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Abstract: Breast cancer (BC) is the most widely recognized cancer in women
worldwide. By 2018, 627,000 women had died of breast cancer (World Health
Organization Report 2018). To diagnose BC, the evaluation of tumours is
achieved by analysis of histological specimens. At present, the Nottingham
Bloom Richardson framework is the least expensive approach used to grade
BC aggressiveness. Pathologists contemplate three elements, 1. mitotic count,
2. gland formation, and 3. nuclear atypia, which is a laborious process that
witness’s variations in expert’s opinions. Recently, some algorithms have been
proposed for the detection of mitotic cells, but nuclear atypia in breast cancer
histopathology has not received much consideration. Nuclear atypia analysis
is performed not only to grade BC but also to provide critical information in
the discrimination of normal breast, non-invasive breast (usual ductal hyper-
plasia, atypical ductal hyperplasia) and pre-invasive breast (ductal carcinoma
in situ) and invasive breast lesions. We proposed a deep-stacked multi-layer
autoencoder ensemble with a softmax layer for the feature extraction and
classification process. The classification results show the value of the multi-
layer autoencoder model in the evaluation of nuclear polymorphisms. The
proposed method has indicated promising results, making them more fit in
breast cancer grading.
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1 Introduction

Breast cancer (BC) alludes to a hostile tumour that has been created from nuclei in the breast. BC
can originate in three areas: (1) lobules, which are the milk drain organs; (2) ducts, which are paths that
empty the drain out of the lobules to the nipples; or (3) stromal tissues, which incorporate the fatty
stringy connective tissues of the breast. Among them, the first two are the most common classes of BC
[1]. Diagnosis with higher precision is desirable to provide treatment efficiently. Regardless of extensive
development in the diagnosis and management of breast cancer, it is still the second leading cause of
high mortality [2]. However, it is necessary to diagnose cancer in the early phases and exact regions to
avoid severity. Pathologists use different medical imaging modalities, such as mammography studies,
ultrasound scanning, computerized scanning and magnetic resonance imaging, to obtain images of
the breast for later analysis [3]. The analysis was performed to obtain the aggressiveness of cancerous
cells. The aggressiveness of cells is categorically explained by using a grading system that has impacts
on treatment. Cancer grading determines how the tumour nuclei look under microscopic tests [4,5]. It
is not the same as measuring the tumour size and its aggression and metastasis.

The Nottingham grading system (NGS) proposed by Elston and Ellis is a universal grading system
prescribed by the WHO to evaluate BC aggressiveness by pathologists worldwide [6]. It compares
the appearance of BC tissues with the appearance of normal breast tissues, as shown in Tab. 1. It
consists of three grades (I), (II), and (III) achieved from the expansion of these three measures: mitotic
count, gland formation and nuclear atypia. These three criteria are valued as 1, 2, or 3 (Tab. 1) [6]. The
evaluation of the BC grade is semi-quantitative. The computation of the three parameters provides
tumour aggressiveness. The minimum conceivable score is 3 (1 + 1+1), and the maximum conceivable
score is 9 (3 + 3+3). Patients with a score of 8 or 9 are assigned Grade-III. Grade-II alludes to scores
of 6 or 7, while Grade-I alludes to scores of 3, 4 or 5. High-grade nuclear atypia shows a high deviation
in cell shape. Low-grade nuclear atypia, for the most part, has round nuclei [5].

Table 1: Nottingham grading system by Elston and Ellis

Criteria Score Description

Gland formation 1 (1): >75% of tumour forms gland
2 (2): 10%–75% tumours formation
3 (3): <10% forms gland

Mitosis count 1 (1): <11 mitosis in 10 HPF
2 (2): 11–20 mitosis in 10 HPF
3 (3): >20 mitosis in 20 HPF

Nuclear atypia 1 (1): Small general, even cores
2 (2): Average increment in size
3 (3): Fluctuation marked variety

The rest of this paper is structured as follows. Section 2 outline the latest research on automated
image analysis in histopathology and contribution of the paper. Section 3 describes the proposed
methodology. Section 4 presents the results and discussion. In the last section, we have drawn our
conclusion.
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2 Automated Image Analysis in Histopathology

The microscopic study of cell morphology plays a vital role for medical experts in decision
making [7]. Automated nuclei segmentation and classification is a repetitive activity and challenging
for pathological images. Due to rapid development in digital pathology, various cancer diagnosis and
grading systems have been proposed, including brain image analysis [8–10], cervix [11], lungs [12], liver
[13] and breast [5,14–18]. In this regard, we can find more systems in [19–22].

BC image analysis can be applied to handle numerous pathology jobs, such as mitosis detection
[18,23], tissue segmentation [24], histological classification or cancer grading [15]. Automatic analysis
is commonly performed by using hematoxylin and eosin (H&E)-stained slides and deep learning
techniques to enhance model performance [25]. Breast cancer diagnosis from histopathological images
always remains the benchmark in clinical pathology [20–24]. Histopathology is the investigation
of microscopic variations or abnormalities in tissues. Distinctive types of nuclei in BC histological
images call attention to the difficulties in their recognition [26]. The images that are obtained
through traditional radiology, such as mammograms, ultrasound and MRI, are greyscale and do not
cover interesting regions, whereas histopathology images have better quality in diagnosing various
diseases, including an extensive variety of cancers, due to distinctive features achieved through the
staining process in biopsy tests [27]. Cancer detection and grading are performed on histopathological
images that are obtained by different high-resolution scanners, such as Aperio XT and Hamamatsu
NanoZoomer. Cancer cell identification and grading are achieved at different magnifications, such
as 10×, 20× and 40×, because of the tissue structure morphology [28]. The obtained whole slide
images are exposed to pathologists, who examined the images manually to segment regions of interest
for assessing critical information for classification [29]. The proper classification of breast lesions can
provide critically important diagnostic information to prevent under- and over-treatment and properly
guide patient treatment.

The major problem with the current manual diagnosis system is inter- and intra-observer variabil-
ity and reproducibility problems. Computer-aided diagnosis (CAD) is a developing interdisciplinary
area that consolidatescomponents of machine learning and digital image processing with medicinal
information [21]. Novel CAD techniques for analysing breast tissue will enable pathologists to have
more accurate and reproducible diagnoses, leading to improvements in the ability of pathologists
to diagnose and prognosis breast cancer. Several studies exist about breast cancer detection and
classification using deep learning. Sadad et al. [4] proposed the methodology to classify pre-segmented
breast lumps as cancerous and non-cancerous in X-ray images. They used a convolutional neural
network and pre-trained models, combined data augmentation and transfer learning to address
overfitting problems. The authors only used limited pre-trained networks on a digital database for
screening mammography (DDSM), which might be inadequate to generalize the results of their
study. Huynh et al., [19] presented a computer-aided system that extracted 219 breast lesions from
breast mammographic images. They used CNN as a feature extractor and support vector machine
for classification purposes. Although classification accuracy improved, due to the small number of
training data, it might experience overfitting [16]. Khan et al., [21] proposed a framework intended to
score cancerous tumour tissues based on ER and PR hormone receptors by using image processing
techniques. This system scores ER/PR pervasiveness more accurately than conventional methods that
usually assist pathologists in exploring histopathological images. The results are recorded in a database
to facilitate further analysis. Doyle et al., [30] segregated poor quality from high-grade BC tumour
slides by applying a mix of surface-based components for recognizing tumours from non-cancer, and
afterward, extended design elements to recognize low from high evaluations. However, this method
depends on the precision of the position of nuclei. In their dataset, the nuclei were commented on
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physically. However, Abirami et al., [31] proposed an artificial neural network-based classifier to
detect micro-classifications in every area of breast cancer mammograms. They used discrete wavelet
transform (DWT) for feature extraction and neural networks such as multi-layer perceptron and radial
basis function for the classification of BC mammographic images.

Evaluation of the histopathological images of nuclear polymorphism BC is a qualitative method
of treatment for assessment and prognosis. In 2020, a study is conducted for mitotic cell detection
by using deep learning techniques instead of image processing techniques, as those techniques are
costly and not up to the mark. For detection of mitotic cell Faster-RCNN has been used, but this
generates results that has unacceptable rate of false positives. These false positives are generated
because of small size of mitotic cell or it is similar looking to normal cell. To reduce false positives post
processing is applied. In post processing two deep learning method RESNET 50 and DENSENET-
201 has been applied that results in refined set of mitotic cell candidates, which are further refined
by using statistical parameters such as shape, texture etc. This technique is tested on two open source
databases ICPR 2012, ICPR 2014 and for generalization testing on TUPAC16. On all these datasets
the proposed methodology performs well [32]. In another study, authors proposed two deep learning
models for semantic segmentation and classification to increase robustness. The findings indicate
that by combining traditional image processing methodologies and deep learning approaches with
hand-crafted features, the efficiency of traditional image processing methodologies and deep learning
approaches can be significantly improved [33].

Different from the existing techniques, the proposed method in our study selects only critical cell
nuclei features and utilizes them to grade NA into I, II and III accordingly. The results comprise the
prediction of nuclear atypia, which will not merely help pathologists in diagnosis but also bring robust
and productive changes in the field of medical imaging.

To identify histological grades in breast cancer images, we developed an automated grading of
nuclei using unsupervised feature extraction. Our major contributions in this paper are as follows:

• The proposed system combines a patch-based automated feature extraction method with
controlled decision fusion for feature extraction and classification.

• An autoencoder-based model is proposed that automatically isolates discriminative patches
from high-resolution images for data training.

• Our model attains several state-of-the-art outcomes classifying whole slide images (WSIs) into
cancer grades and is closely related to inter-observer agreement among pathologists.

• Experimental evidence shows that training deep learning models on high-resolution WSI blocks
can produce promising results, making them more suitable for breast cancer grading.

3 Materials and Methods
3.1 Dataset Description

In this research, a publicly available nuclear atypia dataset containing Grade-I, II and III BC
anomalies by the ICPR (International Conference on Pattern Recognition), is used to assess the
effectiveness of the proposed model. The dataset was generated by using 300 manually tagged whole
50 high power field (HPF) slide images of size 1539 × 1376. These images were scanned by an Aperio
scanner at ×20 magnification. A solitary WSI of 20 × magnification tissue sample comprises almost
1010 multi-channel, representing a highly complex multi-scale structure [34]. An HPF is a territory
of 0.262 mm2, which is a surface comparable to that of a magnifying lens field breadth of 0.58 mm.
The Aperio scanner has a resolution of 0.2273 μm horizontal and 0.222753 μm vertical per pixel. For
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each frame, two files are maintained. One contains a list of marked scores by each pathologist, and the
other is the final score of nuclear atypia decided on majority opinions. The score for nuclear atypia
requires a wide zone to have the ability to assess the shape and size of an expansive populace of nuclei.
For this purpose, the pathologists worked at × 20 magnification, and the final score was given by two
or three pathologists. The dataset has been split into training and validation sets. The training and
validation sets contain 70 percent and 30 percent of total dataset respectively. Each set contains WSIs
for three grades, 19% of training dataset is grade-1%, 40% is grade-II and remaining is grade-III. In
validation set, grade-I, II and III are 16%, 42% and 42% respectively. The data used in our experiments
also accessible through [35].

3.2 Data Augmentation

For deep learning models, the fundamental object is the dataset. Deep learning algorithms truly
perform well when the dataset is large [36]. This is mainly accurate in the medical imaging field, where
access to data is highly protected due to patient secrecy concerns [37]. To overcome this matter, we
used data augmentation to increase the dataset. The main purpose of data augmentation is generating
genuine-looking training data by applying a transformation to an example without altering its label
[38–40]. Some non-categorical image transformation techniques are used to produce new examples
from the training data for image classification, such as cropping, flipping, shifting, and colour jittering,
adding Gaussian noise and rotating images at different angles. To balance our dataset, we applied data
augmentation of the WSI at different angles (45◦, 90◦, 120◦ and 270◦). Algorithms 1 was used for data
augmentation.

3.3 Patch Extraction for Whole Slide Nuclei Image Classification

Patch extraction is normally used to represent larger scan. Deep neural networks, though, operate
on smaller image dimensions as stated in [41] that input size of image may not be larger than 350 by 350
pixels. To reduce the significant image size, input space, computational time and system specifications,
WSIs of size 1539 × 1376 were divided into 128 by 128 size patches, 20 manually annotated patches by
expert, were used in our study as patch with higher grade will represent WSI [42]. As far as number of
patches concerns, it is observed that deep neural networks with larger input size may need large number
of training parameters i.e., neurons. This may cause difficulty for neural network during training [41].
Every patch consisted of associated features that were representative of the WSI. All patches were
assigned a unique identifier and grade according to the Nottingham grade system by a pathologist.
Our patch extraction approach is elaborated in Algorithm-2. The overall architecture of the proposed
methodology is illustrated in Fig. 1.

Algorithm 1: Data Augmentation
Input–Whole slide image (WSI)
Output–Augmented whole slide images
Step 1: Load WSI I.
Step 2: Create image data augmentation generator A (f (i, j), degrees) by a given number of degrees
from 0 to 360.
Step 3: Generate augmented images.
Step 4: Stop.
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Algorithm 2: Generation of patches
Input–Whole slide image (WSI)
Output–Patches of size n × n of the input image
Step 1: Let I be the epidemic patch count and N be the total number of patches.
Step 2: Generate patches

Step 2.1: Convolve window on the image.
Step 2.2: If patch size decreases from n × n, go to step 4.
Step 2.3: Extract patch.

Step 3: if I=N go to step 4, otherwise go to step 2.
Step 4: Stop.

Figure 1: Framework for nuclei grading based on the Nottingham grading system

3.4 Feature Learning with Two-Layered Autoencoders

The architecture of the autoencoder mainly consists of two blocks of layers [34]. The first layer is
the input layer, which resides as an encoder that is intended to perform the encoding of input data into
a lower-dimensional latent compression; a hidden layer can be seen as a new feature representation of
input data. The other block contains an output layer that is trained to reconstruct the input from the
hidden representation [43,44]. The autoencoder simultaneously reduces the divergence between feed
data and its reconstruction. The output feature set, which is obtained after applying the transformation
function, of every connected layer is the input of successive layers [45]. Conventionally, the autoencoder
takes input and finds weights that are evaluated on the basis of a threshold. If that threshold matches,
data training is stopped; otherwise, weights are again calculated to meet that required criterion.
The working architecture of the autoencoder is shown in Fig. 2. The autoencoder finds the optimal
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parameters P = (W, B, B′
) by using a hidden layer that executes a transformation function, Eq. (1).

ft : V dx →V dh (1)

X = {x1, x2, x3 . . . xn} patches of dimension 128 × 128 are mapped to dx vectors. The encoder maps
the dx vector to an n-dimensional feature vector, i.e., h = ft(x) ∈ Vdh. Each neuron in the encoder
has a vector of weights that will react to a particular nuclear structure. Later, the features of image
patches are passed to the decoder. The decoder tries to change the map to recreate the original input
for validation. The high-level feature vector of each patch x, i.e., h ∈ V represent cell nuclei atypia.
The n feature vector of n patches (X) along with n target values signified asy(m) ∈ {I, II, III},
i.e., {h(m), y(m)}n

m=1 are then given as input to the softmax layer, which reduces the cost function and
acts as a classifier. The list of notations used in modelling is given in Tab. 2. We used an autoencoder
combined with a softmax layer to shape a deep network. The softmax function can be traditionally
used to characterize a categorical distribution that works on the basis of probability function Eq. (2)
over different likely results.

Qi = expxi∑
C
c=1 expxi

(2)

Figure 2: Feature learning process from BC histopathology

Table 2: Summary of the notations

Notation Description

X Set of patches
ft(X) Transformation function

V Vector
V dx Input vector
V dh Feature vector
h Feature

P = (W, B,B’’) Weights, bias in the hidden layer and
output layer

y(m) Target values
N Count
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In proposed framework, the autoencoder has three hidden layers, the output of the hidden layer
is given as input to the next layer. The first hidden layer generates 3000 features which were given as
input to the second layer that filter out 300 features from given feature set. Later on, these 300 features
maps into 50 features by third layer. The final 50 features are used in classification as shown in Fig. 2.

3.5 Classification
3.5.1 Support Vector Machine

The support vector machine (SVM) is a supervised machine learning classifier that combines the
influence of conventional theoretical statistical approaches [46]. SVMs are commonly used classifiers
in various machine learning-based healthcare areas, such as medical imaging [47] and bioinformatics
[48]. SVM incorporates the capability to overcome the issue of overfitting by using the idea of error
minimization. The SVM classifier looks for the ideal hyperplane, which is in the middle of the classes
[49]. This ideal unscrambling hyperactive plane has numerous refined measurable qualities. SVM
additionally learns a non-linear decision function that captures extreme edge hyperplanes by a kernel
in high-dimensional vector space that is mapped from input space [50]. Typically, SVM addresses
noisy data problems and is usually used for binary classification, but it can be specifically stretched
out for multi-class classification. In this study, SVM was used for paired characterization of aggressive
tumours of Grades I, II and III, as shown in Fig. 3. For classification, we designed three parameters
for each grade as: xj = (0 0 1), i.e., Grade-I, b) yj = (0 1 0), i.e., Grade-II, c) zj = (1 0 0), i.e., Grade-III.

Figure 3: Multi-class support vector machine using three hyperplanes, classifying Grades-I, II and III

3.5.2 Decision Tree

Numerous machine learning (ML) algorithms are available, among which j48 and random forest
are the most frequently used decision trees for classification [51]. A decision tree is a method that
classifies data as an n-array hierarchy. The initial step, known as tree building, generates a decision tree
model through training data and a function, i.e., entropy for obtaining the latest knowledge trends,
given in Eq. (3). The other step is tree pruning, in which the insignificant branches do not contribute.
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To classify, from the root hub, the property estimation of the entered records is tested until a leaf hub is
achieved for its respective class. The purpose of tree pruning is to decrease the background distortion
or noise in the training data [10,52,53]. In this study, random forest (Fig. 4) and J48 decision tree
(Fig. 5) classifiers are used. The random forest (RF) algorithm classifies a given problem by executing
the combination of a few decision trees where each tree depends on the value of a distinctly sampled
random vector. The distinction of such ensembles of classifiers is that their tree-based components are
developed from a specific measure of irregularity, and random forest is characterized as a non-specific
standard of the randomized gathering of decision trees. In addition to randomization, achieved by
developing trees using bootstrapping, a second layer of randomization is presented at the hub level
when growing the tree. RF predicts the output by mapping test features to rules that are generated by
using information gain, i.e., Eq. (4). Finally, it considers the highly voted predicted target as the final
prediction from random forest.

Entropy =
c∑

n=1

(pnlog2pn) (3)

Gain(A, X) = Entropy(A) − Entropy(A, X) (4)

where pn is the probability that i occurs in the system. A is the target class, and X is the attribute.

Figure 4: RF architecture that generates N trees to classify nuclei classification

The J48 decision tree for classification purposes was also used. J48 uses entropy to calculate the
homogeneity of the sample data. If the entropy is zero, then the sample data are completely homo-
geneous, and if the sample data are divided unequally, then it has entropy one. The supplementary
features of J48 are detecting missing values, finding persistent characteristic value ranges, determining
principles and decision tree pruning. This algorithm delivers the principles for the prediction of
the objective variable. In different algorithms, the classification is performed recursively until each
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sheet is pure; that is, the classification of the data must be as precise as might be expected in the
circumstances [54].

Figure 5: The J48 decision tree shows that the features with the highest information gain classify them
into their perspective classes

3.5.3 Multi-Layer Perceptron Network

Multi-layer perceptron (MLP) is a supervised neural network consisting of many processing
parameters, i.e., weights that are linked with each other. MLPs are neural systems with an input layer
comprised of entities, at least one computation hidden layer that uses the default activation function
and an output layer comprising computation nodes. An optimization class is used to minimize the
given loss function [55]. All attributes of the system are standardized before being given as input.
In the input layer, the feature vector is given to the source node that generates the input signal. The
input signal moves onward on a path via layers and produces an output signal. As a final point, the
computational process terminates on the output layer, which produces results as shown in Fig. 6.
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Figure 6: Multi-layer perceptron with N hidden Neurons

3.5.4 Performance Metrics for Classification

The quantitative performance of our framework with different models is shown in Tabs. 3–
7, where we computed our results using metrics in Eqs. (5)–(8). The performance of automatic
grading on the basis of nuclei is quantified in terms of the F-measure, precision, and recall
(sensitivity) [56,57].

Precision = X
X + Y

(5)

Sensitivity = X
X + N

(6)

F − measure = 2 × Precsion × Senstivity
(Precsion + Senstivity)

(7)

Accuracy =
∑

3
C=1 NTPC (8)

X = correctly identified instances, Y = incorrectly identified instances, N = number of identified
instances that do not align with manual labels.

Table 3: Results for SVM

Instances Score

Correctly classified instances 3,719 (73%)
Incorrectly classified instances 1,401 (27%)
Total number of instances 5,120

In Eq. (8),
∑

(C = 1, 2, 3) is the sum of Grades-I, II and III patches; NTP is a variable that
represents the number of true positive values, C represents the class and y is the total number of testing
images.



3418 CMC, 2022, vol.71, no.2

Table 4: Results for RF

Instances Score

Correctly classified instances 3,467 (68%)
Incorrectly classified instances 1,653 (32%)
Total number of instances 5,120

Table 5: Results for J48

Instances Score

Correctly classified instances 3,719 (73%)
Incorrectly classified instances 1,401 (27%)
Total number of instances 5,120

Table 6: Results for MLP

Instances Score

Correctly classified instances 3,710 (72%)
Incorrectly classified instances 1,926 (37%)
Total number of instances 5,120

Table 7: Results for softmax

Instances Score

Correctly classified instances 3,226 (63%)
Incorrectly classified instances 1,894 (37%)
Total number of instances 5,120

4 Results and Discussion

The proposed framework is evaluated on a publicly available nuclei dataset. This dataset consists
of 30 HPF whole slide images at ×20 magnification. The study is implemented on a desktop computer
(16 GB RAM with Intel Core (TM) 3.2 GHz processor) and Intel graphic processing unit. For software
implementation, we performed experiments using MATLAB 2016a.

Deep learning models require a large dataset for effective learning, we augmented the data and
extracted them into 128 × 128 equal size patches to reduce the computational complexity. Our input
patch contains significant A101_01= 128 × 128 = 16,384 pixels characterized as learning features.
Each patch contains malignant and benign areas of different grades. For feature learning, we used an
unsupervised deep learning-based autoencoder model that contains hidden layers along with encoding
and decoding layers. The features extracted from a single patch are pixel vectors. This vector is s a
portion vector of pixel forces with degree (128 × 128 × 3) × 1. Thus, there are Sx = S0 = 128 × 128 × 3
input units in the input layer. The first, second and third hidden layers have h(i) = 3000, j(i) = 300 and
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K(i) = 50, where i = 1, 2, 3, . . . , n hidden units, respectively. Finally, the softmax layer classifies these
50 neurons into 3 grades accordingly.

Along with automatic classification with autoencoders, we used various other classifiers because
softmax layer classification does not show promising results for this problem. The overall accuracy that
was achieved using the softmax function was 63%. The extracted features are given as input to four
different machine learning classifiers, i.e.; SVM, RF, J48 and MLP. For SVM, a normalized feature
vector is given as input to the RBF kernel with cost 0.1 and precision threshold 0.0005. Second, we
use RF for classification with attribute selection and noise removal performed by information gain
and pruning, respectively. Along with RF, we also classify grades by considering another decision tree
algorithm known as J48. Finally, we use a multi-layer neural network that has 50 hidden neurons and
sigmoids as the activation function. The results are compiled at patch-level, however the final label of
WSIs can be predicated by considering grade that is assigned to maximum patches of respective WSI.
All four classifiers show better results than softmax, as shown in Tabs. 3–7.

Figure 7: Performance of proposed classifies: (a) recall; (b) F-measure, (c) precision; (d) accuracy

In the classification problem, the sizes of the training and testing data are constrained. We
used the N-fold cross-validation technique, where N = 10. Various N-fold cross-validations attempt
distinctive things with a comparable learning design, and the data index afterwards conveys differing
results because of the effect of sporadic assortment in selecting the folds. Stratification reduces the
assortment, yet it most likely does not abstain from it totally. We used the N-fold cross-validation
method for estimating a tuning parameter t (subset size). This strategy reserves a certain quantity of
data for training and testing. N-fold cross-validation is used to predict the error rate of feature learning
techniques. We divided our data set into N equal parts, for each N= 1, 2, 3, . . . , 10 fit the model with
t parameter to the other N-1 parts, giving α-N (t) and computed its error in predicting the Nth part.
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Since it was a hectic and tedious job to have a specialist or pathologist that physically recognized every
single nucleus in each of these patches (to give a ground truth to quantitative assessment), we compared
the results of classifiers with ground truth details provided along with the dataset. The metrics used
to evaluate the nuclei scoring of each method include sensitivity, precision, F-measure and accuracy.
The performance measures of all classifiers are shown in Fig. 7 including (a) recall; (b) F-measure, (c)
precision; (d) accuracy.

5 Conclusions

The core aim of this study was to explore challenges in the automated nuclei grading framework
for H&E images. The qualitative analysis of BC histopathology images was achieved by performing
patch extraction, feature learning, and classification of nuclei. The outcome of the proposed method-
ology was comparable with pathologists’ observations given along the dataset. This technique can
conceivably help build a computerized grading system for BC. A significant number of studies have
been conducted in the field of computer-aided diagnostic tools, emphasizing nuclei segmentation and
classification in various image modalities. Nevertheless, there are some open areas to delve into, which
may have unique challenges that should be covered in future research. This study was designed to focus
specifically on feature engineering using multi-layered autoencoder. Later on in part b of this study, we
will test our extracted features using more advance classifiers. Furthermore, we intended to compute
the BC grade by combining mitosis and nuclei regions. We also plan to conduct an investigation of the
relationship between different grading parameters to evaluate the morphology of the breast in BC.
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