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Abstract: This paper provides a new optimization algorithm named as
tunicate swarm naked mole-rat algorithm (TSNMRA) which uses hybridiza-
tion concept of tunicate swarm algorithm (TSA) and naked mole-rat
algorithm (NMRA). This newly developed algorithm uses the characteristics
of both algorithms (TSA and NMRA) and enhance the exploration abilities
of NMRA. Apart from the hybridization concept, important parameter of
NMRA such as mating factor is made to be self-adaptive with the help of
simulated annealing (sa) mutation operator and there is no need to define
its value manually. For evaluating the working capabilities of proposed
TSNMRA, it is tested for 100-digit challenge (CEC 2019) test problems and
real multi-level image segmentation problem. From the results obtained for
CEC 2019 test problems, it can be seen that proposed TSNMRA performs
well as compared to original TSA and NMRA. In case of image segmentation
problem, comparison of TSNMRA is performed with multi-threshold electro
magnetism-like optimization (MTEMO), particle swarm optimization (PSO),
genetic algorithm (GA), bacterial foraging (BF) and found superior results
for TSNMRA.
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1 Introduction

With the advent of nature inspired computing, a variety of algorithms have been developed in
the recent past. The major requirement is that almost every domain research problem including image
segmentation [1], scheduling problem [2], industrial engineering design problem [3], routing in wireless
sensor network [4] and network distribution [5] is solved/optimized using these algorithms. Various
algorithms namely differential evolution (DE) [6], genetic algorithm (GA) [7], grey wolf optimization
(GWO) [8], cuckoo search (CS) [9], moth flame optimization (MFO) [10] and others [11] have been
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proposed to tackle above discussed problems. These algorithms are mainly categorized into two types
namely swarm based algorithms and evolutionary algorithms. A large number of new algorithms have
been proposed for both these categories and have proved their worthiness for various domain research
problems. The major reason for the continuous use of these algorithms is that they require minimal
tuning parameters and preserve information over subsequent iterations to find the optimal solution.

Tunicate swarm algorithm (TSA) [12] is a recently introduced algorithm which follows jet propul-
sion and swarm intelligent behavior of tunicates found in ocean. With the help of these behaviors,
tunicates (search agents) become capable to find the location of food (optimal solution).

Naked mole-rat algorithm (NMRA) [13] is another swarm intelligent algorithm proposed in the
recent past and based upon matting pattern of mole-rats live in a single colony with size varies from
50 to 295. This colony is leaded by a single female (queen) and categorized into two types of mole-rats
(workers and breeders). Here, the queen performs breeding with best performer rats (breeders) while
low performer rats (workers) perform some essential tasks.

Both of these algorithms have proved their worthiness and it has been found that TSA has
better exploration properties due to avoidance of conflicts among various search candidates and
approaching best search candidate. NMRA on the other hand, has better exploitation properties
because exploitation phase due to existence of initial best solution and mating factor parameter which
controls breeder’s frequency to mate with the queen.

As far as the recent literature is concerned, NMRA has been applied to various different
optimization problems. These include designing of double notched ultra-wide band antenna [14] and
localization problem of wireless sensor networks (WSN) [15]. On the other hand, TSA was also used
for economic load dispatch problems [16], parameter optimization of solar cells [17] and multi-path
routing protocol in IOT assisted WSN [18].

From the above discussion, it is evident that TSA suffers from the problem of poor exploitation
and NMRA has poor exploration properties. In order to deal with this problem, a new hybrid variant
combining the added properties of TSA and NMRA has been proposed and named as TSNMRA.
Here, exploration properties of TSA are added to the worker phase of NMRA and the breeder phase
of NMRA is used as such for better exploration properties. The main contribution of the present work
is:

• The concept of TSA and NMRA have been hybridized to propose the new TSNMRA
algorithm. The numerical equations of TSA are added in the worker phase of NMRA, while
keeping the original structure of both the algorithms intact.

• The concept of (sa) mutation operator has been added to mating factor of NMRA. This
operator ensure that the algorithm is self-resilient and no user based parametric adaptation
is required.

In order to test the efficiency of the proposed TSNMRA, CEC 2019 benchmark problems [19] and
real multilevel image thresholding problem [20] have been used. The segmentation of digital images
is an open problem that has increasingly attracted the attention of researchers during the last years.
Thresholding approaches are often used due to their independence from the resolution of the images
and their speed. However, simple thresholding approaches usually generate low-quality images. To
achieve a better balance between speed and quality, many criteria are used to select the thresholds that
segment the image. Here, TSNMRA is introduced to perform image thresholding by modelling the
classes of an image to avoid uncertainty on the selection of the thresholds leading to improvement
regarding the quality of the segmented image. From the statistical and experimental results, it has
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been analyzed that proposed TSNMRA is better than classical NMRA and TSA for CEC 2019 test
problems and GA, PSO, MTEMO and BF for image segmentation problem.

The reminder of the paper is organized into 5 sections in which Section 2 deals with background
and mathematical model of TSA and NMRA. Section 3 describes proposed algorithm TSNMRA
in which hybridization concept of TSA and NMRA has been discussed. Section 4 provides the
description of real image thresholding optimization problem. The statistical results along with
convergence graphs for CEC 2019 test problems and simulated results for image segmentation problem
have been analyzed in Section 5. Finally, conclusion of the article and future prospective are provided in
Section 6.

2 Preliminaries
2.1 Tunicate Swarm Algorithm

The mathematical model of the TSA has been described in this subsection. TSA is based on
tunicate’s capability for approaching food source (optimal solution) in the sea. Here, two behaviors
are used by tunicates for finding food location such as swarm intelligent behavior and jet propulsion
behavior. For implementation of jet propulsion behavior three conditions are taken into consideration
such as avoidance of conflicts among search candidates, tunicate approach best candidate position
and exist near to best candidate.

Search candidate’s avoiding conflicts: For avoiding conflicts among various tunicates, vector �β is
used. This vector is basically used to calculate position of new search candidate and defined as:

�β = �g
�m (1)

�g = c2 + c3 − �f (2)

�f = 2.c1 (3)

where �g defines force of gravity, �f describes flow of water in sea, three parameters (c1, c2, c3) are
randomly distributed between 0 and 1, �m deals with existence of forces among search candidates and
evaluated as:

�m = [pmin + c1.pmax − pmin] (4)

where pmax and pmin describe interaction speeds of search candidates and its value is set to 4 and 1
respectively.

Approaching best candidate’s position: After conflicts avoidance, tunicates start moving towards
best neighbour search candidate and calculated as:

�d = |−→fs − r.�p(t)| (5)

where �d presents calculated distance between food location and tunicate, t defines the current iteration
value, r is randomly distributed in range [0,1],

−→
fs describes food’s position (optimum value) and �p

represents location of search candidate (tunicate) for current iteration.
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Converging near to best candidate: The search candidate has to preserved its location near to best
search candidate (food’s location) and defined as:

�p(t) =
{−→

fs + �β.�d, r ≥ 0.5−→
fs − �β.�d, r < 0.5

(6)

where �p(t) defines the updating of search candidate’s (tunicate) position in accordance with location
of food

−→
fs .

Swarm intelligent behaviour of tunicates: The search candidates (tunicates) follow swarm intelligent
behaviour for position updating and calculated as:

�p(t + 1) = �p(t) + �p(t + 1)

2 + c1

(7)

where �p(t) and �p(t + 1) are first two best candidate’s solution (optimal value) and these solutions are
preserved for updating another candidate’s solution with respect to position of best candidate.

2.2 Naked Mole-Rat Algorithm

NMRA follows the matting behavior of mole rats which are live in a colony and broadly divided
into workers and breeders. To develop the mathematical model of NMRA, it is divided into three
phases population initialization, exploration (worker phase) and exploitation (breeder) phase.

Initialization of rats: Firstly, initialize the population of rats (n) in a random manner with
dimension (d). Here, d represents the problem’s variables which are required to be optimized. The
equation used for initialization is given as:

Mp,q = Mmin,q + rand(0, 1) × (Mmin,q − Mmax,q) (8)

where p = [1, 2, . . . .n], q = [1, 2, . . . .d], Mp,q describes the new solution obtained for qth dimension,
Mmin,q and Mmax,q presents lower and upper boundary of search space.

Worker phase (exploration): The worker rats continuously trying to enhance its fitness in this
phase so that they may added into breeder’s group and perform breeding with the queen. To develop
a new worker’s solution, this equation is used:

wsp(t + 1) = wsp(t) + λ(wsc(t) − wsd(t)) (9)

where wsp(t) is the worker’s solution in the tth iteration, wsp(t + 1) defines newly generated solution, λ

deals with mating behavior of rats, wsc(t)− wsd(t) are two solutions which are selected randomly from
the worker’s group.

Breeder phase (exploitation): The mole-rats exist in breeder’s group also trying to update its fitness
so that they become eligible to mate with the queen. The fitness of these breeders is updated with the
help of breeding probability (bp) in accordance with initial best solution Mbest. To update the solution
of breeder rats, the equation is defined as:

bsp(t + 1) = (1 − λ)bsp(t) + λ(Mbest − bsp(t)) (10)

where bsp presents solution of breeder rats in tth iteration, λ parameter controls frequency of mating
and bsp(t + 1) corresponds to new solution generated in next iteration.
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3 Proposed Algorithm: Hybrid Tunicate Swarm Naked Mole-Rat Algorithm

In the present work, hybridization of TSA and NMRA has been performed to enhance the
working capabilities of algorithms. Although, classical TSA and NMRA give reliable results but when
these algorithms compared with other improved versions of algorithms, the results are not significant.
This is due to poor exploration and local optimum stagnation problem has been observed in basic
NMRA whereas TSA performs poor exploitation. Therefore, a new hybrid algorithm TSNMA is
proposed without changing the original structure of both NMRA and TSA. This hybrid algorithm
starts with initialization of search agents and performed by Eq. (8).

After the initialization, worker phase (exploration) has been performed with properties of both
TSA and NMRA. Thus, efficiency of NMRA’s worker phase has been enhanced by adding the jet
propulsion and swarm behavior equations of TSA. The Eqs. (4)–(7) of TSA have been combined
with original worker Eq. (9) of NMRA. Here, it is worth to mention that organization of both the
algorithms is kept same and equations of TSA are incorporated in the same way as provided in original
TSA.

The nest phase of TSNMRA is breeder phase and has been executed with same structure as given
in basic NMRA. This phase is considered as exploitation phase and algorithm converges to global
optimal solution. The solution obtained in this phase is provided by Eq. (10) which is same as original
NMRA. Here, the selection of breeder’s number is very important because limited number of breeders
get a chance to mate with the queen (optimal solution). So, proposed TSNMRA breeder phase is
similar to original NMRA and no modifications have been added to this phase.

Apart from the hybridization of TSA and NMRA, adaptation of parameters is also included in the
present work. Here, mating factor (λ) of NMRA is made to be self-adaptive with simulated annealing
(sa) mutation operator [21] and there is no need of assigning any random or constant value to it. This
mutation operator enhances the convergence rate of optimization algorithm and defined as:

αsa = αmin + (αmax − αmin) × β(k−1) (11)

where αmin, αmax and k are randomly distributed in [0,1] and value of β is set to 0.95.

Finally, selection phase of TSNMA is treated as last phase and follows the procedure of greedy
selection. Here, if the fitness of newly obtained solution is superior than previous generated solution
then the new solution should be adopted as local best solution and previous solution should be
discarded. The pseudo-code of proposed TSNMRA is given in Algorithm 1.

Algorithm 1: Pseudo-code of TSNMRA
Start

Inputs: Define the random population of search candidates: n
Define initial parameters of TSA (c1, c2, c3 ); (pmax, pmin)

Define number of breeders = Population of search candidates (n)/5
Define number of workers = Population of search agents (n)−number of breeders (B)
Assign the value to breeding probability (bp)
Decide the dimension (d) of the problem

Output: Finding the overall best (Mbest) from the entire population
while Current iteration < Maximum iterations value

for j = 1: number of workers
Conflicts avoidance among search candidates by Eq. (4)

(Continued)
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Approaching towards best candidate by Eq. (5)
Converging to best candidate by Eq. (6)
Implement swarm intelligent behavior of search candidates by Eq. (7)
Generation of worker’s solution by Eq. (9)
calculate the solution: wsp(t + 1)

end for
for j = 1: number of breeders (B)
if rand(0, 1) > breeding probability (bp) value
Generation of breeder’s solution by Eq. (10)
calculate the solution: bsp(t + 1)

end if
end for
unite new worker and breeder population
update the solution of overall best (Mbest)
increment the iteration number

end while
save the overall best solution (Mbest)

Stop

4 Real World Image Thresholding Optimization Problem

Image segmentation is a complex area of image processing research that results in a set of segments
that cover a set of contours extracted from an image. In an area, each pixel is compared for some
distinguishing or calculated attribute, such as colour, texture or intensity. The goal is to make an
image’s representation more understandable and easier to evaluate by simplifying or changing it. Over
the years, a lot of work has been done in this area. The four basic categories of image segmentation
techniques now in use are: regional method, border based, clustering based [22] and thresholding
based.

In image processing, thresholding is a pre-processing complex task. It’s quickest and effective seg-
mentation technique, capable of distinguishing objects from the background using pixel-level criteria.
The separation of the foreground object from gray-level pixels in the background is necessary in some
image processing examples [22]. It has a wide range of applications in domains such as biomedical
imaging, infrared imaging, remote sensing, surveillance, artificial intelligence, for specialized target
recognition, and others [23].

Thresholding can be either bi-level or multi-level. In the earlier, image is separated, using single
threshold value, into two classes. The entire image is checked for a known threshold value (T). As
shown in Eq. (1), pixels having a greater value than the threshold are classified as first class (b1),
while the rest are classified as second class (b2). C is any randomly picked pixel from the image under
consideration with T for an image A of size (m ∗ n) with intensity levels L.

b =
{

b1 ← C if 0 ≤ C < T
b2 ← C if T ≤ C < L − 1

}
(12)

This bi-level thresholding (BT) not only provides precise regions with low overlap and aggre-
gation effectiveness, but it may also serve as a pre-processing tool for more complex segmentation
approaches [24].
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In bi-level thresholding, if the threshold value is set incorrectly, the results can be severe. In many
circumstances, multi-level thresholding (MT) is utilized to improve the outcomes of segmentation.
As shown in Eq. (2), more thresholds are employed to segment the image into a set of classes. MT
generates numerous regions [b1, b2, b3, bi, . . . bn] based on following principles.

b1 ← C if 0 < C < T

b2 ← C if T1 < C < T2

b3 ← C if T2 < C < T3

bi ← C if Ti < C < Ti+1 (13)

bn ← C if Tn < C < L − 1 (14)

where i is a certain class and n is the number of classes.

The term “optimization” refers to finding the optimal solution to a problem while keeping
certain constraints in consideration [25]. The search for the best threshold values for a given image
is considered as constrained optimization problem. To solve the computational inefficient problems
of typical thresholding approaches, swarm intelligence (SI) algorithms are widely employed to seek
for appropriate threshold values for MT problems using distinct fitness or objective functions. For
multi-level designs, many biological evolution-inspired metaheuristic algorithms and their modified
algorithms were applied.

Countless thresholding approaches have been documented in the associated literatures over the
years [26]. Otsu’s method [27], which was introduced in 1979, is a thresholding strategy that maximizes
class variance to produce optimal thresholds. Using the 1985 moment-preserving approach, Tsalis [28]
suggested a thresholding strategy for a grey image. The Kapur entropy approach, developed by Kapur
et al. [28], employed histogram entropy to discover optimal threshold values, and the methodology was
widely used to detect the threshold values in image processing. To minimize cross-entropy between
the original image and the segmented image, the minimum cross-entropy method is used to detect
the appropriate threshold value [29]. These techniques can easily be used to multilevel threshold
segmentation applications. When multiple thresholds are to be determined, the computational time
increases exponentially as these algorithms look for the best threshold values to optimize objective
features.

Image thresholding method: Otsu is nonparametric and unsupervised approach for determining
an image’s threshold value [6] that seeks to maximize the inter-class variance while reducing the intra-
class variance between pixels in each class. Varying classes of image with different threshold values are
b1, b2, . . . , bn.

b1 = P1

ω0

,
P2

ω0

. . .
PT

ω0

b2 = PT+1

ω1

,
PT+2

ω1

. . .
PL

ω1

(15)

where, ω0 =
T∑

i=1

pi , ω1 =
L∑

i=T+1

pi
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For two classes of b1 and b2, the average levels of μa and μb are as follows:

μa =
k∑

i=0

ipi

ω0

, μb =
L∑

i=k+1

ipi

ω1

(16)

If μT be the mean intensity of image, then

ω0μa + ω1μb = μT , ω0 + ω1 = 1 (17)

Function f1 desires to be maximized to perform thresholding using Otsu function

f1 = ω0(μa − μT)2 + ω1(μb − μT)2 (18)

To extend this method from BT to MT, consider an image with L grey levels (1, 2, . . . , L), N
pixels, and ‘m’ thresholds with ‘m − 1’ different classes in it. The frequency of grey level fi is given by
{f0, f1, f2, f3, . . . fL−1} in the histogram of the image under consideration.

Between the class value, in this extended form is represented as

f (T) =
T∑

i=0

ωi(μi − μT)2 (19)

If the between-class variance is at its highest, the within-class variable will always be at its lowest,
with fOTSU representing the objective function and maximizing this corresponding to optimal intensity
threshold values.

fOTSU(T) = ∅o = max(f (T)), 0 ≤ T ≤ L − 1 (20)

fOTSU((Thi)) = ∅o = max(f (Ti)), 0 ≤ T ≤ L − 1, i = 1, 2, 3 . . . , T (21)

The above said problem is a maximization problem in image segmentation optimization. When
this method is applied to multilevel thresholding, the computational cost increases exponentially.
Using an Intel i7-4770 K CPU, it takes roughly 40 years to identify 8 threshold values using the
Otsu approach, and around 10,000 years to find 9 threshold values [30]. Different heuristic-based
techniques have been developed to solve this issue, which divide the histogram into multiple sections
by selecting appropriate thresholds.

In this work, proposed TSNMRA has been applied to benchmark image set for segmentation
based on MT. The objective function for the optimization problem is given as fOTSU(TH) in Eq. (9).
The goal is to maximize the objective function while finding optimum threshold values for an image.
The ith population vector of k threshold values is represented as thi = (thi1, thi2, . . . ., thik), where
thi(j) ∈ {0, 255}.

The initial population of the problem under consideration is determined by

thi(j) = thmin + rand() ∗ (thmax − thmin) (22)
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where thmax and thmin are the maximum and minimum bounds of image intensity levels, j is the dimension
size of the problem i.e., number of image threshold levels, and rand is a uniformly distributed random
number.

To enumerate the effectiveness of each solution utilizing TSNMRA in the image segmentation
problem, the fitness values are evaluated using Otsu approach. To construct an evolved population,
the population undergoes numerous operators (see Eqs. (1)–(11)) until the termination requirement
is satisfied. For the Otsu approach, the solution with the highest fitness value is regarded the best
objective function value.

5 Results and Discussion

This section deals with the performance evaluation of the proposed new hybrid algorithm TSN-
MRA for ten 100-digit challenge (CEC 2019) test problems and real image thresholding optimization
problem.

5.1 Statical Results for CEC 2019 Test Problems

The CEC 2019 test problems comprise three simple numerical problems (P1 to P3) and seven shifted
and rotated numerical problems (P4 to P10) along with scalable properties. A detailed description of
CEC 2019 test suite is available in [31]. To check the working capability of the proposed TSNMRA, it is
compared with classical NMRA and TSA. The parameters involved in these algorithms are provided
in Tab. 1. Here, it should be noted that all the algorithms under test are simulated for 500 iterations with
50 search agents (population size). The statistical results obtained for each algorithm are represented
in terms of best, median, worst, mean and standard deviation (Std) for 51 runs and presented in Tab. 2.

Table 1: Parameter selection of various algorithms under evaluation

Algorithms Number of search
agents

Maximum iterations Other parameters

NMRA 50 500 bp = 0.5; λ= rand [0,1]
TSA 50 500 pmin =1; pmax =4
TSNMRA 50 500 pmin =1; pmax =4,

bp = 0.05; λ= sa

From the results illustrated in Tab. 2, it can be analyzed that classical NMRA’s performance is
best concerning other competitive algorithms for problems P1 and P2. In case of problem P3, the
comparison of algorithm’s results is carried out for std values where TSNMRA performs well among
all the algorithms under test. For problem P4, TSNMRA gives superior results for all the performance
matrices except best values. For problems P5, P6, P7, P8, P9 and P10, results of TSNMRA are best
and no other algorithm is capable to match its performance. Therefore, TSNMRA’s results are found
to be superior for eight numerical test problems and NMRA for two test problems. Apart from the
statistical results, convergence of NMRA, TSA and TSNMRA are also drawn and shown in Fig. 1.
From the convergence profiles, it has been observed that the proposed algorithm TSNMRA converge
to the optimal value for most of the cases with a course of iterations in comparison with TSA and
NMRA. So, overall TSNMRA is treated as the best candidate to solve these numerical test problems
as compared to other basic competitive algorithms.



3454 CMC, 2022, vol.71, no.2

Table 2: Simulated results of TSNMRA in comparison with other algorithms for CEC 2019 test
problems

Test problem Algorithms Best Median Mean Worst Std

P1 NMRA 7.865E+04 2.339E+05 3.156E+05 1.023E+06 2.304E+05
TSA 3.995E+04 6.067E+06 1.896E+08 2.600E+09 4.154E+08
TSNMRA 1.173E+05 6.851E+05 6.233E+05 1.275E+06 3.043E+05

P2 NMRA 1.773E+01 1.844E+01 1.853E+01 1.968E+01 5.290E−01
TSA 1.734E+01 1.848E+01 1.838E+01 1.956E+01 6.512E−01
TSNMRA 1.747E+01 1.841E+01 1.847E+01 1.984E+01 6.714E−01
NMRA 1.270E+01 1.270E+01 1.270E+01 1.270E+01 2.999E−07

P3 TSA 1.270E+01 1.270E+01 1.270E+01 1.271E+01 1.100E−03
TSNMRA 1.270E+01 1.270E+01 1.270E+01 1.270E+01 3.739E−08
NMRA 8.022E+01 2.650E+02 3.489E+02 1.734E+03 3.420E+02

P4 TSA 6.826E+01 2.625E+03 3.648E+03 1.089E+04 3.186E+03
TSNMRA 7.490E+01 2.903E+02 3.487E+02 7.751E+02 1.732E+02

P5 NMRA 1.358E+00 1.900E+00 1.912E+00 2.910E+00 3.280E−01
TSA 1.521E+00 2.595E+00 2.644E+00 5.442E+00 8.188E−01
TSNMRA 1.301E+00 1.831E+00 1.851E+00 2.865E+00 3.325E−01
NMRA 9.068E+00 1.140E+01 1.130E+01 1.308E+01 8.118E−01

P6 TSA 9.174E+00 1.094E+01 1.081E+01 1.189E+01 8.830E−01
TSNMRA 8.141E+00 1.048E+01 1.031E+01 1.156E+01 7.802E−01
NMRA −1.411E+02 1.513E+02 1.472E+02 3.701E+02 1.246E+02

P7 TSA 9.845E+01 4.895E+02 5.290E+02 1.275E+03 2.335E+02
TSNMRA −2.473E+02 2.350E+01 2.213E+01 1.926E+02 9.681E+01
NMRA 5.237E+00 5.981E+00 5.951E+00 6.478E+00 3.027E−01

P8 TSA 3.536E+00 6.148E+00 6.004E+00 7.015E+00 6.542E−01
TSNMRA 4.761E+00 5.665E+00 5.614E+00 6.164E+00 2.914E−01
NMRA 3.060E+00 4.799E+00 1.121E+01 7.466E+01 1.672E+01

P9 TSA 2.997E+00 2.850E+02 4.275E+02 3.413E+03 6.166E+02
TSNMRA 2.896E+00 3.969E+00 5.332E+00 6.016E+01 8.12E+00
NMRA 2.026E+01 2.049E+01 2048E+01 2.068E+01 8.770E−02

P10 TSA 2.024E+01 2.048E+01 2.048E+01 2.063E+01 7.960E−02
TSNMRA 2.023E+01 2.040E+01 2.039E+01 2.056E+01 6.970E−02

5.2 Results for Image Segmentation Problem

To test the efficiency of the proposed method, 4 benchmark images (Hunter, Baboon, Cameraman,
and Sea star) from the MT literature are used. Because optimization algorithms are stochastic and
reliant on random numbers, there is a chance that there will be error. To circumvent discrepancies, all
dataset images are run via TSNMRA 35 times for Th = 2, 3, 4 and 5. The proposed methodology
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will be evaluated in terms of parametric evaluation of peak signal to noise ratio (PSNR), standard
deviation (STD) and mean square error (MSE) along with number of iterations for segmented results.

Figure 1: Convergence profiles for CEC 2019 test problems

Tab. 3 illustrates the results of applying the TSNMRA to the selected benchmark images using
Otsu’s technique as an objective function. It can be observed that the TSNMRA method outperforms
other algorithms, and majority of the images converge earlier than 30 iterations. On selected dataset
images, Otsu’s approach is used to determine the optimal thresholds, PSNR, mean, standard deviation
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and convergence characteristics. Tab. 4 shows the results of threshold values, PSNR, Mean, and STD
with iteration count using the Otsu approach on the selected benchmark image set for TSNMRA.

Table 3: Results of TSNMRA using Otsu over the selected benchmark image set

Th = 2 Th = 3 Th = 4 Th = 5

Baboon

Th = 2 Th = 3 Th = 4 Th = 5

Cameraman `

(Continued)
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Table 3: Continued

Th = 2 Th = 3 Th = 4 Th = 5

Hunter

Th = 2 Th = 3 Th = 4 Th = 5

Sea Star
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Table 4: Results of threshold values, PSNR, Mean, Iteration and STD using Otsu over set of
benchmark image set using TSNMRA

Image Th Thresholds PSNR Mean STD Iteration

Camera 2 71 144 17.2472 3651.7 3.75E−14 8
man 3 59 118 156 20.2115 3727.3 2.26E−01 12

4 43 96 140 170 21.5327 3782.4 2.67E−03 18
5 38 83 122

149 173
23.2829 3813.6 3.42E−03 20

Baboon 2 102 148 15.2314 1238.9 3.43E−06 12
3 89 124 158 17.8429 1320.6 2.35E–02 22
4 74 107 135

166
20.407 1368.4 7.62E–01 25

5 76 108 136
165 255

20.409 1368.3 3.06E−04 50

Hunter 2 52 116 17.9594 2963.1 2.66E−15 9
3 37 85 133 20.4378 3106.4 3.01E−03 11
4 28 63 102 141 22.3003 3162.6 3.20E−03 41
5 24 53 87 120

150
23.8306 3200.2 3.33E−03 24

Sea star 2 85 156 14.8562 2488.2 2.31E−13 9
3 69 120 177 17.3283 2718.1 2.32E−03 20
4 62 102 139

188
19.0757 2802.5 3.42E−02 21

5 54 86 117
150 194

20.7475 2850.4 2.14E−02 16

Tab. 5 shows the PSNR, and standard deviation whereas Tab. 6 provides the iteration count and
mean error values of TSNMRA, MTEMO, GA, PSO, and BF when applied to the benchmark image
set using Otsu’s technique. The data illustrates that the TSNMRA technique produces positive results
in the majority of cases. It can be seen that TSNMRA offers apparent advantages over GA, PSO,
and BF in terms of computation cost across a large number of iterations and excellent segmentation
outcomes.
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Table 5: Comparison for PSNR and std between TSNMRA, and competitive algorithms, applied over
the benchmark image set

Image Th PSNR comparison for Otsu’s method Std using Otsu’s method

TSNMRA MTEMO
[32]

GA
[32]

PSO
[32]

BF
[32]

TSNMRA MTEMO
[32]

GA
[32]

PSO
[32]

BF
[32]

Camera man 2 17.2472 17.247 17.048 17.033 17.058 3.75E−14 1.40E−12 0.0232 0.0341 0.0345
3 20.2115 20.226 17.573 19.219 20.035 2.26E−01 3.07E−01 0.1455 0.2345 0.2459
4 21.5327 21.533 20.523 21.254 21.209 2.67E−03 8.40E−03 0.2232 0.3142 0.456
5 23.2829 22.391 21.369 22.095 22.237 3.42E−03 2.12E+00 0.4589 0.5089 0.5089

Baboon 2 15.2314 15.422 15.304 15.088 15.353 3.43E−06 6.92E−13 0.0031 0.0077 8.88E−04
3 17.8429 17.709 17.505 17.603 17.074 2.35E–02 7.66E−01 0.175 0.0816 0.0287
4 20.407 20.289 18.708 19.233 19.654 7.62E–01 2.65E−02 0.2707 0.0853 0.0336
5 20.409 21.713 20.203 20.526 21.16 3.06E−04 4.86E−02 0.3048 0.1899 0.1065

Hunter 2 17.9594 17.875 17.088 17.932 17.508 2.66E−15 2.31E−12 0.047 0.2534 0.0322
3 20.4378 20.35 20.045 19.94 20.35 3.01E−03 2.22E−02 0.193 0.9727 0.9627
4 22.3003 22.203 20.836 21.128 21.089 3.20E−03 1.93E−02 0.6478 2.2936 2.2936
5 23.8306 23.723 21.284 22.026 22.804 3.33E−03 1.60E−03 1.6202 4.1811 3.6102

Sea star 2 14.8562 14.815 14.744 14.802 14.798 2.31E−13 4.61E−13 0.0879 3.0898 0.0091
3 17.3283 17.357 17.034 17.339 17.33 2.32E−03 5.90E−03 0.1236 11.582 0.0398
4 19.0757 19.125 18.482 18.112 18.818 3.42E−02 5.11E−02 0.1897 19.07 0.2651
5 20.7475 20.729 19.383 19.019 20.76 2.14E−02 5.75E−02 0.3647 19.083 1.8793

Table 6: Comparison of iteration and mean for TSNMRA and other competitive algorithms, applied
over the benchmark image set

Image Th Iteration comparison for Otsu’s method Mean using Otsu’s method

TSNMRA MTEMO
[32]

GA
[32]

PSO
[32]

BF
[32]

TSNMRA MTEMO
[32]

GA
[32]

PSO
[32]

BF
[32]

Camera man 2 8 13 184 132 90 3645.2 3606.3 3604.5 3598.3 3590.9
3 12 21 300 287 138 3715.8 3679.5 3678.3 3662.7 3657.5
4 18 25 535 431 129 3780.4 3782.4 3781.5 3777.4 3761.4
5 20 28 583 431 129 3802.2 3767.6 3766.4 3741.6 3789.8

Baboon 2 12 15 186 167 116 1521.1 1548.1 1547.6 1547.9 1548.0
3 22 25 348 267 180 1632.5 1638.3 1633.5 1635.3 1637.0
4 25 11 443 369 690 1673.2 1692.1 1677.7 1684.3 1690.7
5 50 22 632 518 288 1718.0 1717.8 1712.9 1712.9 1716.7

Hunter 2 9 11 254 171 180 3064.5 3064.2 3064.1 3064.1 3064.1
3 11 19 278 191 74 3214.8 3213.4 3212.9 3214.4 3213.4
4 41 25 494 385 253 3266.5 3269.5 3268.4 3266.3 3266.3
5 24 30 803 406 884 3309.3 3308.1 3305.6 3276.3 3291.1

Sea star 2 9 15 235 333 221 2549.2 2546.9 2534.8 2345.6 2352.8
3 20 11 401 440 356 2780.3 2779.9 2699.8 2676.3 2720.8
4 21 44 343 753 362 2866.8 2865.7 2820.1 2657.5 2821.9
5 16 12 606 703 470 2912.9 2912.8 2903.0 2890.4 2895.6
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6 Conclusion and Future Directions

This research provides a new hybrid TSNMRA method that combines the qualities of TSA
and NMRA algorithms. CEC 2019 benchmark functions are employed to test the effectiveness of
proposed algorithm. The performance of the algorithm is evaluated using a new simulated annealing-
based mutation operator. It was determined that introducing the mutation operator to the algorithm
makes it self-adaptive and enhances its performance. For CEC 2019 benchmarks, it was revealed that
TSNMRA outperforms both TSA and NMRA algorithms.

In addition to that, this research proposes a TSNMRA-based image thresholding approach. A
collection of benchmark images was used to test the suggested thresholding method. In terms of con-
vergence, accuracy, and quality of the segmented images, the thresholding methodology is compared to
competing algorithms. The results show that TSNMRA is a successful image thresholding approach.
A better exploration and exploitation operations may be employed to the algorithm as future efforts to
increase its performance. To analyze the performance of the TSNMRA method, several chaotic maps
and mutation operators can be incorporated. New exploratory and exploitative search equations can
be implemented to improve local and global search capabilities. The approach can also be used to solve
cancer classification, feature selection, clustering problems, multi-criteria learning, gene expression
modelling, and other real-world optimization problems.
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