
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.022264

Article

Citrus Diseases Recognition Using Deep Improved Genetic Algorithm

Usra Yasmeen1, Muhammad Attique Khan1, Usman Tariq2, Junaid Ali Khan1,
Muhammad Asfand E. Yar3, Ch. Avais Hanif4, Senghour Mey5 and Yunyoung Nam6,*

1Department of Computer Science, HITEC University Taxila, Taxila, Pakistan
2College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Khraj, Saudi Arabia

3Department of Computer Science, Bahria University, Islamabad, Pakistan
4Department of EE, HITEC University Taxila, Taxila, Pakistan

5Department of ICT Convergence, Soonchunhyang University, Korea
6Department of Computer Science and Engineering, Soonchunhyang University, Korea

*Corresponding Author: Yunyoung Nam. Email: ynam@sch.ac.kr
Received: 02 August 2021; Accepted: 30 September 2021

Abstract: Agriculture is the backbone of each country, and almost 50% of
the population is directly involved in farming. In Pakistan, several kinds of
fruits are produced and exported the other countries. Citrus is an important
fruit, and its production in Pakistan is higher than the other fruits. However,
the diseases of citrus fruits such as canker, citrus scab, blight, and a few more
impact the quality and quantity of this Fruit. The manual diagnosis of these
diseases required an expert person who is always a time-consuming and costly
procedure. In the agriculture sector, deep learning showing significant success
in the last five years. This research work proposes an automated framework
using deep learning and best feature selection for citrus diseases classification.
In the proposed framework, the augmentation technique is applied initially
by creating more training data from existing samples. They were then mod-
ifying the two pre-trained models named Resnet18 and Inception V3. The
modified models are trained using an augmented dataset through transfer
learning. Features are extracted for each model, which is further selected
using Improved Genetic Algorithm (ImGA). The selected features of both
models are fused using an array-based approach that is finally classified using
supervised learning classifiers such as Support Vector Machine (SVM) and
name a few more. The experimental process is conducted on three different
datasets-Citrus Hybrid, Citrus Leaf, and Citrus Fruits. On these datasets, the
best-achieved accuracy is 99.5%, 94%, and 97.7%, respectively. The proposed
framework is evaluated on each step and compared with some recent tech-
niques, showing that the proposed method shows improved performance.
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1 Introduction

Fruits diseases are the simplest problem that has significantly impacted the production and quality
in the agriculture sector [1]. Identifying fruits diseases at the early stages is one of the most critical
tasks for improving agriculture production [2]. The citrus organic product industry is one of the main
organic product enterprises in the world, with development in 137 nations [3]. The ceaseless stock of
Citrus is fundamental for people’s sound way of life. Its high Vitamin-C substance and other helpful
supplements offer various points of interest to the human body contrasted with different natural
products [4]. The major citrus diseases are Anthracnose [5], Canker, Scabies, Black Spot [6], and
Sandpaper Rust [7].

In computer vision, many techniques are introduced in the literature for fruits diseases recognition
[8]. The researchers of CV followed the four steps process: image contrast enhancement, symptom
extraction, features extraction and reduction, and finally classification [9]. In contrast stretching step,
the visual quality of an image is improved using some image processing filtering techniques like
Gaussian filter etc., [10]. In the symptoms extraction step, the infected regions are segmented using
several segmentation techniques such as K-Means clustering, Watershed segmentation, and Saliency
methods [11]. In the feature extraction step, shape, texture, point, and colour features are extracted,
which are later reduced using some reduction techniques like PCA etc. [12]. In the last step, the reduced
feature vector is passed into the classifiers for final classification. These techniques are useful when
the size of the input dataset is not much higher. For the high dimensional dataset, these traditional
techniques are not performed well.

Recently, deep learning showed a significant impact in agriculture using high dimensional data
[13]. Convolutional Neural Network (CNN) is a type of deep learning which includes several hidden
layers utilized for automated features extraction [14]. A CNN model is a more powerful form of
deep learning which performed better for high dimensional datasets. A simple CNN model includes
several hidden layers such as a convolutional layer, pooling layer, activation layer, normalization layer,
fully connected layer, and output layer [15]. Many pre-trained deep models are publically available for
feature extraction, such as GoogleNet [16], AlexNet, and ResNet.

The researchers of CV recently used these deep pre-trained models for features extraction [17].
Extracted deep features are later reduced by reduction techniques such as entropy controlled approach
and classified using supervised learning algorithms [18]. The existing studies related to agriculture did
not focus on the fusion and features and selection of best features. The fusion of deep features of
different deep learning models is a new research motivation. In the agriculture domain, the fusion
process can perform better. Another important step is feature selection. The main purpose of this step
is minimizes the number of predictors, which are later decreases the entire system computational time.

The key problems of citrus fruits diseases that focus on in the article are as follows: i) The
identification of plant disease using classical techniques is the problem of high computational time.
In this type of technique, hand-crafted features are extracted, which is not a better solution for an
automated system; ii) A handsome amount of data is required for the training of a dep learning
model; however, some citrus diseases have very limited training data, which causes a problem of
training a new model; iii) In the data augmentation phase, the general practice is performing geometric
transformations; however, augmentation by a particular type of process generated alike data, which
increases the possibility of over-fitting; iv) The multiclass classification is another problem due to the
composite nature of each disease. Moreover, each disease has several common symptoms that cause a
misclassification problem, and v) Similar variations in fruit characteristics such as colour and texture
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create uncertainty of the correct identification in their appropriate category. Our major contributions
in this study are as follows:

• Proposed a sequential algorithm for data augmentation. In this algorithm, images are saved
automatically after each implemented operation.

• Two deep learning models are fine-tuned and trained on three different citrus datasets. Then,
high-level features are extracted from the deep layers.

• Proposed a Modified Genetic Algorithm (MGA) for the best feature selection.
• Selected features of both deep models are fused using an array size-based approach.
• Comparison is conducted among all hidden steps of the proposed framework to analyze which

step is better performed.

As a rest of the manuscript, the related work is presented in Section 2, proposed work is discussed
in Section 3, results of the proposed framework are presented in Section 4. In the end, conclusion has
been added.

2 Related Work

Recently, many computer vision (CV) and deep learning techniques [19] are introduced to identify
plant diseases in agriculture [20]. In general, agriculture has been an important area of research in the
field of CV over the past decade [21]. Many CV researchers have developed strategies for diagnosing
and classifying fruit diseases [2]. They focused on certain key steps such as pre-processing [22] of
input data, partial detection [23], segmentation [24], feature removal, and final separation. Barman
et al. [25] introduced two types of CNN, such as Self-Structured CNN (SSCNN) and MobileNet for
citrus leaf separators. In this work, initially, the database was set up using Smartphones. After that,
both in-depth study models were trained on the same datasets of the citrus plants. Zhong et al. [26]
presented a production model of the novel and conditional opposing autoencoders (CAAE) in a zero-
shot instruction to address the acceptance of Citrus aurantium L. In this work, they produced artificial
samples from both visual and non-visual classes. Synthetic samples are used to differentiate training
to improve the problem of inequality. The initial process of diagnosing citrus plant diseases includes
image processing, feature removal, trait selection, and classification methods. The accuracy of zero
recognition was 53.4% which is 50.4% higher than existing techniques.

Janarthan et al. [27] presented a deep metric learning-based framework for citrus disease detection
from sparse data. In this work, the database has been processed using depleted devices, such as mobile
phones. They introduced a class action-based network patch consisting of various modules such as
focus, collection, and simple neural network classes to differentiate citrus illness. Khalifa et al. [28]
presented an automated system for potato leaf blight diagnosis. A deep CNN architecture was used,
which consists of two basic feature layers. Zhang et al. [29] presented a machine vision approach for
classifying citrus surface defects. In this work, the citrus images were preprocessed using the Fuzzy
C-Means algorithm (FCM) and Gray Wolf Optimizer (GWO) algorithm. Then, the infected region of
Citrus is detected using upgraded CNN.

James et al. [30] presented an automated system for classifying ten types of apple fruit diseases. The
presented method was based on the Hybrid Neural Clustering (HNC) Classifier. The classifier receives
the outcome of the feature extraction vector as input. The main strength of this approach was region
extraction using K-Means Clustering. The extracted regions are evaluated using a Feed Forward Back
Propagation Neural Network (FFBP). Safdar et al. [31] presented an automated system for citrus fruit
diseases recognition. In the presented work, five basic steps are performed: contrast enhancement,
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disease recognition, feature extraction and reduction, features integration, and classification. Three
different image datasets were used for the experimental process and achieved an accuracy of 96.5%.
Saeed et al. [15] presented a deep learning and PLS based features fusion framework for plant diseases
recognition. Features are extracted from the two fully connected layers such as FC6 and FC7 of the
VGG19 deep model, later fused using the PLS approach. The integration and selection with the PLS
increase the recognition accuracy of the identification and reduce the testing and training time.

In summary, the researcher of computer vision mostly used deep learning techniques for fruits
diseases recognition. The focused-on data preprocessing in which they performed contrast enhance-
ment. In the later step, they extract features and performed some reduction techniques like PCA. In
the latter, they classified using machine learning algorithms. However, from the recent studies, they
did not focus on fusion and data augmentation steps. Also, they did not show interest in the feature
selection techniques. This research work proposes a new framework based on deep learning feature
selection and fusion for fruits diseases recognition.

3 Datasets

Three datasets are utilized in this work for the experimental process, such as the Hybrid Citrus
dataset, Citrus Leaves dataset, and Citrus Fruits dataset. The Hybrid Citrus dataset has 3988 images,
the Citrus Fruits dataset has 1328 images, and the Leaves dataset has 2184 images. The nature of all
images of the three datasets is RGB. Each dataset consists of the following diseases: anthracnose, citrus
greening, black spot, canker, citrus scab, Melanose, and healthy. The nature images of the selected
datasets is in RGB format and the size of each image is 224 × 224 × 3.

4 Proposed Work

This work proposes an automated framework for citrus leaf and fruit disease recognition using
an ensemble of deep learning models. The architecture diagram of the proposed framework is shown
in Fig. 1. This figure shows that the initial augmentation technique was applied to the original images
by creating more training data from existing samples. Then modifying the two pre-trained models
named Resnet18 and Inception V3. The modified models are trained using contrast-enhanced images
through transfer learning. Features are extracted for each model, which is later refined using MGA
based feature selection. The selected features are finally classified using supervised learning classifier
such as SVM. The experimental process is conducted on the collected citrus dataset and compared
with existing techniques in terms of accuracy. The detail of each step is given below:

4.1 Data Augmentation

In this work, the data augmentation step is performed to address the problem of less size imaging
datasets. For the deep learning model training, a massive number of training data always gives better
performance. Therefore, three operations, such as rotation at 90 degrees, flipping at the vertical
direction (UD), and flip at the horizontal direction (LR), are performed in this work. In this work,
three datasets are utilized for the experimental process: Hybrid dataset, Citrus Leaves Dataset, and
Citrus Fruits Dataset. Originally, this dataset consists of 285 images, 609 images, and 150 images,
respectively. After the augmentation step, each step’s number of images reached 3988, 2184, and 1328,
respectively. These augmented datasets are further utilized for the models training.
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Figure 1: Architecture of proposed framework for citrus disease recognition

4.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is a deep learning method used to analyze the visual image
information [32]. It takes an input image and assigns learnable weights and biases for objects in the
image, allowing it to distinguish between them. Normally, a CNN is built for working with two-
dimensional image data; however, it may also be utilized with one-dimensional and three-dimensional
data. In general, a simple CNN model for image classification consists of various layers such as input
layer, convolutional layer, activation layer (ReLU), pooling layer, fully connected layer or feature layer,
and classification layer.

4.3 Transfer Learning

Transfer learning (TL) is a learning new task through the transfer of knowledge from another
existing task, which has already been learned. The TL process consists of two main components: i)
source domain and ii) target domain. The advantage of TL is to train a pre-trained model for a new
task with less data because a CNN model always required many images for the training purpose.

Giving a source domain As with a corresponding source function Fs and a target domain At with
a learning task Lt, the objective of transfer learning is to improve the performance of a predictive
function fT(·) for learning task Lt, by discovering and transferring latent knowledge from As and Fs,
where

As �= At or Fs �= Lt (1)
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With TL, deep neural networks can learn very complicated relationships leading to overfitting.
The visual process of TL is illustrated in Fig. 2. In this figure, it is noted two domains are defined as
source and target. In the source domain, two deep models are selected, which are fine-tuned in the
target domain. In this work, three datasets are used in the target domain, where the maximum number
numbers of classes are seven.

Figure 2: The schematic figure of transfer learning

4.4 Feature Extraction Using Inception V3 CNN

Inception V3 is becoming popular and performed well in image processing for object classifica-
tion. This model consists of max pooling, average pooling, convolutions, dropouts, concate, and fully
connected (FC) layers. For the classification layer, the SoftMax layer is added. Initially, this model was
trained on ImageNet Dataset, which includes millions of images. As compared to Inception V1, this
model is computationally less and more efficient. This model includes several kinds of filters such as
7 × 7, 5 ×5, 3 × 3, and 1 × 1, respectively. The main concept of the inception model is to concatenate
several layers at the same time. The 1 × 1 convolutional layer is used in the inception model to reduce
the size of the input.

In the fine-tuning phase, the output of the last FC layer was 1000; however, in the proposed
framework, the output of the selected dataset is seven. Therefore, it is essential to update this layer. For
this purpose, the original FC layer was removed and added a new FC layer. For the new input layer,
the input classes are seven, and mini-batch size is 64. Moreover, the learning rate and learning type are
0.0001 and Stochastic Gradient Descent (SGD). After this FC layer, the SoftMax and Classification
layers are connected and trained using transfer learning. After training of a modified model, features
are extracted from the average pool layer. On this layer, the dimension of extracted features is N×2048.

4.5 Feature Extraction Using ResNet-18 CNN

ResNet-18 is an 18-layer deep CNN model, introducing the idea of residual learning. The residual
neural network (ResNet) is designed to address vanishing/exploding gradients and accuracy loss. In
general, these issues arise as the depth of the pool gets deeper. A residual connection essentially creates
a shortcut in a sequential network by making the output of an earlier layer available as an input to
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a later layer. Instead of being concatenated with the later activation, the earlier output is combined,
assuming that both activations are the same size. Mathematically, it can be defined as follows:

An output of the nth layer with transformation function f of a residual network can be expressed
as:

xn = h (yn) + f (yn, Zn) (2)

yn+1 = (xn) (3)

where xn is the input, yn + 1 is the output of nth unit, and f is the residual function of the nth unit. The
identity mapping of the ReLu function can be expressed as follows:

h(yn) = yn (4)

The vanishing gradient problem is not encountered in the ResNet due to the backpropagation.
In the fine-tuning phase, the original FC layer was removed, and added a new FC layer. For the new
input layer, the input classes are seven, and mini-batch size is 64. Moreover, the other variables such
as learning rate, mini batch size, and learning type are 0.0001, 64, and SGD. After the updated FC
layer, the SoftMax and Classification layers are added and connected with previous layers. After that,
this modified model was trained using transfer learning (TL). Features are extracting from the global
average pool layer, where the dimension of extracted features is N × 2048.

4.6 Feature Selection Using Modified Genetic Algorithm

Genetic Algorithms (GA) is an optimization methodology that uses population-based and
algorithmic heuristics search to replicate man’s natural evolution process. GA decreases computational
complexity and speeds up the verification process. In this proposed framework, an Improved Genetic
Algorithm (ImGA) is proposed for the best feature selection and to reduce the computational time.
In the ImGA, initially initialize the parameters of GA and then check the fitness. A single-layered
feed-forward neural network is selected as a fitness function. The later step is to select the features
using Roulette Wheel and performed uniform crossover and mutation. After the mutation step, check
the stopping criteria, such as number of iterations. Once all iterations are performed, and the selected
feature vector is obtained, compute the absolute entropy vector. The purpose of this step is to remove
the negative features if selected in the previous step. After this step, again fitness function is applied
and check the criteria. If the criteria are not met, update the features in the previous step, else consider
as a final selected feature vector. Visually, this process is shown in Fig. 3. A brief description of each
step is given below.

4.6.1 Parameter Initialization

This stage fixes the number of iterations, crossover rate, population size, number of offspring,
mutation rate, number of mutants, mutation rate, and selection pressure. In the proposed framework,
the number of populations is 50, the crossover rate is 0.5, the mutation rate is 0.2, the selection pressure
is 7, and a total number of iterations are 200.

After selecting population size, each population’s position is assigned at random, and populations
are ranked according to their fitness function. Finally, the best population’s cost is calculated and kept
for future usage. Here the population is representing the number of features.
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Figure 3: Architecture of ImGA for best feature selection

4.6.2 Crossover

The Crossover is a genetic operator that is passed down through generations in chromosomes. The
crossover function determines GA’s performance and combining multiple parent solutions to create a
child solution. Mathematically, the process of Crossover is defined as follows:

ϕcr = CrossOver (C1, C2) (5)

where K1 = bX1 + (1 − b)× X1 and C2 = b × X2 + (1 − b) × X1. C1 and C2 are selected parents and
b is randomly selected value initialized at 1.

4.6.3 Mutation

To add some distinctive features to the offspring, a mutation operation is conducted for each
offspring generated by a crossover operation. Mathematically, it is defined as follows:

P = pi

Σ(pi)
(6)

where pi = exp (−α1× Rβ

SL
), α1 is selected parent pressure, Rβ is sorted population and SL is the last

selected population. In the proposed framework, a uniform mutation is performed. After the crossover
and mutation operations, the offspring are examined, and a new generation is chosen.

4.6.4 Selection and Reproduction

The reproduction process is carried out on selected individuals, and each offspring’s fitness value
is calculated. The individuals with the lowest cost are chosen for a new generation from the old
population and offspring chromosomes. After this step, features are encoded into a resultant vector.
This process is continuing until, the stopping criteria did not full fill. The features of each iteration are
put in the fitness function if stopping criteria nor meet. Mathematically, the fitness function is defined
as follows:
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Consider a single-hidden layer feedforward neural network (SLFN) that consists of an input
layer, a hidden layer and an output layer. Consider a training dataset X with N training samples, X
={(mi, ni)}N

i=1, where mi ∈ Qd is a d-dimensional input vector and ni are number of labels. The output
of the SLFN with Hn hidden nodes is defined as follows:

ni =
Hn∑
n=1

γndn, i = 1, 2, 3 · · · N (7)

dn = �

(
d∑

v=1

tvnyv + αn

)
(8)

where yv is the input to the neuron; � (·) is a non-linear activation function; dn is the output of hidden
layer neuron n; αn is the bias for the hidden layer neuron n; tvn is the weight of the connection between
the input variable v and the neuron n of the hidden layer and αn is the weight of the connection between
the hidden layer neuron n and the output.

L α = Z, (9)

where L ∈ QM×Md is the hidden layer output matrix a defined as follows:

L =

⎡
⎢⎢⎣

d1(y1) . . . d1(y1)

d1(y2) · · · d1(y2)
...

. . .
...

d1(yN) · · · d1(yN)

⎤
⎥⎥⎦ (10)

4.6.5 Entropy Vector Selection

After the first step feature selection, entropy vector is computed from GA selected vector. Through
entropy formulation, features are further refined and set a threshold function. Through threshold
function, features are selected and passed in the fitness function for the fitness value. The threshold
function is defined as follows:

Tr =
{

Sel(i) for SGA(i) ≥ Ent
Ignore, Rest of them (11)

This function’s output is analyzed using fitness function and if fitness function criteria meet, then
pass to the next step. If the criteria did not meet, then repeat the previous step.

4.6.6 Final Feature Vector

This proposed feature selection algorithm name ImGA is applied on both deep feature vectors
such as InceptionV3 and ResNet-18. In the output, two best-selected vectors are obtained which are
finally fused using a array-based concatenation. Mathematically, this concatenation process is defined
as follows:

Fus(k) = {Vec(1); Vec(2)}N×K (12)

where, Fus(k) represent kth features of fused feature vector, Vec(1) is first selected feature vector, Vec(2)

is second selected feature vector, and N×K is final size of concatenated feature vector. This final feature
vector is fed to supervised learning algorithms for final classification.
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5 Results and Analysis

The proposed method is evaluated on three datasets as detail of datasets is given in Section 3.
The 50% images are used for the training purpose, whereas the rest of the 50% images are used for
the training purpose. Results of each dataset were calculated using 10-Fold cross-validation. For the
learning of CNN models, the learning rate is initilized 0.05, mini-btach size is 32, and number of
epochs are 100. Moreover, the learning method is stochastic gradient descent. Multiple classifiers are
used to validate the proposed method, and the best of them is selected based on the accuracy value. The
selected classifiers are subspace discriminant analysis (SGD), linear discriminant (LDA), linear SVM
(L-SVM), fine K-Nearest Neighbor (F-KNN), and few others. Each classifier is validated using several
performance measures like recall rate, precision rate, false negative rate (FNR), accuracy, area under
the curve (AUC), F1-Score, and testing time. All the simulations are performed on MATLAB2020a
on Personal Desktop Computer Corei7 with 16GB of RAM and 8GB Graphics Card.

5.1 Results

The proposed method results are computed in five different steps: i) Classification using fine-tuned
InceptionV3 deep features; ii) Classification using fine-tuned resnet18 deep features; iii) Classification
using best feature selection for fine-tune InceptionV3 deep features; iv) Classification using best feature
selection for fine-tune resnet18 deep features, and v) Classification using deep feature fusion.

5.2 Hybrid Dataset Results

The first step results are given in Tab. 1. In this table, it is noted that Fine KNN achieved the
best accuracy of 99.5%. The Subspace KNN also achieved an accuracy of 99.5. During the testing
process, the processing time is also measured in this experiment. The lowest noted time is 17.207 (sec)
for the Fine KNN classifier, where SDA consumes maximum time of 150.10 (sec). In the second step,
Cubic SVM achieved the best accuracy of 99.4%, given in Tab. 2. The minimum computational time
of this experiment is 16.352 (sec) for C-SVM, whereas the maximum noted time is 59.56 (sec) on
SDA classifier. Based on these results, it is noted that performance of step 2 is better in the form of
computational time.

Table 1: Classification results of fine-tuned InceptionV3 on hybrid dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 98.53 98.58 1.47 0.8558 45.412 98.55 98.5
L-SVM 97.30 97.35 2.70 1.000 42.378 97.32 97.4
Q-SVM 98.65 98.71 1.35 1.000 40.996 98.67 98.6
C-SVM 98.95 99.03 1.05 1.000 42.923 98.76 98.9
MG-SVM 98.93 98.96 1.07 1.000 50.049 98.94 98.9
F-KNN 99.53 99.56 0.47 0.8558 17.207 99.54 99.5
Co-KNN 95.01 95.26 4.98 1.000 18.243 95.13 95.2
W-KNN 98.30 98.48 1.70 1.000 16.368 98.38 98.3
SDA 99.30 99.30 0.70 0.8558 150.10 99.30 99.2
S-KNN 99.53 99.56 0.47 0.8558 100.41 99.54 99.5
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Table 2: Classification results of fine-tuned Resnet18 on hybrid dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 98.03 98.13 1.967 1.000 10.198 98.07 98.0
L-SVM 94.18 94.41 5.816 0.995 16.907 94.29 94.2
Q-SVM 99.15 99.18 0.85 1.000 16.243 99.16 99.1
C-SVM 99.41 99.46 0.58 1.000 16.352 99.43 99.4
MG-SVM 99.08 99.10 0.91 1.000 17.2 99.09 99.1
F-KNN 99.36 99.4 0.63 0.995 8.5079 99.22 99.4
Co-KNN 94.11 94.38 5.883 1.000 8.4689 96.68 94.3
W-KNN 98.98 99.03 1.017 0.998 7.7236 96.62 99.0
SDA 98.17 98.26 1.83 1.000 59.56 98.59 98.1
S-KNN 99.37 99.40 0.63 0.995 67.737 98.81 99.4

Tab. 3 presented the results of fine-tuned InceptionV3 best features on the hybrid dataset. This
table shows the best accuracy of 99.3% for the Fine-KNN classifier. The Subspace KNN also
gives the same accuracy of 99.3%. The computational time is also noted, and the minimum time is
8.1041(sec) for the Fine KNN classifier, whereas the highest computational time is 56.7 (sec). The
results given in this table show that selecting the best features process improves accuracy and minimizes
the computational time compared to the results given in Tab. 1. Similarly, the results of fine-tuned
ResNet18 best features on hybrid dataset are given in Tab. 4. From this table, Fine-KNN achieved the
best accuracy of 99.48%. The computational time of this experiment is 3.92 (sec), which is significantly
better than time noted in Tab. 2. The results given in Tabs. 3 and 4 show that the feature selection step
expressively increases the classification accuracy and reduces the computational time.

Table 3: Classification results of fine-tuned InceptionV3 best features on hybrid dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 96.37 96.33 3.63 0.983 9.9679 96.35 96.4
L-SVM 96.88 97.05 3.116 1.000 16.26 96.96 97.0
Q-SVM 98.81 98.90 1.183 1.000 17.008 98.85 98.8
C-SVM 99.03 99.13 0.967 1.000 17.558 99.08 99.1
MG-SVM 98.73 98.81 1.267 1.000 18.751 98.77 98.8
F-KNN 99.32 99.38 0.683 0.995 8.1041 99.35 99.3
Co-KNN 93.38 93.83 6.617 0.998 8.6785 93.60 93.5
W-KNN 98.33 98.50 1.667 0.998 7.9486 98.41 98.4
SDA 98.71 98.80 1.283 0.998 56.774 98.75 98.7
S-KNN 99.27 99.316 0.733 0.995 70.168 99.29 99.3



3678 CMC, 2022, vol.71, no.2

Table 4: Classification results of fine-tuned Resnet18 best features on hybrid dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 97.11 97.267 2.89 0.9983 3.3544 97.18 97.1
L-SVM 93.07 93.28 6.93 0.9916 8.8749 93.17 92.9
Q-SVM 98.70 98.75 1.3 1.000 9.1962 98.72 98.7
C-SVM 99.30 99.35 0.7 1.000 9.3195 99.32 99.3
MG-SVM 98.83 98.85 1.17 1.000 10.156 98.84 98.8
F-KNN 99.45 99.516 0.55 0.9967 3.921 99.48 99.4
Co-KNN 94.35 94.48 5.65 0.9983 4.133 94.41 94.3
W-KNN 98.30 98.57 1.7 0.9983 3.7411 98.43 98.3
SDA 95.40 95.60 4.6 0.9983 23.077 95.49 95.4
S-KNN 99.45 99.56 0.55 0.9983 34.09 95.50 99.4

In the last experiment, the best selected features of both deep models are fused using the proposed
approach. The results of this experiment are given in Tab. 5. This table shows the best accuracy
achieved by a Medium Gaussian SVM of 99.8%. The second-best accuracy of this experiment is 99.4%,
achieved by subspace KNN classifiers. The accuracy for the rest of the classifiers is also above 95%.
This shows that the results are minor improved after the fusion process.

Table 5: Classification results of best features fusion on hybrid dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 95.93 96.35 4.07 0.975 55.243 96.13 95.6
L-SVM 98.15 98.23 1.85 1.000 55.495 98.19 98.2
Q-SVM 99.1 99.15 0.9 1.000 64.004 99.12 99.1
C-SVM 99.13 99.16 0.87 1.000 69.523 99.14 99.2
MG-SVM 98.73 98.85 1.27 1.000 95.235 98.79 99.8
F-KNN 99.00 99.01 1 0.995 25.079 99.00 99.0
Co-KNN 97.13 97.23 2.87 1.000 26.983 97.18 97.2
W-KNN 97.8 98.07 2.2 1.000 24.688 97.38 97.9
SDA 99.11 99.25 0.89 0.998 230.77 99.18 99.1
S-KNN 99.51 99.5 0.49 0.998 215.88 99.50 99.4

5.3 Leaves Dataset Results

In this experiment, we perform classification on publicly available datasets named Leaves dataset
using fine-tune InceptionV3 deep features. The classification outcomes are presented in Tab. 6. Cubic
SVM achieved the best accuracy of 91.0%. The lowest noted time of this experiment is 20.249 (sec)
for the Cubic SVM classifier, whereas the highest time is 127.47 (sec) for SDA classifier. Similarly,
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the results of ResNet18 deep features are given in Tab. 7. This table presented the best accuracy of
93.1% for QSVM. The time is also noted during the testing process, and the best noted time is 8.47
(sec) for QSVM. This shows that the performance of fine-tuned ResNet18 CNN model is better than
InceptionV3 in terms of accuracy and time.

Table 6: Classification results of fine-tuned InceptionV3 on leaves dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 88.32 87.56 11.68 0.926 18.855 87.93 87.2
L-SVM 87.54 88.16 12.46 0.978 23.055 87.84 87.4
Q-SVM 89.76 90.60 10.24 0.986 19.946 90.71 89.7
C-SVM 90.98 91.82 9.02 0.988 20.249 91.39 91.0
MG-SVM 87.44 90.42 12.56 0.984 28.001 88.90 88.5
F-KNN 85.92 84.66 14.08 0.91 15.591 85.28 85.4
Co-KNN 80.96 81.24 19.04 0.96 10.511 81.09 81.1
W-KNN 84.54 83.58 15.46 0.968 10.666 84.05 83.9
SDA 84.52 82.74 15.48 0.968 127.41 83.62 82.9
S-KNN 86.02 84.84 13.98 0.958 52.26 84.45 85.7

Table 7: Classification results of fine-tuned Resnet18 on leaves dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 91.44 91.20 8.56 0.984 7.0404 91.3198 89.7
L-SVM 92.30 92.26 7.7 0.984 8.9176 92.28 90.8
Q-SVM 94.30 94.00 5.7 0.99 8.4784 94.1498 93.1
C-SVM 93.96 93.76 6.04 0.99 8.4103 93.8599 92.9
MG-SVM 92.50 93.02 7.5 0.99 8.6306 92.7593 91.9
F-KNN 90.22 88.60 9.78 0.934 4.9742 89.4027 88.3
Co-KNN 87.26 86.18 12.74 0.974 4.7617 86.7166 85.7
W-KNN 91.16 90.32 8.84 0.982 4.5375 90.7381 89.4
SDA 90.12 88.86 9.88 0.966 25.744 89.4856 89.8
S-KNN 91.60 91.36 8.4 0.986 35.64 91.4798 88.6

Tab. 8 presented the results of fine-tuned InceptionV3 best features on the leaves dataset. This
table shows the best accuracy of 90.5% for Q-SVM. This experiment also measured the processing
time, and the best noted time is 9.3741 (sec) for the Quadratic SVM classifier. The highest noted time
of this experiment is 42.276 (sec) for SDA classifier. The results and computational time is given in this
table showed that the feature selection process shrinkage the computational time than the performance
given in Tab. 6. Similarly, Tab. 9 presented the results of fine-tuned ResNet18 best features on the
leaves dataset. This table shows the best accuracy of 94% for C-SVM. The lowest noted time of this
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experiment is 4.9899 (sec) for the Cubic SVM classifier, which is significantly better than the noted
time in Tab. 7.

Table 8: Classification results of fine-tuned InceptionV3 best features on leaves dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 58.88 56.48 41.12 0.734 6.5902 57.65 53.9
L-SVM 87.90 89.58 12.1 0.978 9.5593 88.73 87.6
Q-SVM 90.64 91.56 9.36 0.984 9.3741 91.09 90.5
C-SVM 90.30 91.56 9.7 0.984 9.6591 90.92 90.4
MG-SVM 85.28 89.58 14.72 0.978 9.6493 87.37 86.3
F-KNN 83.24 82.58 16.76 0.894 4.5772 82.90 82.5
Co-KNN 80.50 82.18 19.5 0.956 4.925 81.33 81.0
W-KNN 81.80 82.28 18.2 0.962 4.4679 82.03 81.7
SDA 87.60 87.36 12.4 0.976 42.276 87.47 86.5
S-KNN 84.14 84.82 15.86 0.95 25.944 84.47 84.2

Table 9: Classification results of fine-tuned Resnet18 best features on leaves dataset

Classifier Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 91.68 91.14 8.32 0.98 2.2726 91.40 89.9
L-SVM 92.84 92.72 7.16 0.988 4.284 92.78 91.7
Q-SVM 94.72 94.2 5.28 0.994 4.8484 94.45 93.5
C-SVM 95.22 94.44 4.78 0.994 4.9899 94.82 94.0
MG-SVM 92.48 92.60 7.52 0.99 5.3431 92.54 91.3
F-KNN 90.04 88.70 9.96 0.936 2.0771 89.36 88.2
Co-KNN 86.56 85.66 13.44 0.976 2.272 86.10 85.0
W-KNN 89.70 88.60 10.3 0.982 2.1525 89.14 87.1
SDA 93.92 93.22 6.08 0.988 16.411 93.56 92.5
S-KNN 90.86 89.86 9.14 0.978 14.317 90.35 89.3

In the last experiment, best-selected features of both deep models are fused using the proposed
fusion approach. The results of this experiment are given in Tab. 10. This table shows the best
accuracy achieved by Quadratic SVM of 95.2%. The second-best accuracy of this experiment is 95.1%,
achieved by Cubic SVM classifier. As compared to Tabs. 6–9, the fusion-based accuracy is significantly
improved.

5.4 Fruit’s Dataset Results

The proposed method is also evaluated on the Fruits dataset. Results are computed on all five
steps. In the first step, fine-tuned InceptionV3 deep model features are validated and achieved max
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accuracy of 96.8% for C-SVM. The computational time of this classifier was 13.841 (sec). In the
next step, fine-tuned Resnet18 model features are validated and obtained an accuracy of 96.95% for
Q-SVM. The computational time of this classifier is 5.994 (sec). This shows that the performance
of fine-tuned Resnet18 model is better than fine-tuned InceptionV3 model. In the third step, best
features selection algorithm is applied on fine-tuned InceptionV3 features and obtained max accuracy
of 97.49%. This accuracy is improved as compared to the obtained accuracy of fine-tuned InceptionV3.
Moreover, the computational time of this step is 6.46 (sec), which is significantly decreased. Similarly,
the best feature selection algorithm is applied on ResNet18 features and obtained an accuracy of
97.7%. In the last, best features are fused using the proposed algorithm and obtained the best accuracy
of 98.5%. This accuracy shows that the fusion process improves the overall system accuracy. Visually,
these values are plotted in Fig. 4. The last comparison of the proposed method is conducted with
some recent techniques, given in Tab. 11. This table shows that the proposed method has improved
performance.

Table 10: Classification results of best features fusion on leaves dataset

Classifiers Recall rate
(%)

Precision
rate (%)

FNR (%) AUC Time (Sec) F1 score
(%)

Accuracy
(%)

LDA 93.02 92.42 6.98 0.954 19.308 92.719 91.4
L-SVM 95.48 95.36 4.52 0.996 30.137 95.42 94.5
Q-SVM 96.2 95.9 3.8 0.996 31.665 96.04 95.2
C-SVM 95.98 95.76 4.02 0.996 33.508 95.86 95.1
MG-SVM 93.42 94.64 6.58 0.994 37.306 94.02 93.2
F-KNN 89.96 88.54 10.04 0.936 15.136 89.24 88.7
Co-KNN 87.02 88.1 12.98 0.98 16.114 87.55 86.7
W-KNN 90.28 89.12 9.72 0.984 14.848 89.69 88.7
SDA 94.3 93.64 5.7 0.994 168.71 93.96 93
S-KNN 91.46 90.24 8.54 0.97 77.614 90.84 89.8

Figure 4: Classification results of proposed method on fruits dataset
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Table 11: Comparison of proposed framework results with recent state of the art techniques

Reference Year Accuracy (%)

[25] 2020 98.00
[33] 2020 92.60
[31] 2019 96.50
[34] 2021 97.73
[35] 2021 93.66
Proposed Hybrid dataset (Fruits and

leaves)
99.4

Leaves dataset 95.2
Fruits dataset 98.5

6 Conclusion

This research work proposes an automated system for citrus fruits and leaves diseases using deep
learning and best feature selection. The experimental process was conducted on three types of dataset:
Hybrid dataset, Fruit’s dataset, and Leave dataset and achieved an accuracy of 99.5%, 94%, and
97.7%, respectively. Based on the results, the following points are concluded: i) The data augmentation
step improves the training data, which is helpful for better learning of pre-trained deep learning
models; ii) Models learning using TL is easy as compared to the models learning from the scratch;
iii) Selection of best features significantly improves the recognition accuracy on all three selected
datasets as compared to the achieved accuracy by original pre-trained models; iv) The selection process
decreases the computational time for the recognition process, and v) Fusion of selected deep features
expressively improves the recognition accuracy but on the other end, increased the computational time.
The increase in the computational time is a main limitation of this work.
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