
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.022797

Article

A New Metaheuristic Approach to Solving Benchmark Problems: Hybrid
Salp Swarm Jaya Algorithm

Erkan Erdemir1,* and Adem Alpaslan Altun2

1Department of Information Technologies, Tokat Vocational and Technical Anatolian High School, Merkez/Tokat,
60030, Turkey

2Department of Computer Engineering, Faculty of Technology, Konya Selcuk University, Selcuklu/Konya, 42130, Turkey
*Corresponding Author: Erkan Erdemir. Emails: erdemirerkan@gmail.com, erkan.erdemir@lisansustu.selcuk.edu.tr

Received: 19 August 2021; Accepted: 05 October 2021

Abstract: Metaheuristic algorithms are one of the methods used to solve
optimization problems and find global or close to optimal solutions at a
reasonable computational cost. As with other types of algorithms, in meta-
heuristic algorithms, one of the methods used to improve performance and
achieve results closer to the target result is the hybridization of algorithms. In
this study, a hybrid algorithm (HSSJAYA) consisting of salp swarm algorithm
(SSA) and jaya algorithm (JAYA) is designed. The speed of achieving the
global optimum of SSA, its simplicity, easy hybridization and JAYA’s success
in achieving the best solution have given us the idea of creating a powerful
hybrid algorithm from these two algorithms. The hybrid algorithm is based
on SSA’s leader and follower salp system and JAYA’s best and worst solution
part. HSSJAYA works according to the best and worst food source positions.
In this way, it is thought that the leader-follower salps will find the best
solution to reach the food source. The hybrid algorithm has been tested
in 14 unimodal and 21 multimodal benchmark functions. The results were
compared with SSA, JAYA, cuckoo search algorithm (CS), firefly algorithm
(FFA) and genetic algorithm (GA). As a result, a hybrid algorithm that
provided results closer to the desired fitness value in benchmark functions was
obtained. In addition, these results were statistically compared using wilcoxon
rank sum test with other algorithms. According to the statistical results
obtained from the results of the benchmark functions, it was determined that
HSSJAYA creates a statistically significant difference in most of the problems
compared to other algorithms.

Keywords: Metaheuristic; optimization; benchmark; algorithm; swarm; hybrid

http://dx.doi.org/10.32604/cmc.2022.022797
mailto:erdemirerkan@gmail.com
mailto:erkan.erdemir@lisansustu.selcuk.edu.tr

2924 CMC, 2022, vol.71, no.2

1 Introduction

Optimization problems; signal processing, mathematics, chemistry, computer science, mechanics,
economics, etc. it is the expression of real-world problems in fields by converting them into mathemat-
ical terms. Purpose in optimization problems; is to find the best available solution by optimizing the
value among the possible solutions within a certain solution search range and constraints [1,2].

It may be necessary to use different algorithms to find the best solution to optimization problems.
These algorithms are divided into deterministic algorithms, which often use a method of tracking a
particular sequence of actions, and stochastic algorithms that contain randomness [3].

In deterministic algorithms, no hesitant result is obtained. As long as the input given to the
problem in the algorithm is the same, the solution obtained as the output is always the same, but
with a deterministic algorithm, structural difficulties can develop in solving problems, and there is a
possibility that the expected solution cannot be obtained [4,5].

For the reasons above; metaheuristic algorithms inspired by nature contained in stochastic
algorithms; they are preferred because they can be created in a simple way according to deterministic
algorithms, hybrid with multiple metaheuristic algorithms, flexibility in adapting to different prob-
lems, solving real problems without derivatives, and avoiding local optimal values [6,7].

Most of the metaheuristic algorithms are population and swarm based high level heuristics; It
is one of the methods preferred by researchers in the solution of optimization problems. Cuckoo
search algorithm (CS) [8], firefly algorithm (FFA) [9], salp swarm algorithm (SSA) [10], jaya algorithm
(JAYA) [11,12], genetic algorithm (GA) [13] can be given as examples to these algorithms.

Metaheuristic algorithms; simple, easy to implement, successful in solving difficult problems, etc.
but high computational costs, stuck in local search, uncertainty in reaching convergence, and non-
repeatable exact solutions, etc. are among its weaknesses [14,15].

To obtain a stronger metaheuristic algorithm, either new algorithms should be created or new
hybrid algorithms should be developed by taking the successful parts of more than one algorithm [16].
While the hybrid algorithm aims to create a better algorithm by combining the advantageous aspects
of more than one algorithm, it also aims to reduce or remove the weaknesses of the algorithms that
make up the hybrid algorithm [17,18].

Hybrid metaheuristic algorithms developed in studies are also superior in areas such as optimiza-
tion problems, artificial neural network training, etc. Some of the studies in the literature are;

Li et al. [19] developed a hybrid algorithm with GSA to improve SSA’s success in complex problem
solutions and improve its search capability. The hybrid algorithm has been tested with CEC2017
functions and has been found by researchers to increase accuracy and convergence rate.

Singh et al. [20] have developed a hybrid salp swarm-sine cosine algorithm for nonlinear opti-
mization problems. They performed the positions of salp swarms in the search space using position
equations in the sine cosine algorithm. Researchers noted that the hybrid algorithm tested in opti-
mization and engineering problems reach the best solution in a short time and with high accuracy
compared to other algorithms.

Caldeira et al. [21] have designed advanced JAYA to solve flexible workshop scheduling problems.
In order for JAYA’s solutions to be better, local search methods, new acceptance criteria, etc. they have
added innovations such as. The improved JAYA algorithm has been compared with other well-known
metaheuristic algorithms based on the makespan criterion on benchmarking samples.

CMC, 2022, vol.71, no.2 2925

Khamees et al. [22] hybridized the simulated annealing algorithm (SA) with the SSA algorithm.
They used it for multi-purpose feature selection. The hybrid algorithm, which has been tested in a total
of 16 data sets, has been compared to the original SSA, PSO and ant lion algorithm (ALO). They noted
that the accuracy rate in classification according to results is high compared to other algorithms.

Aslan et al. [23] designed JAYA with XOR operator for binary optimization called JayaX.
Researchers believe that JAYA is not suitable for binary optimization problems, and have noted that
solutions solve this obstacle by using the XOR operator. They aimed to improve the performance
of the algorithm by adding a local search section to the algorithm they developed. They noted that
the solution quality and stability of the new algorithm, which is compared with other algorithms on
various problems, is better.

Ibrahim et al. [24] designed an improved SSA algorithm for PSO-based attribute selection.
Researchers have taken advantage of the strengths of the two algorithms to overcome the high-
dimensionality problem in attribute selection. The algorithm developed was evaluated in two parts;
in the first part, benchmarking functions were evaluated and in the second part, experimental analysis
was performed on the selection of the best attributes on different data sets. As a result, they noted that
the improved hybrid algorithm results better in performance and accuracy.

Chen et al. [25] proposed a hybrid algorithm that they created using PSO-CS algorithms. They used
their proposed algorithms as a new training method for feedforward neural networks. As a result, they
found that the proposed hybrid algorithm performed better in feedforward neural networks training
than in PSO and CS.

The aim of this study is to develop a new hybrid algorithm by combining the metaheuristic
optimization algorithms that exist in the literature. The developed hybrid algorithm has a high
accuracy rate, the error rate has been minimized, and at the same time it was desired to develop an
algorithm that will succeed from the algorithms that make up the hybrid algorithm.

In this context, a hybrid metaheuristic algorithm (Hybrid Salp Swarm Jaya Algorithm-HSSJAYA)
consisting of the SSA and JAYA algorithm was developed. The developed hybrid algorithm was used in
unimodal - multimodal benchmarking functions. The hybrid algorithm developed has been compared
to SSA, JAYA and several leading algorithms.

In Section 1 (Introduction), information on optimization, metaheuristic algorithms, hybrid
algorithms and related studies and the purpose and subject of the study were given.

In Section 2 (Overview), information about SSA and JAYA was given.

In Section 3 (Proposed Hybrid Approach), information was given about the developed HSSJAYA.
Equations, changes and updates of HSSJAYA were tried to be expressed in the best way. Also in this
section, there is a detailed pseudo code about HSSJAYA.

In Section 4 (Experimental Results), the solutions obtained by HSSJAYA in unimodal and
multimodal benchmark functions were compared with other algorithms and also the results were
compared statistically. Many information such as benchmark functions used in the research, search
agents, number of iterations, parameters of algorithms used in comparison are also included in this
section.

In Section 5 (Conclusions and Future Work), conclusions about the designed HSSJAYA and
information that will guide future studies were mentioned.

2926 CMC, 2022, vol.71, no.2

2 Overview
2.1 SSA

SSA is inspired by salps from the salpedia family, which are structurally similar to jellyfish and live
in packs deep in the seas and oceans. At the beginning of this chain, there is a salp in the leader position,
and the other salps follow the leader. The leader updates its position relative to food source. The best
solution is always in the leader. The salps that follow the leader update their positions relative to each
other. SSA, which is easy and simple to implement, is used in many areas, including optimization
problems [10,26].

Mirjalili et al. [10] explained the equations used in SSA as follows;

In SSA, the location of salps is located in a d−dimensional search space. N refers search agents.
The X matrix where the position of the salps in Nxd size is kept is shown in Eq. (1). Salps are randomly
assigned between the lower and upper bounds specified at the beginning.

Xi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
1
1 x

1
2 · · · x

1
d

x
2
1 x

2
2 . . . x

2
d

...
... . . .

...

x
N
1 x

N
2 . . . x

N
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Eq. (2) is used to update the salp position, which is the leader in SSA.

x1
j =

{
Fj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0
Fj − c1((ubj − lbj)c2 + lbj) c3 < 0 (2)

According to this equation, if i == 1, xi
j shows the position information of the leader salp in the

jth dimension, Fj indicates the best solution (food source) of jth dimension. The terms ub and lb refer to
the lower and upper limits of the jth dimension. The term c1, which is important for the food source, is
calculated according to the equation contained in Eq. (3).

c1 = 2e−(4it
Max_it)

2

(3)

According to the Eq. (3), the value e shows the number e, the value it shows the current iteration
value, and the Max_it shows the maximum number of iterations. According to the literature, the
coefficents of c2 and c3 represent random values between 0 and 1. This means that the value of c3

will never fall below zero, and it means that the equation in the c3 < 0 proposition in Eq. (2) cannot
be calculated at all. Ahmed et al. [27], Singh et al. [28] and Faris et al. [29] in their studies, they wrote
an equation in which the leader position can be updated according to the situation where the value of
c3 can be between 0 and 1, which is shown in Eq. (4).

x1
j =

{
Fj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0.5
Fj − c1((ubj − lbj)c2 + lbj) c3 < 0.5 (4)

CMC, 2022, vol.71, no.2 2927

The mathematical expression required to update the position of the salps following the leader is
contained in Eq. (5).

xi
j = 1

2
(xi

j + xi−1
j) (5)

Tab. 1 contains the pseudo-code of the SSA. In this pseudo-code, the leader is based on a single
leader when updating the salp position [10].

Table 1: SSA pseudo-code

Algorithm

01: Determine salp population (xi(i = 1, 2, 3, . . . , N)) in lower and upper bound
02: while (unless the stopping criterion is met)
03: Find the best fitness value
04: Set the best salp as F
05: Update the c1 (Eq. (3))
06: for each salp (xi)
07: if (i == 1)
08: Update leader salp position (Eq. (4))
09: else
10: Update follower salp position (Eq. (5))
11: end
12: end
13: Adjust salps that exceed bounds according to the lower and upper bounds
14: end
15: return F

In the literature review, if the single leader salp is selected as multiple, the randomness of the
algorithm can be increased. This increase affects the stability of the algorithm as a disadvantage, if
it is desired to increase the randomness and keep its stability in a balanced state. It has been stated
that half of the search agents (N) should be chosen as the leader (N/2) and the other half (N/2) as the
follower [30,31]. In addition, when the leader and follower position updates in the codes written by the
developers of SSA are examined, it is seen that half of the search agents are leaders and the other half
are followers [32,33]. According to the explanations written above, the pseudo-code of SSA is shown
in Tab. 2. In our research, the pseudo-code in Tab. 2 was taken as the basis in SSA and HSSJAYA.

Table 2: SSA pseudo-code v2

Algorithm

01: Determine salp population (xi(i = 1, 2, 3, . . . , N)) in lower and upper bound
02: while (unless the stopping criterion is met)

(Continued)

2928 CMC, 2022, vol.71, no.2

Table 2: Continued
Algorithm

03: Find the best fitness value
04: Set the best salp as F
05: Update the c1 (Eq. (3))
06: for each salp (xi)
07: if (i <= N/2)
08: Update leader salp position (Eq. (4))
09: else if (i > N/2 and i <= N)
10: Update follower salp position (Eq. (5))
11: end
12: end
13: Adjust salps that exceed bounds according to the lower and upper bounds
14: end
15: return F

2.2 Jaya

JAYA, which means victory in Sanskrit developed by Rao [11], does not have its own extra
parameters compared to other optimization algorithms. There are best and worst solutions in this
algorithm. It is an algorithm that tries to get as close as possible to the best solution and as far away as
possible from the worst solution. In this algorithm, which is easy and simple to implement, the basic
parameters are very few. Rao [11] describes the solution updates according to Eq. (6) as follows;

u′
j,k,i = uj,k,i + r1,j,i(uj,best,i − |uj,k,i|) − r2,j,i(uj,worst,i − |uj,k,i|) (6)

The terms in Eq. (6) are expressed in Tab. 3 as follows;

Table 3: Explanation of terms in Eq. (6)

Terms Explanation

u′
j,k,i New (updated) solution of jth variable for kth candidate solution during ith iteration

uj,k,i Solution of jth variable for kth candidate solution during ith iteration
r1,j,i and r2,j,i Random value between 0 and 1
uj,best,i Best candidate solution of the jth variable
uj,worst,i Worst candidate solution of the jth variable

r1,j,i(uj,best,i − |uj,k,i|) in equation describes the state of the solution approaching the best solution.
−r2,j,i(uj,worst,i − |uj,k,i|) describes the state of the solution moving away from the worst solution. Tab. 4
contains the pseudo-code of Jaya.

CMC, 2022, vol.71, no.2 2929

Table 4: JAYA pseudo-code

Algorithm

01: Determine population in lower and upper bound
02: while (unless the stopping criterion is met)
03: Determine best and worst candidate solution
04: Change solution to new (updated) solution according to best and worst solutions

(Eq. (6))
05: if (New (Updated) Solution < Solution)
06: Replace new (updated) solution with solution
07: else
08: Keep solution
09: end
10: end
11: return Optimum Solution

3 Proposed Hybrid Approach

Metaheuristic algorithms aim to find global or close to optimal solutions at a reasonable
computational cost. By using the global optimum search feature of the salp swarm algorithm and
the success of the jaya algorithm in reaching the best solution, a hybrid algorithm that achieves the
best result faster than traditional metaheuristic algorithms is aimed.

In SSA, salps update their positions according to the source of the food. During this update, leader
and follower salps try to be closest to the food source. Positions that do not give good results in SSA
do not have any effect on the calculations. In JAYA, the best and worst candidates are the solutions.
These obtained solutions are used to calculate the new solution.

The hybrid algorithm is based on SSA’s leader and follower salp system and JAYA’s best and worst
solution part. HSSJAYA works according to the best and worst food source positions. The best food
source refers to the position that the leader and follower salps should reach; the worst food source
refers to the position that the leader and follower salps should not reach. When calculating the best
food source position, the values obtained from the worst food source position are also included in the
calculation. In this way, it is thought that the leader-follower salps will find the best solution to reach
the food source. HSSJAYA algorithm has been developed based on the SSA given pseudo code in
Tab. 2. The equations developed for HSSJAYA and the descriptions of these equations are as follows.

In HSSJAYA, as in SSA, the location of salps is located in a d−dimensional search space. N refers
to search agents. Eq. (7) contains the X matrix in which the position of the salps in Nxd size is kept.
Salps are randomly assigned between the lower and upper bounds specified initially.

2930 CMC, 2022, vol.71, no.2

Xi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
1
1 x

1
2 · · · x

1
d

x
2
1 x

2
2 . . . x

2
d

...
... . . .

...

x
N
1 x

N
2 . . . x

N
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

In Eqs. (8)–(10), the d−dimensional best food source, worst food source and new candidate
solution positions are defined respectively.

BFPi = bf p1 bf p2 . . . bf pd (8)

WFPi = wf p1 wf p2 . . . wf pd (9)

U ′
i = u′

1 u′
2 . . . u′

d (10)

Obtaining a new candidate solution contained in JAYA will be performed in HSSJAYA, as in
Eq. (11).

u′
j = xi

j + bwfr(r1i,j(bf pj − |xi
j|) − r2i,j(wf pj − |xi

j|)) (11)

The terms in Eq. (11) are expressed in Tab. 5 as follows;

Table 5: Explanation of terms in Eq. (11)

Terms Explanation

u′
j New solution in the jth dimension

xi
j ith follower salp’s position in jth dimension

r1,i,j and r2,i,j Random value between 0 and 1
bf pj Best food position in jth dimension
wf pj Worst food position in jth dimension
bwfr Best worst fitness ratio

bwfr is calculated according to Eq. (12);

bwfr = bfpfv/(bfpfv + wfpfv) (12)

In the equation, bfpfv is the best food fitness value; wfpfv, on the other hand, represents the worst
food fitness value. Before the leader and follower salps update the position, the position of the salps
is updated according to Eq. (13).

xi
j = xi

j − u′
j (13)

CMC, 2022, vol.71, no.2 2931

Updating the leading salp in the HSSJAYA algorithm, provided i ≤ N/2, is shown in Eq. (14).

xi
j =

{
bf pj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0.5
bf pj − c1((ubj − lbj)c2 + lbj) c3 < 0.5 (14)

The difference of this equation from the position update of the leader salp in SSA is that instead
of Fj (food position in the jth dimension), bf pj (the best food position in the jth dimension) is located.
Except for the coefficent c1, other coefficents and terms (ubj, lbj, c2, c3) are used as contained in the
SSA. There are studies in the literature in which SSA coefficients were used by changing them. One
of them is the perturbation weight salp swarm algorithm developed by Fan et al. [34] who proposed
a new c1 and c2 value, leader and follower position update technique according to the perturbation
weight mechanism. The equation prepared by Fan et al. [34] for c1 is shown in Eq. (15). The value t
refers to the iteration; the value T refers to the maximum iteration and u1 refers to the number between
0 and 1.

c1new = u1

(
1 − t

T

)
(15)

In this study, we also made changes to the original c1 coefficient by adding a new parameter and
obtained a new c1 coefficient shown in Eq. (16).

c1 = iv2e−(4it
Max_it)

2

(16)

The iv value (0 < iv < 1) contained in Eq. (16) is the improvement value of c1, which performs the
update process by reducing the difference between positions when updating the leader’s position. In the
analysis conducted, it was found that the hybrid algorithm gives better results in this way. The iv value
is not random; it was considered more appropriate to assign it as a fixed parameter so that researchers
who will use the hybrid algorithm can change it at the above-mentioned intervals depending on the
type of problems to be solved.

Finally, the equation required for updating the positions of the follower salps in HSSJAYA,
provided that it is between i > N/2 and i ≤ N, is the same as the equation in Eq. (5) used in updating
the positions of the follower salps in SSA. In order to update the positions of the leader and follower
salps correctly, xi

j is transposed and processed. After the update process is completed, the positions are
restored by transposing again. The pseudo code of HSSJAYA is shown in Tab. 6.

Table 6: HSSJAYA pseudo-code

Algorithm

01: Determine salp population with (N) search agents and (d) dimensions in lower and
upper bound xi

j (i, j = (1, 1),(1, 2), . . . (N, d))
02: Create d dimensional best food position, worst food position and new candidate

solution (bfp, wfp, u′)
03: Calculate the fitness value for each salp using the objective function

(Continued)

2932 CMC, 2022, vol.71, no.2

Table 6: Continued
Algorithm

04: Sort salp positions by fitness value
05: Set the position with the best fitness value as bfp
06: Set best fitness value as bfpfv
07: Set the position with the worst fitness value as wfp
08: Set worst fitness value as wfpfv
09: while (unless the stopping criterion is met)
10: Update bwfr (Eq. (12))
11: Update c1 (Eq. (16))
12: for i = 1 to N
13: Determine random values r1 and r2

14: for j = 1 to d
15: Update new candidate solution (Eq. (11))
16: Amend the new candidate solution based on the lower and upper

bounds
17: Update each salp (xi

j) (Eq. (13))
18: end
19: Transpose x
20: if (i <= N/2)
21: for j=1 to d
22: Determine random values c2 and c3

23: Update the position of leader salp (Eq. (14))
24: end
25: else
26: for j = 1 to d
27: Update the position of follower salp (Eq. (5))
28: end
29: end
30: Transpose x
31: end
32: for i = 1 to N
33: for j = 1 to d
34: Amend salps that exceed limits according to the lower and upper

bounds
35: end
36: Calculate fitness value using objective function
37: if (Fitness Value < bfpfv)
38: Assign the position of the fitness value to bfp
39: Assign the fitness value to bfpfv
40: end
41: if (Fitness Value > wfpfv)
42: Assign the position of the fitness value to wfp
43: Assign the fitness value to wfpfv

(Continued)

CMC, 2022, vol.71, no.2 2933

Table 6: Continued
Algorithm

44: end
45: end
46: end
47: return bfp

4 Experimental Results

In order to measure the performance of the developed algorithm, some analysis must be per-
formed. In this section, analyzes made with HSSJAYA are included. The hybrid algorithm has been
used in solving unimodal and multimodal benchmark functions. The results obtained were compared
with the popular CS, GA, FFA algorithms, primarily the SSA and JAYA algorithms that make up the
hybrid algorithm. All algorithms have equal number of independent runs, equal search agent, equal
iteration. For all algorithms, each operation was run independently 30 times; the number of search
agents used in each run was set to 30 and the number of iterations was set to 100.

HSSJAYA has been created by writing in Python (version 3.6). In the study, Evolopy framework
was used. The Evolopy framework is an easy-to-use framework developed for optimization problem
solving, artificial neural network training, attribute selection, clustering operations [35–37].

Algorithms can include special parameters. These parameters can take constant values and can
take different values according to the problem being studied. The iv parameter of HSSJAYA was
accepted as 0.1. For the parameter values of other algorithms, the values in the Evolopy Framework
were used [33].

In addition, the methods to be used in the comparison between algorithms are included in the
subheadings of this section.

4.1 Results of Benchmark Functions

HSSJAYA and other algorithms have optimized a total of 35 benchmark functions, including 14
unimodal and 21 multimodal. In the optimization process, attention was paid to the criteria in Section
4. In order to better compare the results of the algorithms, the results were normalized from between
0 and 1 [10]. Tab. 7 contains the unimodal and multimodal benchmark functions used in the study. In
this table, a few benchmark functions; Although it is mentioned as both unimodal and multimodal in
the literature, it has been used by choosing one of the unimodal or multimodal types according to the
type it is used most frequently [38–43].

Table 7: Unimodal and multimodal benchmark functions used in the study [38–43]

Function name Equation lb ub d fmin

Schwefel 1.2U F1(x) =
d∑

i=1

(
i∑

j=1
xj

)2

−100 100 20 0

(Continued)

2934 CMC, 2022, vol.71, no.2

Table 7: Continued
Function name Equation lb ub d fmin

Schwefel 2.21U F2(x) = max|xi|, 1 ≤ i ≤ d −100 100 20 0

Schwefel 2.22U F3(x) =
d∑

i=1
|xi| +

d∏
i=1

|xi| −100 100 20 0

Schwefel 2.23U F4(x) =
d∑

i=1
x10

i −10 10 20 0

StepU F5(x) =
d∑

i=1
(�|xi|�) −100 100 20 0

Step 2U F6(x) =
d∑

i=1
(�xi + 0.5�)2 −100 100 20 0

Dixon & priceU F7(x) = (x1 − 1)2 +
d∑

i=2
i(2x2

i − xi − 1)2 −10 10 20 0

BoothU F8(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 −10 10 2 0
MatyasU F9(x) = 0.26(x2

1 + x2
2) − 0.48x1x2 −10 10 2 0

Wayburn seader 1U F10(x) = (x6
1 + x4

2 − 17)2 + (2x1 + x2 − 4)2 −5 5 2 0
Wayburn seader 2U F11(x) =

[1.613−4(x1 −0.3125)2 −4(x2 −1.625)2]2 +(x2 −1)2
−500 500 2 0

Sum squaresU F12(x) =
d∑

i=1
ix2

i −10 10 20 0

Sphere modelU F13(x) =
d∑

i=1
x2

i −5.12 5.12 20 0

TrecanniU F14(x) = x4
1 − 4x3

1 + 4x1 + x2
2 −5 5 2 0

Egg crateM F15(x) = x2
1 + x2

2 + 25(sin2(x1) + sin2(x2)) −5 5 2 0

RastriginM F16(x) = 10d +
d∑

i=1
[x2

i − 10 cos(2πxi)] −5.12 5.12 20 0

AckleyM F17(x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

x2
i

)
−

exp(1
d

d∑
i=1

cos(2πxi)) + 20 + exp(1)

−32 32 20 0

GriewankM F18(x) =
d∑

i=1

x2
i

4000 −
d∏

i=1
cos

(
xi√

i

)
+ 1 −600 600 20 0

ColvilleM F19(x) =
100(x1 −x2

2)
2 +(1 − x1)

2 +90(x4 −x2
3)

2 +(1 − x3)
2 +

10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

−10 10 4 0

PathologicalM F20(x) =
d−1∑
i=1

(
0.5 + sin2

√
100x2

i +x2
i+1−0.5

1+0.001(x2
i −2xixi+1+x2

i+1)2

)
−100 100 20 0

Three hump
camelM

F21(x) = 2x2
1 − 1.05x4

1 + x6
1

6 + x1x2 + x2
2 −5 5 2 0

Six hump camelM F22(x) =
(

4 − 2.1x2
1 + x4

i
3

)
x2

1 + x1x2 + (4x2
2 − 4)x2

2 −5 5 2 -1.0316

Price 2M F23(x) = 1 + sin2x1 + sin2x2 − 0.1e−(x2
1+x2

2) −10 10 2 0
Price 3M F24(x) = 6[6.4(x2 − 0.5)2 −x1 −0.6]2 +100(x2 −x2

1)
2 −500 500 2 0

Price 4M F25(x) = (2x3
1x2 − x3

2)
2 + (6x1 − x2

2 + x2)
2 −500 500 2 0

Helical valleyM x1 ≥ 0 ⇒ θ = arctan
(x2

x1

)
2π

x1 < 0 ⇒ θ = arctan
(x2

x1

)
+π

2π

F26(x) = 100
[
(x3 − 10θ)2 + (

√
x2

1 + x2
2 − 1)2

]
+ x2

3

−10 10 3 0

(Continued)

CMC, 2022, vol.71, no.2 2935

Table 7: Continued
Function name Equation lb ub d fmin

CsendesM F27(x) =
d∑

i=1
x6

i (2 + sin 1
xi

) −1 1 20 0

Alpine 1M F28(x) =
d∑

i=1
|xisin(xi + 0.1xi)| −10 10 20 0

WeierstrassM F29(x) =
d∑

i=1

⎡
⎢⎢⎣

kmax∑
k=0

[ak cos(2πbk(xi + 0.5))]

−d
kmax∑
k=0

[akcos(2πbk.0.5)]

⎤
⎥⎥⎦

a = 0.5 b = 3 kmax = 20

−0.5 0.5 20 0

Bohachevsky 1M F30(x) = x2
1+2x2

2−0.3cos(3πx1)−0.4cos(4πx2)+0.7 −100 100 2 0
Bohachevsky 2M F31(x) = x2

1+2x2
2−0.3cos(3πx1). 0.4cos(4πx2)+0.3 −100 100 2 0

Bohachevsky 3M F32(x) = x2
1 + 2x2

2 − 0.3cos(3πx1 + 4πx2) + 0.3 −100 100 2 0
Kowalik problemM a = 0.1957, 0.1947, 0.1735, 0.16, 0.0844,

0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246
b−1 = 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12 , 14 , 16

F33(x) =
11∑

i=1

[
ai − x1(b2

i +bix2)

b2
i +bix3+x4

]2

−5 5 4 0.0003075

SalomonM F34(x) = 1 − cos

(
2π

√
d∑

i=1
x2

i

)
+ 0.1

√
d∑

i=1
x2

i −100 100 20 0

Bartels connM F35(x) = |x2
1 + x2

2 + x1x2| + |sin(x1)| + |cos(x2)| −500 500 2 1

Notes: U unimodal functions; M multimodal functions; lb lower bound; ub upper bound; d dimension.

Mean and standard deviation values of benchmark functions according to algorithms are shown
in Tab. 8. If the mean and standard deviation values in this table are examined, it is seen that HSSJAYA
gets better mean and standard deviation values in most benchmark functions than other algorithms.
In addition, the mean convergence curves of some benchmark functions optimized by HSSJAYA are
given in Fig. 1.

Table 8: Mean and standard deviation values of benchmarking functions according to algorithms
Fx HSSJAYA SSA JAYA CS FFA GA

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
F1 0.00E+00 0.00E+00 1.64E−01 2.42E−01 1.00E+00 1.00E+00 6.19E−01 3.73E−01 4.22E−01 6.38E−01 9.59E−01 6.64E−01
F2 0.00E+00 0.00E+00 2.89E−01 4.29E−01 6.98E−01 1.00E+00 7.03E−01 5.48E−01 2.48E−01 7.06E−01 1.00E+00 7.43E−01
F3 0.00E+00 0.00E+00 2.29E−06 4.19E−06 7.60E−08 1.13E−07 4.88E−02 5.81E−02 4.55E−07 7.43E−07 1.00E+00 1.00E+00
F4 0.00E+00 0.00E+00 6.77E−06 3.43E−05 1.93E−03 4.20E−03 5.38E−03 7.16E−03 3.61E−05 2.48E−04 1.00E+00 1.00E+00
F5 0.00E+00 0.00E+00 3.15E−01 6.40E−01 4.95E−02 1.47E−01 7.40E−01 5.49E−01 8.89E−02 4.34E−01 1.00E+00 1.00E+00
F6 0.00E+00 0.00E+00 4.51E−02 8.89E−02 2.89E−02 1.01E−01 4.36E−01 4.29E−01 1.27E−03 1.59E−02 1.00E+00 1.00E+00
F7 0.00E+00 0.00E+00 2.79E−03 5.32E−03 1.37E−02 3.00E−02 1.26E−01 1.42E−01 1.82E−03 4.13E−03 1.00E+00 1.00E+00
F8 0.00E+00 0.00E+00 2.22E−11 1.77E−11 3.89E−02 3.48E−02 2.16E−05 2.36E−05 1.80E−06 1.32E−06 1.00E+00 1.00E+00
F9 0.00E+00 0.00E+00 4.74E−12 4.91E−12 6.42E−02 3.44E−01 6.78E−06 1.05E−05 4.41E−07 6.16E−07 1.00E+00 1.00E+00
F10 9.18E−01 8.38E−01 5.41E−01 1.00E+00 2.93E−02 5.63E−02 0.00E+00 0.00E+00 4.48E−04 1.35E−02 1.00E+00 5.38E−01
F11 1.50E−10 1.02E−10 0.00E+00 0.00E+00 2.07E−01 3.35E−01 6.38E−08 7.38E−08 8.99E−10 4.68E−10 1.00E+00 1.00E+00
F12 0.00E+00 0.00E+00 4.95E−02 8.68E−02 1.86E−02 3.70E−02 3.57E−01 3.41E−01 1.91E−02 6.85E−02 1.00E+00 1.00E+00
F13 0.00E+00 0.00E+00 2.51E−02 6.69E−02 2.21E−02 5.56E−02 4.02E−01 4.10E−01 3.50E−03 1.54E−02 1.00E+00 1.00E+00
F14 0.00E+00 0.00E+00 1.89E−11 1.30E−11 7.19E−03 1.41E−02 3.21E−05 3.22E−05 1.11E−06 7.18E−07 1.00E+00 1.00E+00
F15 0.00E+00 0.00E+00 8.51E−12 1.93E−12 1.00E+00 1.00E+00 2.82E−04 1.30E−04 9.14E−07 2.99E−07 3.60E−01 1.80E−01
F16 0.00E+00 0.00E+00 3.39E−01 5.14E−01 7.99E−01 1.00E+00 1.00E+00 3.42E−01 5.45E−01 9.17E−01 8.55E−01 6.68E−01
F17 0.00E+00 0.00E+00 3.43E−01 4.47E−01 3.89E−01 1.00E+00 8.64E−01 3.38E−01 1.33E−01 4.04E−01 1.00E+00 3.61E−01

(Continued)

2936 CMC, 2022, vol.71, no.2

Table 8: Continued
Fx HSSJAYA SSA JAYA CS FFA GA

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
F18 0.00E+00 0.00E+00 4.18E−02 5.52E−02 4.23E−02 7.91E−02 3.84E−01 3.34E−01 3.88E−03 1.30E−02 1.00E+00 1.00E+00
F19 0.00E+00 3.36E−02 3.13E−01 5.67E−01 5.41E−01 1.00E+00 6.80E−03 0.00E+00 1.32E−01 3.26E−01 1.00E+00 8.65E−01
F20 0.00E+00 0.00E+00 8.19E−01 4.43E−01 6.79E−01 1.00E+00 1.00E+00 1.57E−01 9.78E−01 3.78E−01 8.04E−01 3.67E−01
F21 0.00E+00 0.00E+00 7.40E−12 5.32E−12 3.23E−01 9.82E−01 3.82E−05 4.24E−05 7.73E−07 5.63E−07 1.00E+00 1.00E+00
F22 0.00E+00 0.00E+00 1.64E−11 1.37E−11 1.65E−02 1.49E−02 5.80E−05 5.31E−05 2.05E−06 1.56E−06 1.00E+00 1.00E+00
F23 7.83E−02 4.25E−05 6.65E−02 6.90E−02 1.00E+00 1.00E+00 0.00E+00 1.29E−01 7.84E−02 0.00E+00 1.61E−01 1.44E−01
F24 0.00E+00 1.46E−12 2.33E−11 1.90E−12 1.00E+00 1.00E+00 1.09E−11 0.00E+00 2.74E−11 1.28E−12 1.65E−03 1.10E−03
F25 0.00E+00 0.00E+00 7.77E−12 5.89E−12 2.02E−06 1.89E−06 1.63E−09 6.94E−10 2.53E−12 1.06E−12 1.00E+00 1.00E+00
F26 1.96E−02 6.24E−02 1.47E−01 3.28E−01 5.77E−02 1.44E−01 0.00E+00 0.00E+00 6.14E−02 1.77E−01 1.00E+00 1.00E+00
F27 0.00E+00 0.00E+00 1.30E−03 3.96E−03 5.38E−03 1.19E−02 6.40E−02 6.36E−02 1.25E−02 4.43E−02 1.00E+00 1.00E+00
F28 0.00E+00 0.00E+00 3.23E−01 4.77E−01 5.96E−01 1.00E+00 1.00E+00 3.55E−01 3.64E−01 7.33E−01 8.21E−01 5.93E−01
F29 0.00E+00 0.00E+00 5.48E−01 7.46E−01 3.33E−01 5.31E−01 1.00E+00 5.44E−01 9.19E−01 1.00E+00 8.60E−01 5.45E−01
F30 0.00E+00 0.00E+00 8.63E−03 1.25E−02 1.00E+00 1.00E+00 1.24E−04 6.43E−05 9.41E−06 3.57E−06 7.11E−01 2.21E−01
F31 0.00E+00 0.00E+00 2.66E−10 4.87E−11 8.41E−01 1.00E+00 4.30E−04 2.01E−04 2.06E−05 5.85E−06 1.00E+00 3.02E−01
F32 0.00E+00 0.00E+00 1.16E−10 3.79E−11 1.00E+00 1.00E+00 1.36E−04 4.13E−05 5.41E−06 1.24E−06 8.73E−01 1.53E−01
F33 7.13E−01 1.00E+00 1.00E+00 9.71E−01 2.64E−02 2.52E−02 0.00E+00 0.00E+00 3.35E−01 4.14E−01 3.91E−01 4.13E−01
F34 0.00E+00 0.00E+00 4.14E−01 8.73E−01 3.66E−01 9.34E−01 7.57E−01 5.38E−01 2.95E−01 7.13E−01 1.00E+00 1.00E+00
F35 0.00E+00 0.00E+00 3.13E−05 2.83E−05 1.00E+00 1.00E+00 1.59E−04 5.87E−05 5.07E−05 1.31E−05 8.99E−01 2.83E−01

Figure 1: Mean convergence curves for some functions optimized with HSSJAYA

CMC, 2022, vol.71, no.2 2937

Although HSSJAYA appears to be successful in the optimization of unimodal and multimodal
benchmark functions, statistically it is necessary to prove that the algorithm is successful. For this
reason, the wilcoxon rank sum test, which is one of the data analysis tests, was applied and the p
value was considered less than 0.05 (5E−02) in order to express a statistically significant difference.
In each statistical test, the best algorithm was compared with the other algorithm [11,44]. The results
of the wilcoxon rank sum test are given in Tab. 9. When the results are examined, it is seen that the
hybrid algorithm creates statistically significant differences in unimodal and multimodal benchmark
functions and is successful.

Table 9: Wilcoxon rank sum test p-value results (N/A = not applicable)

Fx HSSJAYA SSA JAYA CS FFA GA

F1 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F2 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F3 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F4 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F5 N/A 2.87E−11 2.87E−11 2.87E−11 5.32E−10 2.87E−11
F6 N/A 2.87E−11 2.87E−11 2.87E−11 2.95E−08 2.87E−11
F7 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F8 N/A 6.41E−10 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F9 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F10 4.69E−01 6.15E−01 3.26E−03 N/A 5.22E−09 4.29E−11
F11 8.48E−01 N/A 5.66E−06 2.79E−09 2.87E−11 2.87E−11
F12 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F13 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F14 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F15 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F16 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F17 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F18 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F19 N/A 4.75E−03 1.48E−03 3.08E−01 1.32E−01 4.40E−10
F20 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F21 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F22 N/A 1.00E+00 2.87E−11 2.87E−11 5.32E−10 2.87E−11
F23 1.93E−01 1.32E−01 1.35E−09 N/A 2.80E−01 4.37E−09
F24 N/A 1.75E−05 7.89E−07 1.53E−02 2.51E−05 2.87E−11
F25 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F26 4.87E−01 7.36E−02 3.45E−02 N/A 4.96E−01 3.51E−11
F27 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F28 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F29 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F30 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F31 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F32 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11

(Continued)

2938 CMC, 2022, vol.71, no.2

Table 9: Continued
Fx HSSJAYA SSA JAYA CS FFA GA

F33 1.56E−01 2.66E−02 1.32E−01 N/A 1.81E−05 2.87E−11
F34 N/A 2.87E−11 2.87E−11 2.87E−11 2.87E−11 2.87E−11
F35 N/A 7.76E−11 2.11E−07 2.87E−11 2.87E−11 2.87E−11

5 Conclusions and Future Work

HSSJAYA was inspired by SSA’s method of reaching the nutrient of salps and JAYA’s method of
reaching the desired solution through the best and worst candidate solutions. In other words, a hybrid
algorithm has been developed in which the leader salp and the follower salp can reach the food more
successfully and efficiently by calculating the positions of the salps that are far/should not reach (worst
food solution) and close/should (best food solution) reach the food.

Proposed HSSJAYA appears to be successful in optimization of benchmark functions. HSSJAYA
achieved the best mean results in 30 out of 35 benchmark functions compared to other algorithms.
Our study is also statistically successful. It has been determined that the hybrid algorithm creates
statistically significant differences in most results compared to other algorithms. Other factors in the
success of HSSJAYA are due to elements such as the algorithm structure developed, new equations
and parameters added. According to these results, it has been proven that HSSJAYA is successful in
solving benchmark problems according to the algorithms with which it is compared.

HSSJAYA has been tested by the number of trials, search agents and iterations in the optimization
of benchmark functions. It is recommended that it be tested with different number of trials, search
agents and iterations, and also using it in different problems or artificial intelligence techniques apart
from the problems in the study.

By selecting algorithms that work well in their field from among the metaheuristic algorithms
created or developed by researchers. It is believed that new hybrid algorithms will be developed that
will give better results if they are hybridized with HSSJAYA developed in our study.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Mukhopadhyay and S. Das, “A system on chip development of customizable GA architecture for real

parameter optimization problem,” In: J. K. Mandal, S. Mukhopadhyay and T. Pal (Eds.), Handbook of
Research on Natural Computing for Optimization Problems, Hershey, PA: IGI Global, pp. 66–102, 2016.

[2] S. Sieniutycz, “Systems design: Modeling, analysis, synthesis, and optimization,” in Complexity and
Complex Thermo-Economic Systems, Amsterdam, Netherlands: Elsevier, pp. 85–115, 2020.

[3] X.-S. Yang, “Engineering optimization,” in Engineering Optimization: An Introduction with Metaheuristic
Applications, Hoboken, NJ: Wiley, pp. 15–28, 2010.

[4] Ç. Sel, “Genel atama problemlerinin çözümünde deterministik, olasılık temelli ve sezgisel yöntemlerin uygu-
lanması,” M.S. thesis, A Graduate School of Natural and Applied Sciences, Ankara University, Turkey, pp.
8–24, 2013.

CMC, 2022, vol.71, no.2 2939

[5] T. Keskintürk, “Diferansiyel gelişim algoritması,” İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 5,
no. 9, pp. 85–99, 2006.

[6] D. Gupta and V. Gupta, “Test suite prioritization using nature inspired meta-heuristic algorithms,” in Int.
Conf. on Intelligent Systems Design and Applications ISDA 2016, Springer, Cham, Porto, Portugal, pp. 216–
226, 2016.

[7] S. Mirjalili, S. M. Mirjalili and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69,
pp. 46–61, 2014.

[8] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009 World Congress on Nature & Biologically
Inspired Computing (NaBIC), Coimbatore, India, IEEE Publications, USA, pp. 210–214, 2009.

[9] X. -S. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” International Journal
of Bio-Inspired Computation, vol. 2, no. 2, pp. 78–84, 2010.

[10] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris et al., “Salp swarm algorithm: A bio-inspired
optimizer for engineering design problems,” Advances in Engineering Software, vol. 114, pp. 163–191, 2017.

[11] R. V. Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained
optimization problems,” International Journal of Industrial Engineering Computations, vol. 7, no. 1, pp.
19–34, 2016.

[12] T. Dede, M. Grzywiński and R. V. Rao, “Jaya: A new meta-heuristic algorithm for the optimization of
braced dome structures,” In: R. V. Rao and J. Taler (Eds.), Advanced Engineering Optimization Through
Intelligent Techniques. Advances in Intelligent Systems and Computing, Singapore: Springer, vol. 949, pp.
13–20, 2020.

[13] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–72, 1992.
[14] X. -S. Yang, S. Deb, S. Fong, X. He and Y. Zhao, “From swarm intelligence to metaheuristics: Nature-

inspired optimization algorithms,” Computer, vol. 49, no. 9, pp. 52–59, 2016.
[15] A. Ehsan and Q. Yang, “Optimal integration and planning of renewable distributed generation in the power

distribution networks: A review of analytical techniques,” Applied Energy, vol. 210(C), pp. 44–59, 2018.
[16] F. A. Şenel, F. Gökçe, A. S. Yüksel and T. Yiğit, “A novel hybrid PSO–GWO algorithm for optimization

problems,” Engineering with Computers, vol. 35, pp. 1359–1373, 2019.
[17] T. O. Ting, X. -S. Yang, S. Cheng and K. Huang, “Hybrid metaheuristic algorithms: Past, present, and

future,” In: X.-S. Yang (Ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation. Studies
in Computational Intelligence, Cham: Springer, vol. 585, pp. 71–83, 2015.

[18] F. J. Rodriguez, C. Garcia-Martinez and M. Lozano, “Hybrid metaheuristics based on evolutionary
algorithms and simulated annealing: Taxonomy, comparison, and synergy test,” IEEE Transactions on
Evolutionary Computation, vol. 16, no. 6, pp. 787–800, 2012.

[19] S. Li, Y. Yu, D. Sugiyama, Q. Li and S. Gao, “A hybrid salp swarm algorithm with gravitational search
mechanism,” in 2018 5th IEEE Int. Conf. on Cloud Computing and Intelligence Systems (CCIS), Nanjing,
China, pp. 257–261, 2018.

[20] N. Singh, L. H. Son, F. Chiclana and J.-P. Magnot, “A new fusion of salp swarm with sine cosine for
optimization of non-linear functions,” Engineering with Computers, vol. 36, no. 1, pp. 185–212, 2020.

[21] R. H. Caldeira and A. Gnanavelbabu, “Solving the flexible job shop scheduling problem using an improved
jaya algorithm,” Computers & Industrial Engineering, vol. 137, article 106064, 2019.

[22] M. Khamees, A. Albakry and K. Shaker, “Multi-objective feature selection: Hybrid of salp swarm and
simulated annealing approach,” in Int. Conf. on New Trends in Information and Communications Technology
Applications NTICT 2018, Baghdad, Iraq, pp. 129–142, 2018.

[23] M. Aslan, M. Gunduz and M. S. Kiran, “Jayax: Jaya algorithm with xor operator for binary optimization,”
Applied Soft Computing Journal, vol. 82, article 105576, 2019.

[24] R. A. Ibrahim, A. A. Ewees, D. Oliva, M. A. Elaziz and S. Lu, “Improved salp swarm algorithm based
on particle swarm optimization for feature selection,” Journal of Ambient Intelligence and Humanized
Computing, vol. 10, pp. 3155–3169, 2019.

[25] J. -F. Chen, Q. H. Do and H.-N. Hsieh, “Training artificial neural networks by a hybrid PSO-CS algorithm,”
Algorithms, vol. 8, no. 2, pp. 292–308, 2015.

2940 CMC, 2022, vol.71, no.2

[26] P. A. V. Anderson and Q. Bone, “Communication between individuals in salp chains. II. physiology,”
Proceedings of the Royal Society of London B: Biological Sciences, vol. 210, no. 1181, pp. 559–574, 1980.

[27] S. Ahmed, M. Mafarja, H. Faris and I. Aljarah, “Feature selection using salp swarm algorithm w ith chaos,”
in Proc. of the 2nd Int. Conf. on Intelligent Systems, Metaheuristics & Swarm Intelligence (ISMSI ‘18),
Phuket, Thailand, pp. 65–69, 2018.

[28] N. Singh, S. B. Singh and E. H. Houssein, “Hybridizing salp swarm algorithm with particle swarm
optimization algorithm for recent optimization functions,”Evolutionary Intelligence, pp. 1–34, 2020. https://
doi.org/10.1007/s12065-020-00486-6.

[29] H. Faris, S. Mirjalili, I. Aljarah, M. Mafarja and A. A. Heidari, “Salp swarm algorithm: Theory, literature
review, and application in extreme learning machines,” In: S. Mirjalili, J. Song Dong and A. Lewis (Eds.),
Nature-Inspired Optimizers. Studies in Computational Intelligence, Cham: Springer, vol. 811, pp. 185–199,
2020.

[30] Q. Zhang, H. Chen, A. A. Heidari, X. Zhao, Y. Xu et al., “Chaos-induced and mutation-driven schemes
boosting salp chains-inspired optimizers,” IEEE Access, vol. 7, pp. 31243–31261, 2019.

[31] D. Wang, Y. Zhou, S. Jiang and X. Liu, “A simplex method-based salp swarm algorithm for numerical and
engineering optimization,” in Int. Conf. on Intelligent Information Processing (IIP 2018), Nanning, China,
pp. 150–159, 2018.

[32] S. Mirjalili, “SSA: Salp swarm algorithm, mathworks,” 2018. [Online]. Avaliable: https://www.mathworks.
com/matlabcentral/fileexchange/63745-ssa-salp-swarm-algorithm.

[33] H. Faris, R. Qaddoura, I. Aljarah, J. W. Bae, M. M. Fouad et al., “Evolopy, github,” 2016 (SSA was added
in 2018). [Online]. Avaliable: https://github.com/7ossam81/EvoloPy/blob/master/optimizers/.

[34] Y. Fan, J. Shao, G. Sun and X. Shao, “A modified salp swarm algorithm based on the perturbation weight
for global optimization problems,” Complexity, article 6371085, pp. 17, 2020.

[35] R. Qaddoura, H. Faris, I. Aljarah and P. A. Castillo, “Evocluster: An open-source nature-inspired
optimization clustering framework in python,” in Int. Conf. on the Applications of Evolutionary Computation
(Part of EvoStar), Seville, Spain, pp. 20–36, 2020.

[36] R. A. Khurma, I. Aljarah, A. Sharieh and S. Mirjalili, “Evolopy-FS: An open-source nature-inspired
optimization framework in python for feature selection,” In: S. Mirjalili, H. Faris and I. Aljarah (Eds.),
Evolutionary Machine Learning Techniques. Algorithms for Intelligent Systems, Singapore: Springer, pp.
131–173, 2020.

[37] H. Faris, I. Aljarah, S. Mirjalili, P. A. Castillo and J. J. Merelo, “Evolopy: An open-source nature-inspired
optimization framework in python,” in Proc. of the 8th Int. Joint Conf. on Computational Intelligence-ECTA
(IJCCI 2016), Porto, vol. 1, pp. 171–177, 2016.

[38] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for global optimization problems,”
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), vol. 4, no. 2,
pp. 150–194, 2013.

[39] K. Hussain, M. N. M. Salleh, S. Cheng and R. Naseem, “Common benchmark functions for metaheuristic
evaluation: A review,”JOIV: International Journal on Informatics Visualization, vol. 1, no. 4–2, pp. 218–223,
2017.

[40] R. Fletcher and M. J. D. Powell, “A rapidly convergent descent method for minimization,” The Computer
Journal, vol. 6, no. 2, pp. 163–168, 1963.

[41] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen et al., “Problem definitions and evaluation
criteria for CEC 2005, special session on real-parameter optimization,” Technical report, Nanyang Tech-
nological University (NTU), Singapore and KanGAL Report Number 2005005, 2005.

[42] A. Gavana, “Global optimization benchmarks and AMPGO, test functions index,” 2013. [Online]. Avali-
able: http://infinity77.net/global_optimization/test_functions.html.

https://doi.org/10.1007/s12065-020-00486-6
https://doi.org/10.1007/s12065-020-00486-6
https://www.mathworks.com/matlabcentral/fileexchange/63745-ssa-salp-swarm-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/63745-ssa-salp-swarm-algorithm
https://github.com/7ossam81/EvoloPy/blob/master/optimizers/
http://infinity77.net/global_optimization/test_functions.html

CMC, 2022, vol.71, no.2 2941

[43] M. K. Naik, L. Samantaray and R. Panda, “A hybrid CS–GSA algorithm for optimization,” In: S.
Bhattacharyya, P. Dutta and S. Chakraborty (Eds.), Hybrid Soft Computing Approaches. Studies in
Computational Intelligence, New Delhi: Springer, vol. 611, pp. 3–35, 2016.

[44] J. Derrac, S. García, D. Molina and F. Herrera, “A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm
and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

	A New Metaheuristic Approach to Solving Benchmark Problems: Hybrid Salp Swarm Jaya Algorithm
	1 Introduction
	2 Overview
	3 Proposed Hybrid Approach
	4 Experimental Results
	5 Conclusions and Future Work

