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Abstract: Zanthoxylum bungeanum Maxim, generally called prickly ash, is
widely grown in China. Zanthoxylum rust is the main disease affecting the
growth and quality of Zanthoxylum. Traditional method for recognizing the
degree of infection of Zanthoxylum rust mainly rely on manual experience.
Due to the complex colors and shapes of rust areas, the accuracy of manual
recognition is low and difficult to be quantified. In recent years, the applica-
tion of artificial intelligence technology in the agricultural field has gradually
increased. In this paper, based on the DeepLabV2 model, we proposed a
Zanthoxylum rust image segmentation model based on the FASPP module
and enhanced features of rust areas. This paper constructed a fine-grained
Zanthoxylum rust image dataset. In this dataset, the Zanthoxylum rust image
was segmented and labeled according to leaves, spore piles, and brown lesions.
The experimental results showed that the Zanthoxylum rust image segmenta-
tion method proposed in this paper was effective. The segmentation accuracy
rates of leaves, spore piles and brown lesions reached 99.66%, 85.16% and
82.47% respectively. MPA reached 91.80%, and MIoU reached 84.99%. At the
same time, the proposed image segmentation model also had good efficiency,
which can process 22 images per minute. This article provides an intelligent
method for efficiently and accurately recognizing the degree of infection of
Zanthoxylum rust.
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1 Introduction

Zanthoxylum bungeanum Maxim, generally called prickly ash, is a plant of the Rutaceae family,
belonging to a deciduous shrub or small tree. Furthermore, Zanthoxylum plays an important role
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in diet, medicine, etc. [1,2]. With the rapid development of the Zanthoxylum industry, the planting
area of Zanthoxylum has been expanding. At the same time, the scope of pests and diseases of
Zanthoxylum has gradually been broadening. The yield reduction rate of Zanthoxylum is more than
50%. This situation not only affects the yield of Zanthoxylum, but also the quality of Zanthoxylum.
Zanthoxylum rust has the largest loss and the most widespread distribution among these pests and
diseases [3,4]. Zanthoxylum may be infected with Zanthoxylum rust in various growth stages. In terms
of rust prevention and control, the infected area is a key indicator for judging the degree of rust
infection. At present, the degree mainly relies on manual judgment and analysis. This method has
two disadvantages as follows. First, manual analysis is difficult to quantify the area and severity of
disease infection, resulting in poor accuracy. Second, the high dependence of manual judgment on
professional knowledge leads to poor timeliness. Therefore, we need to study intelligent recognition
methods. When rust occurs, leaves produce spore piles of different shades of yellow. Because the color
and boundary shape of spore piles have obvious characteristics, image segmentation technology can
be used to divide the area of rust.

In the field of computer vision [5–10]. the main basis of traditional image segmentation methods
for area segmentation methods is regional texture, color, shape, etc. [11–16]. In this paper, the image
segmentation of Zanthoxylum rust is diverse in morphology and has a large difference in lesion
size. Traditional image segmentation methods are difficult to achieve accurate results. In recent
years, the rapid development of artificial intelligence technology has provided new methods for
image segmentation. Image segmentation methods based on deep learning have also received a lot of
attention [17]. In 2015, Long et al. [18] built a fully convolutional network (FCN) for image semantic
segmentation, which completed the pixel-level image segmentation task. FCN used deconvolution
technology [19] for up-sampling, recovered each pixel from abstract features, and realized the leap
from image-level to pixel-level classification. However, FCN does not consider the global context
information, and the efficiency is not very high. Later, Ronneberger et al. [20] proposed an image
segmentation model U-Net network based on CNN (Convolutional Neural Network). The model has
a small number of parameters and fast network speed. Furthermore, the model can be trained based on
a small amount of data and is widely used in medical image segmentation. He et al. [21] proposed the
Mask R-CNN network, which is mainly based on the Faster-RCNN network [22] to expand, adding
a branch to use existing detection to perform parallel segmentation and prediction of the object [23].

In conclusion, the application of Zanthoxylum rust image segmentation technology based on
deep learning can extract feature information more comprehensively and increase the accuracy and
efficiency of segmentation. However, the regional identification of Zanthoxylum rust still has some
problems. First, the lesion area at the early stage is small. Second, the size of the infected area varies
in different periods. Third, different shapes of lesions have irregularly connected blocks. In response
to these problems, this paper studies the segmentation and recognition of the Zanthoxylum rust area
based on deep learning [24–29]. Our main contributions are as follows: 1) we construct a fine-grained
Zanthoxylum rust image dataset. In this dataset, the Zanthoxylum rust image is segmented and labeled
according to leaves, spore piles, and brown lesions; 2) we add a parallel structure to four parallel
structures of the ASPP module and propose a novel FASPP module with five parallels; 3) considering
the influence of leaf parts on the recognition accuracy of raised spore piles and brown diseased areas,
we create the residual images for enhancing the rust regional features. Section 3 introduces the fine-
grained segmentation dataset of Zanthoxylum rust. Section 4 and Section 5 proposes two image
segmentation methods based on the FASPP module and enhanced rust regional features separately.
The conclusion and perspectives of this paper are given in Section 6.
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2 Related Work

The proposal of the deep CNN network has greatly promoted the development of computer vision
[30–34]. The DeepLabV2 model is an image semantic segmentation network proposed by Chen et al.
[35]. First, this structure increases the feature map size while expanding the receptive field without
adding parameters [36]. Besides, DeepLabV2 uses a higher sampling density to calculate the feature
map and then uses bilinear interpolation to restore the feature to the original image size. Second,
DeepLabV2 refers to the idea of SPP (Spatial Pyramid Pooling) and proposes a similar structure ASPP
(Atrous Spatial Pyramid Pooling) module [37,38]. Each branch of this module uses atrous convolutions
with different sampling rates to extract image context information, which increases the receptive field
and enables more efficient classification. Third, DeepLabV2 uses CRF (fully-connected Conditional
Random Field) to enhance the model’s ability to capture details, ensuring the boundary position is
split accurately [39,40]. The structure of DeepLabV2 is shown in Fig. 1.

Figure 1: DeepLabV2 structure diagram

Considering the amount of calculation and storage space, the ASPP module is used in the
DeepLabV2 network structure for better segmentation at multiple scales. This measure refers to the
idea of the SPP module in SPPNet [41]. DeepLabV2 implements the ASPP module, a variant of
the SPP module. The ASPP module is similar to the spatial pyramid structure [42]. It uses multiple
sampling rates of convolutions to extract features in parallel and then merges the features. The ASPP
module parallels atrous convolutions of different sampling rates to sample on a given input, which
is equivalent to capturing image context at multiple scales. This method can increase the receptive
field and perform segmentation tasks more efficiently. This paper proposed the FASPP (Five-branch
Atrous Spatial Pyramid Pooling) module based on the ASPP module, the details will be introduced in
Section 4.

3 Dataset

Zanthoxylum rust is manifested in light yellow, orange, or gray raised spore piles and brownish
lesions. In the early stage of rust disease, small yellow spots and spore piles appear on the leaf surface.
The shape of the spots is close to a circle. As the degree of rust deepens, lesions will expand, and the
color will change to brownish. To better judge the extent and stage of rust and to more accurately
calculate the area size of brownish lesions and yellowish convex spore piles, the dataset marked yellow
convex spore pile areas and brownish diseased areas with different color.

Labelme software [43] is an image semantic segmentation and annotation tool. In this paper,
Labelme software is used to label healthy Zanthoxylum leaves and Zanthoxylum rust leaves. Import
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images that need to be labeled into Labelme software and mark the segmentation label by drawing a
polygon. There are three labels included in our dataset: “Rust1”, “Rust2”, and “background” [44].

The part labeled “Rust1” is raised spore pile parts of the leaf. The color of raised spore piles is
generally yellow or gray. Raised spore piles are shown in Fig. 2a. Marked raised spore piles are shown
in Fig. 2b.

Figure 2: Part of original images of raised spore piles and annotated images

The part labeled “Rust2” is brownish lesions of the leaf, shown in Fig. 3a. The brown diseased
leaves marked at the edge of brownish lesions are shown in Fig. 3b.

Figure 3: Original images of brown lesions and annotated images

The part labeled “background” was the background part around the leaf, and was marked in
black. After marking the background part, raised spore piles and brown lesions were marked, the
annotated images are shown in Fig. 4.

The label images are 8 bit images. In the images, the RGB value (0, 0, 0) corresponds to the
background part “background” around the leaf, the RGB value (128, 0, 0) corresponds to the raised
spot part “Rust1”, the RGB value (0, 128, 0) corresponds to the brownish lesions part “Rust2”, and
the RGB value (128, 128, 0) corresponds to the leaf part.
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Figure 4: Images of partially completed label

This paper selected 100 leaves for labeling, including leaves with few raised spore piles and
brownish lesions, leaves with many raised spore piles and brownish lesions, and leaves with different
shades. This method ensured the integrity and completeness of the data. Fig. 5 shows examples of the
Zanthoxylum rust dataset.

Figure 5: Examples of the dataset images

Since most of the selected 100 leaves have many raised spore piles and brownish lesions, which
are more complicated, directly inputting the deep neural network for training will increase training
difficulty. This paper cropped 100 leaves to the size of 480 × 360 and the bit depth of 24 bits. After
cropping, the label value and bit depth of the image change. The cropped images cannot meet the
requirements of dataset and cannot be input into the neural network for training. Therefore, in this
section, the cropped images were grayed processing and the raised spore piles, brown diseased spots,
leaf parts, and background were relabeled. The leaf part was marked as 3, the brownish diseased part
was marked as 2, the raised spore piles was marked as 1, and the background was marked as 0. After
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processing the cropped pictures, 5753 pictures were obtained. The partially cropped label images are
shown in Fig. 6.

Figure 6: Partially cropped label images

4 Image Segmentation Method Based on FASPP Module
4.1 FASPP Module

The ASPP module in DeepLabV2 uses atrous convolutions with different sampling rates. Using
convolution kernels with different sampling rates is beneficial to obtain multi-scale information of
Zanthoxylum rust and reduces the loss of detailed features of rust leaves. The four parallel sampling
rates of the ASPP module in DeepLabV2 are all large, but the information extracted by atrous
convolutions with large sampling rates only has a good effect on the segmentation of some large
objects. In order to enhance the ability of the network model to recognize small targets, this paper
proposed the FASPP (Five-branch Atrous Spatial Pyramid Pooling) module based on the ASPP
module.

This paper used parallel atrous convolutions to realize the variant of the ASPP module that used
multiple sampling rates to extract features and then merged them. The four parallel sampling rates
of the ASPP module are large, respectively [6,12,18,24]. However, the information extracted by atrous
convolutions with large sampling rates only was conducive to the segmentation of some large objects,
but not small objects. To enhance the ability of the network model to recognize small targets, this
paper proposed the FASPP (Five-branch Atrous Spatial Pyramid Pooling) module based on the ASPP
module.

In this paper, a variant of the ASPP module was implemented using parallel atrous convolutions,
which used branches with multiple sampling rates to extract features and then merged them. This paper
added a parallel structure to four parallel structures of the ASPP module and proposed the FASPP
module with five parallels. The structure of the FASPP module is shown in Fig. 7.

From Fig. 7, this paper added a branch with a small sampling rate to the parallel structure of four
larger sampling rates, fused features extracted from five branches with different sampling rates, and
replaced the ASPP module to experiment.
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Figure 7: The structure of FASPP module

4.2 Experimental Results and Analysis

In this paper, the experimental environment was Ubuntu16.04. The computer CPU was Intel Core
i7-7700. The GPU was NVIDIA GeForce GTX 1080Ti, and the deep learning framework was Caffe.
The network model was trained under GPU. The learning rate was 0.001. The learning strategy was
“poly”. The exponent (power) was 0.9, and the maximum number of iterations (max_iter) was 80,000
times. The curve of learning rate with the number of iterations in the poly change strategy is shown in
Fig. 8.

Figure 8: Poly learning rate change curve

This paper used 500 pictures with 480 × 360 pixel to test trained network model based on the
FASPP module. In order to explore the best network segmentation performance at the sampling rate,
we compared the performance of the FASPP module at different sampling rates. This paper set the
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sampling rate of the new branch of FASPP to 1, 2, 3, 4, and 5 for the experiment. The experimental
results are shown in Tab. 1.

Table 1: Model performance evaluation under different sampling rate settings

New branch
sampling
rate setting

1 (%) 2 (%) 3 (%) 4 (%) 5 (%) Original
model (%)

Blade
recognition
accuracy

99.69 99.68 99.54 99.71 99.66 99.65

Recognition
accuracy rate
of raised
spore piles

81.23 78.79 83.70 80.13 78.26 81.02

Accuracy of
brown spots
recognition

77.32 76.27 78.23 77.29 78.65 74.27

Mean pixel
accuracy
(MPA)

89.85 88.67 90.35 89.27 89.10 88.71

Mean
intersection
over union
(MIoU)

82.20 81.29 82.73 81.97 81.54 81.14

From Tab. 1, the recognition accuracy of brownish lesions has been improved when new branches
were added. But, when the sampling rate was 2, 4, and 5, the recognition accuracy of raised spore piles
decreased. When the sampling rate was 3, the recognition accuracy of raised spore piles and brown
lesions increased, and the effect was the best. The average pixel accuracy rate reached 90.35%, and the
average intersection ratio reached 82.73%. Compared with recognition results of the original model,
the recognition accuracy of raised spore piles was increased by 2.68%, the recognition accuracy of
brownish lesion areas was increased by 3.96%, and MIoU was increased by 1.59%. When the sampling
rate of the new branch was 3, some network tests results are shown in Fig. 9.

According to the comprehensive pixel accuracy rate, average pixel accuracy rate, average intersec-
tion ratio, and network test image results, we concluded that the boundary segmentation of the blade
was accurate and the recognition accuracy was 99.54%. This result showed that blade recognition still
had a high accuracy rate, which was not reduced as the FASPP module replaced the ASPP module.
The FASPP model still distinguished the blade and the background well.

As shown in Fig. 10, the (b) column is the label image after color processing, and the (b) column
is the model recognition results based on the FASPP module after color processing. By analyzing the
raised spore pile area in these images, we concluded that the large part of raised spore piles had a
higher recognition accuracy due to its obvious characteristics, and most of the smaller area also was
successfully identified. Compared with experimental results of the original DeepLabV2 model, the
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recognition effect on small convex spore piles improved. The recognition accuracy of convex spore
piles was 83.70%, which was 2.68% higher than the original model.

Figure 9: Test results of image segmentation model based on FASPP module

Figure 10: Comparative analysis of test results of raised spore piles

As shown in Fig. 11, the (b) column is the color-processed label image, and the (c) column is the
color-processed model recognition result image based on the FASPP module. We can see that brownish
lesions with a larger area can still be recognized well, and most of brownish lesions with a smaller area
can be successfully identified. Compared with the original DeepLabV2 model, the recognition effect
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on smaller brown lesions improved. The recognition accuracy of brown lesions was 78.23%, which
increased by 3.96% compared with the original model. Since many of brownish lesions on the leaf were
smaller patches, the improvement of the recognition effect of brownish lesions also greatly improved
the recognition accuracy, but the accuracy was still lower than that of the convex spore piles.

Figure 11: Comparative analysis of test results of brown spots

The addition of the FASPP module improved the model’s ability to recognize small targets of
Zanthoxylum rust. Compared with the original DeepLabV2 model, the image segmentation model
based on the FASPP module had a better recognition effect on raised spore piles and brown lesions,
and improved the model’s segmentation accuracy of rust areas.

5 Image Segmentation Method with Enhanced Rust Regional Features
5.1 Model with Enhanced Regional Characteristics

Considering the influence of leaf parts on the recognition accuracy of raised spore piles and brown
diseased areas, this paper created the residual images. The residual images are obtained by subtracting
the leaf surface image from the original image, and only the raised spore pile part, the brown lesion
part, and the background image are left. The purpose of making the residual images as a new branch
input into the network is to enhance the rust regional features and reduce the influence of the leaf
surface on the rust regional recognition.

In practical applications, making residual images by marking is difficult, this paper used the
method of pixel processing to process 100 leaves. The method removed pixels with an R-value of 78
to 183, a G-value of 84 to 191, and a B-value of 45 to 118. The image after pixel processing and the
image after label are shown in Fig. 12.

In this paper, 100 blades were selected, corresponding to 100 residual images. Also, owing to most
of residual images contain more raised spore piles and brownish lesions than original images, and more
complicated. Besides, directly inputting the neural network for training will increase training difficulty.
This paper cut 100 leaves, same as the original dataset. The cropped parts of the residual image dataset
are shown in Fig. 13. The size of the cropped images is 480 × 360, and the bit depth is 24 bits. After
cropping the pictures, 5753 pictures are obtained.
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Figure 12: Original image and residual image

Figure 13: Cropped partial residual images

In the images of leaves infected with rust, the manifestations of rust are more complex, usually in
small dots, long strips, and irregularly connected blocks. The regional feature information of images
can help the recognition model to distinguish the rust-infected area effectively, so as to perform
fine-grained segmentation. Hence, enhancing the regional feature information of rust disease spots
can effectively improve the accuracy of Zanthoxylum rust identification. To strengthen the feature
information of leaf rust, this paper inputs residual images into the image segmentation model for
training. Considering the effect of leaves on rust regional segmentation result, this paper processed the
original dataset on the pixel value, and made the residual image dataset. The residual image dataset was
inputted as a new branch into the network. As shown in Fig. 14, we use the VGG-16 network structure
as the main branch of the image segmentation model with enhanced rust regional features. The other
branches of the model adopt the first 6 convolutional layers of the VGG-16 network structure and
merge them. The main branch inputs the original image dataset, and another branch inputs the residual
image dataset. The FASPP module is used in the network.

5.2 Experimental Results and Analysis

On the trained image segmentation model with enhanced regional features, this experiment used
500 images with a size of 480 × 360 for testing. The results of some network tests are shown in Fig. 15.
The experimental results are shown in Tab. 2. Compared with the model based on the FASPP module,
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the recognition accuracy of raised spore piles increased by 1.16%, and the recognition accuracy of
brown lesions increased by 3.24%, and the MPA increased by 1.25%, and the MIoU increased 1.63%,
indicating that the addition of the residual images branch improved the accuracy of the segmentation
and the performance of the model.

 The residual 
image input

The original 
image input Conv1 Conv2 Conv3

Conv1_
PLUS

Conv2_
PLUS

Conv3_
PLUS

Conv2

Conv4 Conv5
Fully 

Connected 
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Figure 14: The model structure diagram with enhanced rust regional features

Figure 15: Model test results with enhanced rust regional features

From Fig. 15 and Tab. 2, while the background and leaf parts were quite different, the boundary
segmentation of the leaf was still relatively accurate. We concluded that the blade recognition accuracy
rate was 99.66%. The results meant that the blade recognition maintained a high accuracy rate, and
the model had a high accuracy in segmenting the blade and the background.

As shown in Fig. 16, the (a) column is the label images, the (c) column is the recognition
result images based on the FASPP module, and the (d) column is the recognition result images of
the enhanced regional features model. Comparing the recognition results of raised spore piles, we
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concluded that the larger and smaller raised spore piles were well recognized by the dual-input model.
Besides, compared with the FASPP module, the edge part was more accurate, and the recognition
effect improved. The recognition accuracy rate was 84.86%, which was 1.16% higher than the FASPP
module.

Table 2: Model performance comparison evaluation

Network model Leaf blade (%) Raised spore
piles (%)

Brown spots
(%)

MPA (%) MIoU
(%)

Model based
on FASPP
module

99.54 83.70 78.23 90.35 82.73

Model with
enhanced rust
regional
features

99.66 84.86 81.57 91.50 84.36

Figure 16: Contrastive analysis of identification and test results of raised spore piles

As shown in Fig. 17, the (b) column is the label images, and the (c) column is the recognition
result images based on the FASPP module, and the fourth column is the recognition result images of
the dual-input model. By comparing the recognition results of brownish lesion images, we concluded
that the larger and smaller brownish lesions were well recognized in the recognition results of the dual
input model. Besides, compared with the model based on the FASPP module, the edge of the brown
lesion was more accurate, and the recognition effect was better. The recognition accuracy of the brown
lesions was 81.57%, which was 3.24% higher than the model based on the FASPP module. However,
the recognition accuracy of brownish lesions was still lower than that of raised spore piles. The main
reason was there were some tiny brown lesions in the leaves, and this part of the lesions was too small.
This part of the dataset was not labeled, so the recognition effect of the brown lesion areas will be
affected during training.
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Figure 17: Contrastive analysis of identification and test results of brown spots

5.3 Improved Efficiency of the Model with Enhanced Rust Regional Features

In practical application, we hope that the model can have better efficiency to run on portable
devices. In this section, we improved the model based on the dual-input branch of the model with
enhanced regional features, reduced the time for the network to test an image without the reduce in
accuracy, and improved the test efficiency of the network. The main branch of the network model still
uses the VGG-16 network structure, and the other branch used the first several convolutional layers
of the VGG-16 network structure.

In Tab. 3, Conv (1 + 2+3) indicates that the new branch structure is the first seven convolutional
layers of the VGG-16 network structure. Among them, Conv (1 + 2) +Conv3_ (1 + 2) represents the
first six layers, and Conv (1 + 2) + Conv3_1 represents the first five layers, and Conv (1 + 2) represents
the first four layers, and Conv1+Conv2_1 represents the first three layers, and Conv1 represents the
first two layers, and Conv1_1 represents the first one layer.

Table 3: Model performance evaluations under different network structure settings

Network
structure setting

Leaf blade
(%)

Raised spore
piles (%)

Brown spots
(%)

MPA (%) MIoU
(%)

Testing
time
(s)

Conv (1 + 2 + 3) 99.66 84.86 81.57 91.50 84.36 2.843
Conv (1 + 2)
+Conv3_ (1 + 2)

99.69 84.81 81.96 91.57 84.26 2.804

Conv (1 + 2)
+Conv3_1

99.66 84.78 81.35 91.20 84.08 2.744

Conv (1 + 2) 99.61 85.16 82.47 91.80 84.99 2.692
Conv1+Conv2_1 99.71 81.96 81.47 90.77 83.83 2.622
Conv1 99.70 84.28 78.38 90.57 83.97 2.574
Conv1_1 99.64 84.10 77.93 90.39 83.54 2.519
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From the experimental results, Conv (1 + 2) which composed of the first four convolutional layers
of the VGG-16 network structure got the best performance. At this time, MPA was 91.8%, and MioU
was 85.99%, and the test time was 2.692 s. The model can process 22 pictures per minute, which was
faster than the model before.

6 Conclusion

Focusing on the image segmentation technology based on deep learning, we carried out algorithm
research to deal with the difficulty to accurately calculate the rust area of Zanthoxylum rust. The
corresponding solutions and model architecture were proposed. Because most of Zanthoxylum rust
spots are small, this paper proposed an image segmentation model based on the FASPP module from
fully extracting the multi-scale information of the image. We added a branch based on the ASPP
module and set the atrous rate value of this branch to be smaller. Compared with the results of the
original model, the recognition effect of raised spore piles and brown lesions improved. We proved that
this module was helpful for the improvement of the small target recognition and model performance.
To further improve the segmentation effect, this paper proposed an image segmentation model with
enhanced rust regional features. Considering the influences of leaves on the segmentation effect of
raised spore piles and brownish lesions, this paper processed the pixel value of the original dataset,
and made a residual images dataset, and took the residual image dataset as the input of another
branch. The function of the residual image branch is mainly to reduce noise and increase the network
model’s attention to the area of the rust. The two branches of the original image and the residual
images were separately entered into the network and then merged. The experimental results showed
that the addition of the residual images branch made the segmentation accuracy of raised spore piles
and brown lesions improved. The segmentation accuracy rates of leaves, spore piles and brown lesions
reached 99.66%, 85.16% and 82.47% respectively. MPA reached 91.80%, and MIoU reached 84.99%.

Although the model proposed in this paper achieved a certain improvement in the image
segmentation effect of Zanthoxylum rust, there are still some problems that need to be completed in the
follow-up work. In this paper, the image segmentation model based on the FASPP module improved
the segmentation effect on small targets. However, the void ratio of other branches of FASPP is not
the most suitable parameter for the segmentation of Zanthoxylum rust due to the particularity of
Zanthoxylum rust. Therefore, in the follow-up research work, the dilation rate of other branches of
FASPP should be adjusted and tested for training. Find a set of most suitable parameter values, so
that the model can better recognize raised spore piles and brownish lesions.
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