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Abstract: The development of multimedia content has resulted in a massive
increase in network traffic for video streaming. It demands such types of
solutions that can be addressed to obtain the user’s Quality-of-Experience
(QoE). 360-degree videos have already taken up the user’s behavior by storm.
However, the users only focus on the part of 360-degree videos, known as a
viewport. Despite the immense hype, 360-degree videos convey a loathsome
side effect about viewport prediction, making viewers feel uncomfortable
because user viewport needs to be pre-fetched in advance. Ideally, we can
minimize the bandwidth consumption if we know what the user motion
in advance. Looking into the problem definition, we propose an Encoder-
Decoder based Long-Short Term Memory (LSTM) model to more accurately
capture the non-linear relationship between past and future viewport posi-
tions. This model takes the transforming data instead of taking the direct input
to predict the future user movement. Then, this prediction model is combined
with a rate adaptation approach that assigns the bitrates to various tiles for
360-degree video frames under a given network capacity. Hence, our proposed
work aims to facilitate improved system performance when QoE parameters
are jointly optimized. Some experiments were carried out and compared with
existing work to prove the performance of the proposed model. Last but not
least, the experiments implementation of our proposed work provides high
user’s QoE than its competitors.
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1 Introduction

Recently, 360-degree video has achieved a great importance in multimedia streaming. Employing
adaptive streaming for 360-degree video content is always being a challenge due to the lack of dedicated
streaming and encoding techniques. According to [1], the Compound Annual Growth Rate (CAGR)
of 360-degree camera industry is expected to grow by 34% between 2018 to 2024. Therefore, there is
no indication of slowing down 360-degree video wearing an Head-Mounted Display (HMD) device in
the coming years. However, it becomes difficult to apply an HMD to stream 360-degree video so far.
Providing 360-degree videos is challenging for the following reasons:

• The principal challenge in deploying effective 360-degree video streaming technology is the huge
data amount than the conventional ones, and thus 360-degree videos are encoded at higher
bitrates with higher resolutions. Such types of videos are necessary to offer a genuine immersive
experience.

• When 360-degree video is transmitted, its bandwidth consumption is up to 4–6 times that of
traditional video. In addition, HMDs need a higher resolution (usually 4K or even 6K) for a
good viewing experience.

• HMD cannot be shared with other viewers, so it is possible to have multiple 360-degree video
streaming even in a small room.

Although many improvements have been made in video coding, computing, and networking, the
community still needs to promote improved solutions to address the issues listed above [2]. It is being
challenging to transmit the whole 360-degree video to users because of time-variant features and
QoE objectives. The former may have an impact on decision-making process of tiles, e.g., network
conditions and viewport locations. While the latter one includes the different user’s QoE factors, i.e.,
user’s perceived quality, rebuffering, temporal and spatial quality variance. As a result, providing a
good immersive experience for 360-degree video streaming is always difficult due to their vulnerability
to inconsistent and insufficient bandwidth.

A small portion of the video, termed the viewport, is transmitted at the highest resolution in tile-
based viewport-adaptive 360-degree video streaming [3], while the rest of the video is provided at lower
resolutions. Because 360-degree content is mainly consumed through HMD devices that have limited
Field of View (FoV), e.g., 900◦ vertically and 1100◦ horizontally. As a result, merely streaming the user’s
viewport at high resolution is an effective rate-saving strategy. Hence, such solutions adjust the video
quality by dynamically selecting regions to minimize the transmitted bitrate while ensuring user’s QoE.

Following this idea, adaptive streaming for 360-degree video content has to face some challenges,
mainly involving viewport prediction and rate adaptation issues. The authors in [4,5] have done great
work to improve the prediction accuracy for long-term viewport prediction. Therefore, we tried to
develop a rate adaptation technique that considers the prediction errors to optimize video segments
bitrates temporally to determine the bitrate allocation for spatial tiles. Furthermore, a trade-off
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exists between bandwidth efficiency and video quality to obtain the optimal user’sQoE. The main
contributions are as follow:

1. Studies on viewport prediction in existing literature are still minimal. This paper takes an
agnostic machine learning-based prediction model to make future predictions. For viewport
prediction, we have proposed Encoder-Decoder based LSTM model where the user’s viewport
information is examined for the future viewpoint that can vary with buffer occupancy. This
model takes the transforming data instead of taking the direct input to predict the future user
movements.

2. Based on the proposed long-term viewport prediction model, the client assigns bitrates to each
of the tiles as a non-linear optimization issue based on different parameters, namely motion and
saliency map, maximizing the user’s QoE.. Therefore, we propose a rate adaptation algorithm
based on predicted viewport using Reinforcement Learning (RL) policy.

3. We have evaluated the experiments of each part of our proposed system separately, for example,
viewport prediction and rate adaptation, maximizing the user’s QoE based on step (1) and step
(2). Our experimental results outperform than other comparative schemes.

The paper’s layout is arranged as follows: Section 2 defines the related work where Machine
Learning (ML) based approaches for viewport prediction and rate adaptation have presented. Section
3 explains the system design, including Encoder-Decoder based LSTM model for viewport prediction
and rate adaptation algorithm. However, Section 4 describes the performance evaluation. Section 5
illustrates the discussion about the paper. Finally, Section 6 summarizes the whole paper.

2 Related Work
2.1 ML-Based Techniques for Viewport Prediction

Viewport prediction is one of the challenges of adaptive 360-degree video streaming. Regression-
based methods have been studied by [6,7] to estimate the user’s future head rotations. However, these
studies do not consider any video content and require an existing dataset of user viewports. Another
study [8] used an RL-based model to optimize the user’s QoE by predicting the viewport. But they
also do not take into account the video content and different bitrates for the predicted viewport tiles.
While [9] proposed an effective technique for viewport prediction to use the user’s viewport as video
content based on the trajectories of primary objects.

The viewport prediction is always being a vital enabler for 360-degree videos, which improves the
prediction accuracy. In near future, the user’s head rotation can be predicted with high accuracy but
accurate long-term predictions remain elusive. The authors in [10] extract the content-related features
from the current frame and predict the next viewport based on the saliency algorithm. Moreover, this
model does not work to consider the user’s viewing behavior. Also. it fails to capture the properties,
i.e., non-linearity and long-term dependency, resulting in undesirable performance regarding the
prediction accuracy.

Great efforts have been made on the saliency map concept that shows image characteristics
to examine the video content based on their probability distribution function. In [11], PanoSalNet
has learned the saliency map from user viewport data by employing a fixation prediction network.
They train an image saliency network on their 360-degree video viewing dataset. In [12], the authors
combined a viewport prediction model with a rate control strategy to determine a tile probability map
using head movement data as input for QoE. optimization under given network capacity. Although, a
lot of training data is needed to learn the saliency map using user’s head tracking data that makes the
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model sensitive extending to new videos. Such proposed system does not need to update parameters
during streaming and is not suitable for adaptive video streaming. This results in a lack of user dynamic
adaptation.

2.2 ML-Based Techniques for Rate Adaptation

This section defines the challenges that need to be addressed by our proposed customized
approach for rate adaption of 360-degree video streaming. The efficient delivery of the image through
a network is always being a challenge. If the whole 360 image has to be delivered, it demands high
network bandwidth for the content provider and the end-user. Though, not all the data is consumed
equally. As the viewer faces a specific direction at any given time while watching a 360-degree video.
Therefore, the 20% of the transmitted data is consumed by the viewer.

ML has advanced quickly, and its performance when combined with image processing and big
data is outstanding. To address rate adaptation issues, the data-driven techniques have recently been
developed. The authors in [13] proposed two DRL models to predict head motion considering the
motion trajectories and visual frames. Their deep neural network only receives the user’s view of
interest and decides which direction and viewer’s head will move. A saliency-driven model [10] extracts
the content-related features from the current frame and also predicts the next viewport depending
on the saliency algorithm. But the user’s viewing behavior is not considered by this work. Also, it
fails to capture the properties, i.e., non-linearity and long-term dependency, resulting in undesirable
performance. In [13], DRL-based adaptive approach has been proposed for multiple tiles to minimize
the decision space of rate allocation, enabling the rate adaptive algorithm for maximizing the user’s
QoE. Some authors [14,15] use SDN and RL for the improving the network performance.

Moreover, a RL-based rate adaptation algorithm in [16,17] is proposed to determine the user’s
viewport depending on buffer occupancy to improve the bandwidth efficiency. A rate adaptation issue
has been formulated as a non-linear optimization issue in 360-degree video for maximizing the user’s
QoE. A Q-learning-based algorithm in [18] has also been proposed to minimize the decision space by
defining the rate allocation strategy for multiple tiles to optimize the user’s QoE.

3 System Design

In this section, the need of viewport prediction in a 360-degree video streaming system has been
discussed. We have used an RL agent to learn a streaming policy to understand the adaptive user’s
behavior and to adapt the dynamic network behavior. Fig. 1 depicts the proposed architecture of
viewport adaptive streaming for 360-degree video. There is no need to stream the entire video at the
highest resolution because a user only watches a small portion of the video at one time. While ensuring
the user quality, the region is dynamically selected according to the user’s head movement and the
quality is adjusted to minimize the transmission bitrate that identifies the corresponding viewport of
the end users. The core of the proposed system is an RL agent that find the downloading bitrate
for each tile. The prediction was modeled as a probability distribution over all possible tiles. The
proposed system aims to choose the tiles along with their bitrates to fetch the next segment under the
given network capacity. Hence, the agent tries to maximize the user’s QoE by following the sequential
decision process. For better understanding, the detail of each part is explained separately, as follows:
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Figure 1: Overview of our proposed design system for 360-degree video streaming

3.1 Viewport Prediction

This section elaborates the need of viewport prediction in 360-degree videos. Our prediction
model’s output calculates the probability of different tiles to indicate how likely a tile is viewed by
a user. A trade-off exists between video resolution and accuracy of viewport prediction that must be
integrated in 360-degree video streaming system. Thus, this unique attribute of 360-degree videos saves
the network bandwidth significantly. To address the above-mentioned challenges, we need to predict
the viewport with high accuracy, otherwise the user’s quality declines.

Furthermore, the viewport prediction depends on the fact that users tend to focus on interesting
salient features. These characteristics can be revealed by the video analysis for viewport prediction
in future. We have used the ML-based approaches for viewport prediction. The main goal of our
proposed work is to investigate whether Encoder-Decoder based LSTM model can be leveraged
to improve the predictions about user’s viewport. This system identifies the content-based features
(for example, image saliency detection and motion detection) from a 360-degree video, as well as
sensor-based features that provide HMD orientation information. The components are listed below
in architecture of proposed viewport prediction model.

1. Content Combination of Detected Features: It provides information related to the detected
features such as image saliency and motion detection. The saliency network derives those parts
of the image that are more attractive to the viewer. This describes the objects that make the
distinct differences in the features (e.g., color, texture, etc.). While Lucus-Kanade optical flow
[19] detects the consecutive frames, the moving objects may attract the viewers.

2. Orientation Extractor: This allows a viewer’s orientation data, which includes yaw, pitch, and
roll, to pass to the HMD sensor, where it is then concatenated and fed into the network. In our
work, we only make predictions based on viewpoint for yaw and pitch angles since, as stated in
[20], roll angle is mostly considered zero. Since yaw and pitch angles are treated as independent
variables for prediction, it was found that they have a very strong auto-correlation.

3. Prediction Network: We use Encoder-Decoder based LSTM model as a predictor. This model
makes viewport prediction based on the viewpoint information obtained by users. It captures
the spatial and temporal features of 360-degree video. We have used the users’ head tracking
data so that can be feed into Encoder-Decoder based LSTM model for computing the tile
probabilities through modelling the spatial region.

Fig. 2 defines the viewport prediction model based on Encoder-Decoder based LSTM, taking
into account the key factors to adapt to users’ viewing state and defining the architecture of the 360-
degree video streaming system. Our proposed Encoder-Decoder based LSTM model is commonly
used model for deep learning and uses the previous output to predict the next output to extract and
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learn the features automatically. Our prediction model is very light in computation and predicts the
next user’s viewport, as it is considered as a temporal function of user head movement.

Figure 2: Encoder-Decoder based LSTM model for viewport prediction

The input layer of Encoder-Decoder based LSTM model takes the input data to transform it into
yaw and pitch values before inputting into the encoding layer of the proposed model by considering
the roll angle to zero, as shown in Eq. (1). The encoder’s hidden layer will initialize the decoder, and
its initial input is the encoder’s general output that generates the hidden states in future times. The
proposed model is trained to minimize the prediction error.⎡
⎣ yaw

pitch
roll

⎤
⎦ =

⎡
⎣ u tan 2(2(v3v0 + v1v2), 1 − 2(v0v0 + v1v1))

u sin(2(v2v0 − v3v1))

u tan 2(2(v3v2 + v0v1), 1 − 2(v1v1 + v2v2))

⎤
⎦ , (1)

3.2 Rate Adaptation

There have been numerous rate adaptation strategies for non-360-degree videos while our pro-
posed strategy is inspired by Model Predictive Control (MPC)-based rate adaptation [2] that is high-
performance and efficient control method. The principle of the MPC algorithm is to predict the future
dynamic of a system based on current information that solves a finite-time optimization problem by
applying an optimal solution for each sampling moment. In tile-based 360-degree video transmission,
the purpose of bitrate selection is to choose the appropriate bitrate for enhancement layers under user’s
perspective changes and dynamic network bandwidth, maximizing the user’s QoE within a period of
time. Our work considers the modelling of QoE metric of each segment. We presented the following
parameters that our proposed rate adaptive algorithm will optimize.
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1. User Perceived Video Quality: It is defined as the sum of the qualities of tiles that the user
actually views. Assume that there are M tiles in a 360-degree video scene, Gi,j is the rate selected
for jth tile of ith video segment. Mathematically, it can be defined as:

Ei =
M∑

j=1

Gi,jOi,j, (2)

where Oi,j is overlapping ratio of viewport V i and predicted tiles T j. Oi,j = 1 if T j overlaps with
V i and 0 otherwise.

2. Rebuffering Time: It happens when video duration is less than the downloading time in the
buffer for the ith video segment for jth tile, resulting in decreasing the QoE metric. It is observed
that the segment size is based on the bitrate to compute the rebuffering time. Let Si (Gi,j)
represents the size of the ith video segments for bitrate Gi,j . Ti is the difference between the
download time of a video segment and the buffering time that is obtained by the following
formula:

Ti =
M∑

j=1

(
Si(Gi,j)

Ci

− Bi

)
, (3)

Here, Ci represents the predicted network bandwidth of downloading the ith video segment, Bi

indicates the video buffer duration of downloading the ith video segment, and(x)+ = max(0, x).
3. Temporal Quality Oscillations: The disparity between two viewports of consecutive segments

can reduce the efficiency of 360-degree video streaming. As a result, the changes in viewport
quality should not be significant, and can be determined as follows:

D1(i) = |Ei − Ei−1|, (4)

4. Spatial Quality Oscillations: The inconsistent quality levels within the viewport might cause
cybersickness and other physiological symptoms, e.g., aversion and nausea. The user’s QoE
will decrease if the video content is not smooth. This value is calculated using Coefficient of
Variation (CV) as follows:

D2(i) =
M∑

j=1

CV (5)

The user perceived QoE for each 360-degree video segment can be defined by a weighted
summation formulation as follows:

QoE = Ei − μ1Ti − μ2D1(i) − μ3D2(i), (6)

where, μ1, μ2, and μ3 are non-negative constants according to the rebuffering time, temporal and
spatial quality oscillations, respectively. D1(i) and D2(i) have been considered as negative to achieve
the chunk smoothness while a relatively small μ1 means that the user is less sensitive to video freezing.

With QoE metrics defined, our purpose is to assign the rate Gi,j for each tile Tj to maximize the
problem of rate adaptation algorithm. Our proposed strategy allows for re-downloading of tiles with
different encoding qualities under good network conditions. If the tile is not selected to be fetched then
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Zj = 1 and Gi,j = 0. As a result, we aim to penalize this undesired behavior by providing an immediate
reward of −1. Mathematically, the missing tiles are denoted as follows:

Ui = −
M∑

j=1

Pjr(Si,j(min)).Zj, (7)

where Pj the probability that indicate how likely the tiles Tj are viewed by a user. Hence, the
optimization issue to be solved by defining a reward ri for ith video segment for jth tile depending
on user’s QoE considering the missing tiles. Thus, the user perceived QoE for each 360-degree video
segment can be defined by a weighted summation formulation:

QoE = Ei − μ1Ti − μ2D1(i) − μ3D2(i) + Ui (8)

In the proposed rate adaptation algorithm, the 360-degree video is divided into a number of
segments. Note that the feasible bitrate of video segments can be chosen by selecting the predicted
tiles Tj under the network capacity C. Algorithm 1 provides the pseudo-code.

The algorithm considers both viewport and estimated network capacity C signals, which are used
for the next segment’s video rate selection on viewport basis. The quality level of ith video segment is
decided after downloading (i − 1)th segment. Initially, we do not know any kind of information about
the network conditions.

The proposed rate adaptation algorithm tries to find the user’s viewport Vi to maximize the video
quality under network conditions. We have selected Rates as best rate selection. The quality of the
overlapping tiles Gj for each viewport is increased and predicted tiles overlap with viewport if Oi,j > 0
(line 4).

If QoE metric is higher than the available network capacity (line 5) and is not the minimum then
it will continue the previous bitrate aggressively. If condition in line 6 does not lie and rate selection
is defined under given network capacity C, then QoE metric (Eq. (5)) is evaluated and checked. We
reward G to Rates if a new rate selection has the highest quality, indicating that the optimal rate must
be modified (line 10). The same procedure is repeated to examine the next viewport.

Algorithm 1: Rate Adaptation based on Viewport Prediction.
Algorithm 1
Input:
Estimate network capacity C, Pj probability of predicted Tj tiles.
Output:
Rates, Selected bitrate for Tj tiles
Initialization:
Rates = 0
max← −∞
1 While Gtemp ← Rates //∗Update rates∗//
2 for i ←1 to viewport vi do
3 G ← Gtemp

(Continued)
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Algorithm 1: Continued
4 If Oi,j > 0 then G↑

j

5 If

Pr ecision = Number of tiles predicted correctly
Number of tiles predicted correctly + Number of tiles predicted Incorrectly

then
6 Continue the previous bitrates
7 else
8 QoE ← Equation(5)

9 If QoE > max then
10 Rate ← G

4 Performance Evaluation

This section details the several experiments we conducted to demonstrate the effectiveness of our
proposed technique. The server uses MPEG-DASH streaming system for modelling and evaluating
the proposed system by modifying the Python VR client. The player has been written in C++ using
Android NDK and in Java using Android SDK for tile scheduling and rate adaptation, and tracking
head movement, respectively. A trace-driven simulation is created by an open source dataset to employ
the real head movement traces collected from 50 users watching 10 different 360-degree videos [21].
Each trace consists of the user’s head position, such as yaw, pitch, and roll angles, of which roll angle
is considered negligible [22]. Each video segment is 1min long with resolution of 3840 × 1920 in
Equi-Rectangular Projection (ERP) format. Each video is divided into small video segments of 2s
and encoded with different bitrates such as {300, 700, 1500, 3700, 8500, 20000} kbps using an open
source encoder Kvazar1 encoder. For head tracking data of each pair of videos, we conducted different
experiments to evaluate the QoE metric. The detail of all hyper parameters has given in Tab. 1.

Table 1: Setting parameters

Parameters Characteristics

Segment duration 2 s
Resolution 3840 × 1920
Representation set {300, 700, 1500, 3700, 8500, 20000} kbps
Video segment length 1 min
QoE parameters μ1 = 1, μ2 = 1, μ3 = 1

μ1 = 1, μ2 = 2, μ3 = 1
μ1 = 1, μ2 = 0.3, μ3 = 0.3

Viewport size 100◦

Batch size 32
Learning rate 0.002

1https://github.com/ultravideo/kvazaar

https://github.com/ultravideo/kvazaar
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4.1 Viewport Dataset

We made the viewport prediction based on Encoder-Decoder based LSTM model using PyCharm
environment for the same dataset [21]. The prediction model gives the output of the tile probability
of next video frames by giving the inputs such as saliency map and head tracking data. The following
hyper parameters are used to train our network: batch size (32), Adam optimizer [23], and learning rate
(0.002). In the training process, the network was trained for 50 normalized epochs with the ADAM
optimizer that corrects the deviations and updates the weights to speed up the convergence during the
model training. Our training model has been deployed for all users and is generalizable. We randomly
choose 80% processed files for all the videos as training and 20% for validation.

4.2 Network Setup

We have used MP4Box2 for streaming client environment, adding an interface to rate adaptation
and prediction system to examine QoE metric. The client connects to the server over the Internet at
a speed of up to 50 Mbps and downloads all predicted tiles from the first video segment in order to
decode it.

4.3 Evaluation Results for Viewport Prediction

Firstly, the viewport prediction of our proposed Encoder-Decoder based LSTM model is evalu-
ated by comparing it with other methods such as Linear Regression (LR) [24], which predicts the future
viewport by fitting all the data points in the sliding window. ATRTIA [25] predicts the future user’s
viewport depending on 3D-Convolutional Neural Network (3DCNN) by extracting the spatial and
temporal characteristics of 360-degree video. Mosaic [12] predicts the future viewpoint information
on the basis of CNN and the Recurrent Neural Network (RNN) model, where CNN is used to extract
the spatial features. While Flare [26] uses the IBR-approved user study to predict the future viewport
instead of downloading the entire panoramic scene. Moreover, we consider precision metric that can be
defined as ratio of correctly predicted tiles to both correctly and incorrectly predicted tiles as follows;

Pr ecision = Number of tiles predicted correctly
Number of tiles predicted correctly + Number of tiles predicted Incorrectly

(9)

It is noted that the client needs to prefetch some video segments to minimize interruptions in
the playback. We will also demonstrate how the proposed work performs for different prediction
windows. In the following experiments, we set the prediction window to 1 s, 3 s, and 5 s for evaluating
the performance of our proposed Encoder-Decoder-based LSTM model to predict a user’s viewpoint
information.

All head movement traces collected from the given dataset are applied to the above methods.
Fig. 3 shows the distributions of the viewport prediction precision for three prediction window sizes:
1s, 3s, and 5s, across all traces. Fig. 3 shows that each data point on a Cumulative Distribution
Function (CDF) curve is the viewport prediction precision for head movement traces. It has found
that our proposed scheme performs well in all scenarios as compared to other alternatives. Few
tiles are incorrectly predicted to be viewed when precision is higher. Therefore, higher precision
is needed for higher bitrates to view the tiles under constrained bandwidth. Besides, various ML
algorithms represent the diverse performance behavior for different prediction windows. For instance,

2 https://gpac.wp.imt.fr/mp4box/

https://gpac.wp.imt.fr/mp4box/


CMC, 2022, vol.71, no.2 2627

LR performs quite well in Fig. 3a as compared to Fig. 3c, indicating that it is good for short prediction
windows but declines in prediction precision as the prediction window grows due to overfitting. As a
result, our proposed model outperforms LR in terms of robustness. As far Flare suffers from high stalls
due to imperfect viewport prediction and does not perform well for long-term viewport prediction. In
Figs. 3a–3c, it can be seen that as prediction time increases, the prediction precision decreases and this
degradation can be seen in Flare. However, if we talk about Mosaic, we again find that our proposed
work gives better performance because it does not run a prediction system at run-time, putting atypical
users at risk of poor video quality. Although, our proposed work also outperforms ATRITA in terms
of increasing smoothness within the viewport.

Figure 3: CDF of viewport prediction precision for different prediction horizons where (a) Represents
the prediction window precision at 1 sec, (b) Shows the prediction window precision at 3 sec, and (c)
Denotes the prediction window precision at 5 sec
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4.4 Evaluation Results for Streaming Performance

In this section, we performed experiments on the base of different QoE parameters settings against
CDF. In multimedia streaming, it has been challenging to quantify the QoE metric. We performed
experiments with different QoE parameters as defined in Eq. (8). Particularly, we set the different
values of these parameters such as (1, 1, 1), (1, 2, 1), and (1, 0.3, 0.3) for coefficients. We did experiments
for QoE evaluation of our proposed Encoder-Decoder based LSTM model by comparing it with other
methods such as Flare [26], 360ProbDASH [27] and Tile-VR [28].

Fig. 4 represents the QoE distributions of different approaches for three sets of different QoE
parameters and defines the detailed results under all three QoE metric values against CDFs. On each
QoE metric over the test traces, our proposed rate adaptation technique based on the Encoder-Decoder
LSTM model outperforms the best of existing algorithms. It provides the improved viewport quality
in the QoE objective, as shown in Fig. 4. Comparing to 360ProbDash, the proposed work improves
viewport quality when trying to maximize average quality in QoE metrics, such as Fig. 4c. Further-
more, when we focus on viewport spatial and temporal variations in QoE metric, as shown in Figs. 4a
and 4b, our proposed work harmonizes priorities among three metrics and has higher QoE than its
competitors for all parameters in consideration. Flare improves the value of the QoE metric in different
subsequent segments because of built-in characteristics to mitigate the incurred higher quality changes.
It enables the video streaming system perform equally on different QoE metrics while the optimum can
scarcely be attained. These limitations are overcome by the proposed work without complex tuning
to learn the long-term policy by benefiting from prediction. Again, noted that the proposed work
outperforms than Tile-VR.

5 Discussion

Virtual Reality (VR) has recently gained tremendous popularity as a result of significant advance-
ments in multimedia technologies. 360-degree video is one of the key elements of VR, where a scene is
captured using omnidirectional cameras. It can offer an immersive user viewing experience that makes
the user feel like “being there” in the scene. Advanced HMDs have become more popular by enabling
a plethora of innovative 360-degree video applications, allowing new media content for the unique
immersive video experience to be streamed. Because of this, the community still needs to provide
improved solutions. Therefore, it is difficult to transmit the whole 360-degree video to the user due
to time-variant characteristics and QoE metric. The former can affect the decision-making process
for tiles, such as viewport locations. While the latter one includes the different user’s QoE factors, i.e.,
user’s perceived quality, rebuffering, temporal and spatial quality variance.

A key challenge of 360-degree video streaming is viewport prediction [29,30]. For this purpose,
an Encoder-Decoder based LSTM model has been presented, which predicts the future position of a
specific user. It captures the non-linear relationship between past and future viewport positions more
accurately. This model took the transforming data instead of taking the direct input to predict the
future user movements.

Another concern is its incurred video quality variations. We also tried to design a rate adaptation
algorithm based on a viewport prediction model that considers the prediction errors to improve the
user’s QoE. It optimizes video segments bitrates temporally and finds bitrate allocation for spatial tiles.
Our rate adaptation strategy was inspired by MPC-based rate adaptation that is an efficient control
method. The principle of the MPC algorithm is to solve a finite-time optimization problem by applying
an optimal solution for each sampling moment.
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Figure 4: QoE with different parameters

We have evaluated the experiments of each part of our proposed system separately, for example,
viewport prediction and rate adaptation, maximizing the user’s QoE based on different parameters.
Our experimental results perform well than other comparative schemes.

6 Conclusion

This paper describes a novel Encoder-Decoder based LSTM model for viewport prediction, which
takes into account the user head tracking data, saliency and motion maps. The prediction model takes
the transforming data instead of taking the direct input from encoder. Moreover, prediction model is
then combined with rate adaptation approach that assigns the bitrates to different tiles of video. We
tried to optimize the QoE metric to achieve the maximum user’s quality and evaluated each part of
our proposed work separately under different scenarios, by comparing them with other methods. Our
evaluations in realistic network settings reveals that the proposed architecture outperforms compared
to other existing methods.
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In future, we would like to extend our work by performing a subjective user study to enhance the
smoothness within the viewport. Also, we intend to incorporate the audio channel by including the
different challenges considering a supplemental representation of 360-degree video content.
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