results than previous studies.
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Figure 5: Performance of CDLSTM and FB-Prophet models for temperature forecasting using
novel CDLSTM and FB-Prophet forecasted for (a) Jammu and Kashmir, (b) Himachal Pradesh, (c)
Uttarakhand, (d) Nagaland Manipur Mizoram and Tripura

The FB-Prophet model implemented in the present investigation with the PWL algorithm showed
remarkably efficient performance based on accuracy metrics, see Tabs. 3 and 4. As per available
literature, the current investigation’s performance achieved by the FB-Prophet model for temperature
and rainfall forecasting is the highest, based on accuracy metrics. The developed CDLSTM model has
lower accuracy than the FB-Prophet model; however, the CDLSTM model showed better performance
than models applied in previous studies. In the present investigation, the seasons in the Himalayan
area were defined as per IMD and international standards. It is an important criterion to put the
correct months as per the respective seasons. [4] defined summer as Jan and Feb, which might be an
error. For India, the monsoon season overlaps with summer; therefore, studies focusing on rainfall
trends and forecasting should use monsoon instead of summer rainfall to reduce ambiguity. Models
based on ML require intense hyperparameter tuning to achieve performance with model stability. ML
models might provide higher accuracy without proper optimization; however, this accuracy might
be illusionary and unstable. The study was done by [4] to show a lack of hyperparameters tuning.
The present investigation attempted rigorous hyperparameter optimization to ensure efficient model
performance with model stability for the developed CDLSTM. Additionally, the CDLSTM model
developed on temperature dataset was applied and assessed on a different dataset, i.e., rainfall dataset.
In order to evaluate one model, it is imperative to conduct a comparative analysis with a different
model for secular evaluation. The present investigation compared the developed CDLSTM model with
the popular FB-Prophet model and showed significant performance; however, [4] did not compare the
ANN model with another model. Data preprocessing steps such as removing missing values, data
transformation, etc., are vital to building an efficient ML forecasting model. The study [4] observed
that the rainfall data from 1901-2015 has no missing values; however, the present investigation found
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that the same dataset for the entire India had 1036 missing values. Therefore, the present investigation
replaced the missing data values with the mean value of the respective parameter.

Figure 6: Performance of CDLSTM model for rainfall forecasting, training, and testing forecasted
rainfall, shown using red, green, and blue, respectively

Table 5: Performance evaluation of the developed CDLSTM model based on different accuracy
metrics

States R2 MSE RMSE MAPE MAD NSE

J & K 0.71 871.43 29.52 –5.90% 0.72 0.76
Him 0.82 149.57 12.23 –2.15% 1.76 0.86
UK 0.83 221.12 14.87 –2.25% 1.27 0.88
A&M 0.87 69.22 8.32 –1.75% 1.19 0.89

(Continued)
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Table 5: Continued
States R2 MSE RMSE MAPE MAD NSE

WB&S 0.79 192.38 13.87 –3.05% 1.14 0.82
Arun 0.74 262.76 16.21 –4.49% 1.97 0.76
NMMT 0.76 172.66 13.14 –3.12% 1.26 0.79

Table 6: Comparison of temperature and rainfall forecasting/analysis with other studies

Ref State Rainfall
forecasting
RMSE

CDLSTM based
rainfall forecasting
RMSE (current
study)

FB-Prophet-
based forecasting
rainfall RMSE
(current study)

Remarks

[4] Him 16.02 12.23 2.61 Selection of months for
categorizing the
seasons, lack of
data-preprocessing

UK 16.07 14.87 2.64
A&M 16.14 8.32 1.8
WB&S 16.66 13.87 1.81
Arun 47.34 16.21 1.77
NMMT 18.91 13.14 1.45
J&K 5.15 29.52 3.57

[8] ANN 112.72 15.45 2.23 For Ca Mau, stations in
Vietnam, high RMSE
values

SANN 97.11 15.45 2.23
LSTM 58.8 15.45 2.23

[11] ARIMA 19.23 21.67 0.96 Only for one state, good
accuracy

[12] SVM 6.67 15.45 2.23 Very small dataset for
only one stationANN 3.1 15.45 2.23

RNN 1.41 15.45 2.23
[14] RNN 304 15.45 2.23 Model for entire India,

High RMSE valueLSTM 270 15.45 2.23
[15] UK 0.47 0.9 0.98 Weak R2 of rainfall with

IMD data
[15] UK 0.34 0.76 0.97 Weak R2 of rainfall with

TRMM data
[16] UK 11.46 14.95 3.67 Good RMSE of the

historical temperature
trend

[29] MLP 0.5 0.93 0.97 Weak R2 values for
MLP and CNN for
different models

CNN 0.58 0.93 0.97
GRU 0.6 0.93 0.97
BLSTM 0.75 0.93 0.97
LSTM 0.77 0.93 0.97
Prop 0.87 0.93 0.97
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4.6 Computational Efficiency of the Present Investigation

After optimizing the CDLSTM model, it took 45 s 21 ms/step for 20 epochs, i.e., a total of 907
seconds or 15 min 12 sec to complete the training. Optimization saves computation cost by selecting
the best number of parameters, including the number of epochs. The optimized model took only 40%
computational time compared with 50 epochs in 40 minutes. The imported FB-Prophet model took
three minutes to perform the results, only 20% of the computational processing time.

5 Conclusions

The present investigation provides an understanding of the long-term historical and forecasted
data of temperature and rainfall for India’s Himalayan states. A DL-based LSTM model was
developed based on rigorous hyper-parameters tuning to forecast the temperature and rainfall. The
correlation coefficient, MSE, RMSE MAPE, NSE, and MAD were obtained to evaluate the CDL-
STM model performance. All the twelve Himalayan states showed increasing temperatures after 2000
and a decrease in rainfall after 1990. Arun and NMMT showed decreasing trends for rainfall; however,
rainfall over J&K, UK, WB&S showed an increasing trend. The Himalayan state with the highest
average rainfall was Arun, while the lowest average rainfall was for J&K. Mean annual temperature
of the Himalayan states increased around 1.07◦C between the last two centuries; interestingly, it
has increased 0.98◦C for entire India for the same period. The Himalayan states are experiencing
more severe impacts of global warming. The present investigation found a strong correlation (0.98)
between the average temperature trend for all the Himalayan states. The correlation coefficient between
temperature and rainfall was significantly strong for Northeastern Himalayan states A&M (0.80),
WB&S (0.78), NMMT (0.76), and Arun (0.62); however, it was weak for Northwestern Himalayan
states UK (0.5), Him (0.39) and J&K (0.18).

The present investigation developed the CDLSTM model containing eight LSTM layers, where
four layers were dense, and three were the dropout layers. The CDLSTM model was optimized based
on rigorous parameters tuning. The developed CDLSTM model showed promising performance based
on various metrics such as R2, MSE, RMSE, MAPE, MAD, and NSE. The developed CDLSTM
model was likely to estimate the possible future values of temperature and rainfall accurately, given its
reliability. The FB-Prophet model implemented in the present investigation with the PWL algorithm
showed remarkably efficient performance based on accuracy metrics. As per available literature, the
current investigation’s performance achieved by the FB-Prophet model for temperature and rainfall
forecasting is the highest, based on accuracy metrics. The developed CDLSTM model has lower
accuracy than the FB-Prophet model; however, the CDLSTM model showed better performance
than other models applied in previous studies. Both CDLSTM and FB-Prophet model’s performance
showed good forecasting values for all months, including Jan 2013, where the temperature was low
due to the peak winter season. The future scope of the present investigation is to add more data on
snow retreat, glacier melt, agricultural yield, and demographics to assess the complete cycle of climate
change for the Himalayan region. Another future scope of the present investigation is to implements
and assimilate the latest state of the art models for climate modeling and forecasting [30–34].

6 Limitations and Learning Points of the Present Investigation

The significant limitations of the present study include (1) Although the performance of the devel-
oped CDLSTM model was significantly higher than previous studies, the imported FB-Prophet model
with PWL algorithm performed better than the developed CDLSTM model. (2) The computation
of the tuned CDLSTM model took 15 minutes for 20 epochs, so an improvement in computational
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efficiency is required. (3) The reasons to choose LSTM in the present investigation are its capability
to deal with the vanishing gradient problem and better control, flexibility, and performance than
traditional RNN. (4) The LSTM model has limitations such as the requirement of high memory
bandwidth due to linear layers; also, it is more prone to overfitting and is too complex to apply dropout,
(5) The effect of Gulfstream weakening on climate change on agricultural productivity will be a future
scope as parts of the US and Europe are influenced by the Gulf Stream.
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[7] M. Shenify, A. S. Danesh, M. Gocić, R. S. Taher, A. W. A. Wahab et al., “Precipitation estimation using
support vector machine with discrete wavelet transform,” Water Resources Management, vol. 30, no. 2, pp.
641–652, 2016.

[8] F. Kratzert, D. Klotz, C. Brenner, K. Schulz and M. Herrnegger, “Rainfall-runoff modelling using long
short-term memory (LSTM) networks,” Hydrology and Earth System Sciences, vol. 22, no. 11, pp. 6005–
6022, 2018.

[9] J. Kuttippurath, S. Murasingh, P. A. Stott, B. B. Sarojini, M. K. Jha et al., “Observed rainfall changes in
the past century (1901-2019) over the wettest place on Earth,” Environmental Research Letters, vol. 16, no.
2, pp. 1–14, 2021.

[10] L. Tamiotti, R. Teh, V. Kulaçoglu, A. Olhoff, B. Simmons et al., “Climate change: The current state of
knowledge,” Trade and Climate Change, vol. 9177, no. June, pp. 1–46, 2009.

[11] M. A. Haq, P. Baral, S. Yaragal and G. Rahaman, “Assessment of trends of land surface vegetation
distribution, snow cover and temperature over entire Himachal Pradesh using MODIS datasets,” Natural
Resource Modeling, vol. 33, no. 2, pp. 941, 2020.

[12] S. Singh, M. Kaushik, A. Gupta and A. K. Malviya, “Weather forecasting using machine learning
techniques,” SSRN Electronic Journal, vol. 2, no. June, pp. 1–6, 2019.



2380 CMC, 2022, vol.71, no.2

[13] A. Basistha, D. S. Arya and N. K. Goel, “Analysis of historical changes in rainfall in the Indian Himalayas,”
International Journal of Climatology, vol. 29, no. 4, pp. 555–572, 2009.

[14] V. Kumar, S. K. Jain and Y. Singh, “Analyse des tendances pluviométriques de long terme en Inde,”
Hydrological Sciences Journal, vol. 55, no. 4, pp. 484–496, 2010.

[15] A. Banerjee, A. P. Dimri and K. Kumar, “Rainfall over the Himalayan foot-hill region: Present and future,”
Journal of Earth System Science, vol. 129, no. 1, pp. 39, 2020.

[16] A. Banerjee, A. P. Dimri and K. Kumar, “Temperature over the Himalayan foothill state of Uttarakhand:
Present and future,” Journal of Earth System Science, vol. 130, no. 1, pp. 1–14, 2021.

[17] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, J. Schmidhuber et al., “LSTM: A search space
odyssey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232,
2017.

[18] B. Yan, J. Wang, Z. Zhang, X. Tang, Y. Zhou et al., “An improved method for the fitting and prediction
of the number of COVID-19 confirmed cases based on LSTM,” Computers, Materials & Continua, vol. 64,
no. 3, pp. 1473–1490, 2020.

[19] J. Zhao, J. Wu, X. Guo, J. Han, K. Yang et al., “Prediction of radar sea clutter based on LSTM,” Journal
of Ambient Intelligence and Humanized Computing, vol. 2004, no. 1, pp. 9, 2019.

[20] C. Hu, Q. Wu, H. Li, S. Jian, N. Li et al., “Deep learning with a long short-term memory networks approach
for rainfall-runoff simulation,” Water, vol. 10, no. 11, pp. 1543, 2018.

[21] K. Fang and C. Shen, “Near-real-time forecast of satellite-based soil moisture using long short-term
memory with an adaptive data integration kernel,” Journal of Hydrometeorology, vol. 21, no. 3, pp. 399–413,
2020.

[22] H. B. Mann, “Nonparametric tests against trend,” Econometrica, vol. 13, no. 3, pp. 245, 1945.
[23] M. Kendall, “Rank correlation methods,” Griffin, London, 1970.
[24] P. K. Sen, “Estimates of the regression coefficient based on Kendall’s tau,” Journal of the American

Statistical Association, vol. 63, no. 324, pp. 1379–1389, 1968.
[25] R. Schumacker, S. Tomek, R. Schumacker and S. Tomek, “z-Test,” in Understanding Statistics Using R,

NY, USA, 2013.
[26] A. Jabeen, S. Afzal, M. Maqsood, I. Mehmood, S. Yasmin et al., “An LSTM based forecasting for major

stock sectors using COVID sentiment,” Computers, Materials & Continua, vol. 67, no. 1, pp. 1191–1206,
2021.

[27] O. A. Fallatah, M. Ahmed, D. Cardace, T. Boving and A. S. Akanda, “Assessment of modern recharge to
arid region aquifers using an integrated geophysical, geochemical, and remote sensing approach,” Journal
of Hydrology, vol. 569, no. 1, pp. 600–611, 2019.

[28] A. Qian, S. Yi, L. Chang, G. Sun and X. Liu, “Using grace data to study the impact of snow and rainfall
on terrestrial water storage in Northeast China,” Remote Sensing, vol. 12, no. 24, pp. 1–21, 2020.

[29] M. Chhetri, S. Kumar, P. P. Roy and B. G. Kim, “Deep BLSTM-GRU model for monthly rainfall
prediction: A case study of Simtokha, Bhutan,” Remote Sensing, vol. 12, no. 19, pp. 1–13, 2020.

[30] E. S. M. E. Kenawy, S. Mirjalili, S. M. S. Ghoneim, M. M. Eid, M. Marwa et al., “Advanced ensemble
model for solar radiation forecasting using sine cosine algorithm and Newton’s laws,” IEEE Access, vol. 9,
pp. 115750–115765, 2021.

[31] S. S. M. Ghoneim, T. A. Farrag, A. A. Rashed, E. S. M. E. Kenawy and A. Ibrahim, “Adaptive dynamic
meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults,” IEEE
Access, vol. 9, pp. 78324–78340, 2021.

[32] A. A. Salamai, E. S. M. E. Kenawy and I. Abdelhameed, “Dynamic voting classifier for risk identification
in supply chain 4. 0,” CMC-Computers, Materials & Continua, vol. 69, no. 3, pp. 3749–3766, 2021.



CMC, 2022, vol.71, no.2 2381

[33] E. S. M. E. Kenawy, H. F. Abutarboush, A. W. Mohamed and A. Ibrahim, “Advance artificial intelligence
technique for designing double t-shaped monopole antenna,” CMC-Computers, Materials & Continua, vol.
69, no. 3, pp. 2983–2995, 2021.

[34] M. A. Haq, M. F. Azam and C. Vincent, “Efficiency of artificial neural networks for glacier ice-thickness
estimation: A case study in western Himalaya, India,” Journal of Glaciology, vol. 67, no. 264, pp. 671–684,
2021.


	CDLSTM: A Novel Model for Climate Change Forecasting
	1 Introduction
	2 Dataset
	3 Methodology
	4 Results and Discussions
	5 Conclusions
	6 Limitations and Learning Points of the Present Investigation


