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Abstract: In recent times, wind energy receives maximum attention and has
become a significant green energy source globally. The wind turbine (WT)
entered into several domains such as power electronics that are employed to
assist the connection process of a wind energy system and grid. The turbulent
characteristics of wind profile along with uncertainty in the design of WT
make it highly challenging for prolific power extraction. The pitch control
angle is employed to effectively operate the WT at the above nominal wind
speed. Besides, the pitch controller needs to be intelligent for the extraction
of sustainable secure energy and keep WTs in a safe operating region. To
achieve this, proportional–integral–derivative (PID) controllers are widely
used and the choice of optimal parameters in the PID controllers needs to
be properly selected. With this motivation, this paper designs an oppositional
brain storm optimization (OBSO) based fractional order PID (FOPID) design
for sustainable and secure energy in WT systems. The proposed model aims
to effectually extract the maximum power point (MPPT) in the low range of
weather conditions and save the WT in high wind regions by the use of pitch
control. The OBSO algorithm is derived from the integration of oppositional
based learning (OBL) concept with the traditional BSO algorithm in order
to improve the convergence rate, which is then applied to effectively choose
the parameters involved in the FOPID controller. The performance of the
presented model is validated on the pitch control of a 5 MW WT and the
results are examined under different dimensions. The simulation outcomes
ensured the promising characteristics of the proposed model over the other
methods.
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1 Introduction

Electric power source from wind energy (WE) becomes a main contribution power resource in
the electrical system over the world. A substantial emphasis is located on cost-effective usage of the
energy source for attaining simultaneous reliable and quality electrical supply [1]. Regarding security
and operational factors, wind energy combination in the electrical grid developed as a major problem
because of its increased penetration level and variable nature; such factors have a great impact on
the control and operation of the electrical systems. Novel electricity grid codes are established in
many countries for specifying an appropriate need to combine wind electricity production with the
present electrical power scheme. In the novel grid codes, there is a need for wind farms to satisfy
similar needs since the traditional power plant and must stay linked to support the grid in the
anomalous condition [2]. Conventionally, the wind energy resource system utilizes constant speed
wind turbines (WT), a variable pitch that has been combined to the squirrel cage induction generator
(SCIG), and fed power straightaway to the grid utilities. The latest variable speed WT system processes
energy via power electronic system (PES) have developed a greater acceptance and conquer all share
markets. PES technology enhances the control of WT considerably. The Reutilized in the wind power
generation (WPG) scheme could efficiently face the challenge of grid connection requirement (GCR)
and consecutively, improves the operation and integration of wind farms linked to the grid.

The WT penetrated in novel regions such as power electronic system that is utilized for facilitating
the connectivity procedure of a WE scheme with the grid. Moreover, this system helps in improving
the extracted energy from the WE scheme and maximizes the entire performance. The maximal power
point tracker (MPPT) is a vital controller needed for improving the output power from the WE scheme.
Various researchers have been stated in the implementation field of MPPT controller with WT. In
previous years, many effective and beneficial controlling methods have been issued for guarantying
efficiency when taking into account economic factors. In [3], a relation among traditional PID and H∞
robust controller for regulating the pitch angle is attained and its efficiency in tracking the desirable
power output in various wind profiles are examined. The ambiguity of this module and environments
are involved. The study ultimately accomplishes the dominance of strong controller on PID because of
its lesser oscillation in output power. In [4], by improving several PI controllers in distinct wind speeds
overrated, an RBF NN was trained. Thus, in some wind speeds, appropriate benefits are selected for
PI controller.

Fuzzy logic controllers (FLCs), because of their strength they can control the system with complex
mathematical modules and a higher degree of non-linearity [5]. Alternatively, PID controllers because
of their robustness and simplicity have been utilized in industrial applications [6]. Thus, the integration
of PID and fuzzy controllers provide a proper background for designing controllers to the high
non-linear system with a substantial number of uncertainties. Recently, fractional-order systems and
controllers have attained significant interest. In fact, they are common types of integer controllers while
their orders are fractional values, hence they could have a high degree of freedom. Fractional order
controller is highly efficient for fractional and complex procedures compared to their integer-order
equivalents [7]. In recent times, Fractional-Order PID (FOPID) controllers were developed attractive
and beneficial for some industrial applications [8]. In contrast, as stated investigation, the efficiency
of fuzzy PI exposed an optimum efficiency in minimalizing the error however with further control
efforts. The parameter of controllers has been attained using error and trial. This isn’t only a direct
process however it doesn’t provide optimum variables. Though, in engineering application detecting
suboptimal or optimal resolutions are required by optimization methods [9].
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This paper designs an oppositional brain storm optimization (OBSO) based fractional order PID
(FOPID) design for sustainable and secure energy in WT systems. The proposed model focuses on
the effective extraction of the maximum power point (MPPT) in the low range of weather condition
and save the WT in high wind regions by the use of pitch control. Besides, the OBSO algorithm is
derived from the integration of oppositional based learning (OBL) concept with the traditional BSO
algorithm in order to improve the convergence rate, which is then employed for the optimal parameter
selection of the FOPID controller. For examining the improved outcomes of the proposed model, a
simulation process takes place on the pitch control of a 5 MW WT.

The rest of the paper is arranged as follows. The next section examines recent state-of-the-art
controller technologies applied to WT systems. Section 3 elaborates the wind energy system model;
Section 4 designs an OBSO-based FOPID controller. Section 5 evaluates the results of the proposed
model, and Section 6 draws the conclusion.

2 Literature Review

This section performs a detailed review of existing controller designs for WT systems. In Kumar
et al. [10], 2 innovative controllers named FPID and FOFPID are presented for improving pitch
control efficiency. In the meantime, to detect variables of the controllers the chaotic evolution
optimization techniques are utilized. With this technique, it provides unknown variables of the
controller however it assurances the optimality depending upon the selected objective function. For
improving the efficiency of this technique chaotic maps are utilized. Maroufi et al. [11] proposed a
new hybrid controller called FFPID approach tune by an effective metaheuristic optimization bat
algorithm (BA) to control WT armed with WTPMSG. The key control objective is for driving WT-
PMSG to MPPT in lower range of climate conditions and in addition to secure the WT in higher
wind areas by pitch angle control. The efficiency of presented approach is examined in every area with
lower-higher wind speed disturbances.

Fathy et al. [12] proposed a new method depending upon current metaheuristic grasshopper
optimization algorithm (GOA) to extract highest energy from a WE scheme functioned in parameter
speed condition. This method contains PMSG functioned by WT, a dc-dc boost converter, a 3-phase
diode rectifiers, and MPPT implemented by the projected GOA. In Pannu et al. [13], the PSO method is
utilized however traditional PSO method could not address the system uncertainties and nonlinearity.
Henceforth, the presented PSO method is utilized for calculating the controller’s optimum parameter.
The projected method is executed on a five MW WT that is implemented by Bladed software.

In Singh et al. [14], a combined tuning of parameter of controller to enhance frequency features
of a multi-area interrelated thermal scheme in existence of doubly fed induction generator (DFIG)
wind production is proposed. AN extensively utilized 2 area non reheat thermal interrelated scheme
is inspired by its 1 area combined with DFIG based wind production. In Civelek [15], fuzzy controller
was implemented for controlling WT blades which are improved by GA. Novel features are included
for improving AIGA efficiency. One of these is an addition to AEC. The transformation from decimal
to binary and from binary to decimal is executed according to a number of this acceptable error. In
Bashetty et al. [16], strong adaptive control is implemented for pitch and torque control of the WT
functioning in turbulent wind condition. The dynamics of WT are developed by taking into account
5 degrees of freedom systems. Saadatmand et al. [17] proposed a common technique for LFO damping
by LPF with the implementation of an optimum PID controller as power oscillation damper in the
non-linear control loop of LPF.
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Qais et al. [18] proposed a new adaptive control system depending upon PI controller and adaptive
filtering method named LMSRE technique. Initially, this technique is employed for unknown scheme
detection after it is related to another benchmark technique like LMF, CMPN, and LMS. Next,
the LMSRE has employed for self-tuning the parameter of cascaded PI controllers for improving
MPPT and FRTA of grid integrated PMSG based WT. Mehedi et al. [19] proposes an execution of
membership function and fuzzy rule based fuzzy aided PID controller to AGC in multi area nonlinear
power systems. In this work, 3 areas 9 unit installed interconnected networks are considered to improve
various dynamic responses concerning AGC analyses. An adapted method called MSCA is presented
to tune the gaining parameter of projected fuzzy controller for producing closer optimal gain values.

2.1 Research Gaps

The existing methodologies of MPPT control in wind turbines extract more efforts of control
measures which lead to loss of energy. The loss of energy affects the sustainability in the power
generation, thus reducing the efficiency of the power generation system using wind turbines. To
overcome the observed pitfalls of the existing methodologies, the objectives of the proposed research
work is framed and is listed as follows: Design a novel FOPID controller using OBSO algorithm for
MPPT-Pitch Control of WT system

• Aims to achieve sustainable and secure energy in WT systems by the use of optimal pitch control
• Derive an OBSO algorithm by integrating the concepts of OBL with the BSO algorithm in

population initialization process
• Validate the efficiency of the OBSO algorithm on a 5 MW WT and examine the results under

several measures

The proposed method is an hybrid meta-heuristic method to achieve high level of sustainability
and efficiency in power generation system using wind turbines. The Maximum Power Point Tracking
(MPPT) is performed effectively using OBL and BSO optimization algorithms.

3 System Model: Wind Energy

The overall system model of wind energy is depicted in Fig. 1. The system encompasses a DFIG
generator driven by a WT as a prime mover, 3 phase diode rectifier, and dc-dc boost converter
controlled by the OBSO algorithm. The MPPT will adjust the duty cycle given to the boost converter
to enhance the sustainable and secure energy from the entire system.

Figure 1: Overall system model of wind energy [10]
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3.1 Wind Turbine

WT is employed to convert the wind power into mechanical power, and the wind power is defined
in Eq. (1):

Pw = 1
2

qAV 3
w, (1)

where q denotes air density, A indicates cross sectional area of turbine, and Vw represents the speed of
the wind speed. The mechanical power of the WT can be represented using Eq. (2):

Pm = Cp(λ, β)Pw, (2)

where Cp denotes the power coefficient, b specifies the pitch angle of turbine, and k represents tip speed
ratio; the power coefficient is determined by Eq. (3):

Cp(λ, β) = c1

(
c2

λi

− c3β − c4

)
e

−c5
λi + c6λ (3)

with
1
λi

= 1
λ + 0.08β

− 0.035
β3 + 1

. (4)

The coefficient values are allocated as follows as c1 = 0.5176, c2 = 116, c3 = 0.4, c4 = 5, c5 = 21,
and c6 = 0.0068. Here, the pitch angle is considered as 0. In addition, the tip speed ratio is represented
as the ratio of turbine speed to wind speed as provide below [20]:

λ = Rωm

Vw

, (5)

where R defines the radius of the WT radius and xm denotes WT angular speed. The optimum value
of the WT angular speed is defined using Eq. (6):

ωopt
m = λoptVw

R
. (6)

The maximal mechanical power generated from the WT is defined in Eq. (7):

Pmax
m = Cp(λ

opt)Pw = 1
2

Cmax
p AV 3

w. (7)

Based on Eq. (7), it is noticeable that the MPPT is important for controlling the mechanical speed
of the WT to be its optimum value.

3.2 Generator

A DFIG is employed. The mechanical (Tm) and the electromagnetic torque (Te) can be represented
by

Jg

dwg

dt
= Tm − Te (8)

{
1
n

Jr + nJg

}
dwg

dt
= Tt − TD − nTe (9)
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where Jg and Jr denotes the inertia of the generator and rotor correspondingly, n signifies the gear box
ratio, and Tt and TD indicates the rotor torque and shaft resistance, correspondingly. The generator
power in the d − q (direct–quadrature) origin can be equated below.

Pg = 3
2
(Vdid + Vqiq) (10)

Qg = 3
2
(Vqid − Vdiq) (11)

where Pg and Qg represents the active and reactive power of the generator, whereas Vq, Vd and id, iq

specify the voltage and current in the d − q axis, correspondingly.

3.3 Pitch Actuator

The pitch actuator offers the rotational movements of the blades in the WT over the longitudinal
axis. The pitch actuator in WT generally has two restrictions in the amplitude and rate of change of
pitch angle. The amplitude and rate limitations are assumed in the range of 0◦−90◦ and −8◦/s to +8◦/s,
correspondingly [21]. In addition, the slew rate is a major impact on the optimization results. The
actuator could be treated as a first order low pass filter as defined below:

β

βref

= 1
τβs + 1

, (12)

where βref denotes the reference angle of the actuator which can be altered using the pitch controller.
And, β represents the present blade angle and τβ is the time constant of pitch actuator.

The energy from the wind turbines are extracted by the aerodynamic forces based on the drag and
lift operations. In the proposed method, the aerodynamics is controlled by the pitch actuator, which
acts as a subsystem for controlling the pitch angle of the overall system. The extracted energy by the
aerodynamics is fed to the drive train which converts the mechanical energy to the electrical energy
with the combined function of generator, gear box and power electronic converters. The generated
energy is transmitted to the power grid/load through the generator and a part of generated power is
fed back for the process of pitch controlling and torque controlling process such that to perform an
efficient pitch controlling process. The controlling process drives the wind turbine power generation
system to the high level of efficiency and the proposed system is composed of FOPID controller to
execute this objective which is illustrated in the Section 4.

4 Design of Proposed FOPID Controller

For satisfying the demands of control requirements, an effective FOPID controller is designed.
Besides, the optimal parameters of the FOPID controller are tuned by OBSO algorithm.

4.1 PI Controller

The PI controller is usually employed in industry procedure control owing to the simplicity and
better performance in linear as well as non-linear systems [22–24]. The total control function can be
defined using Eq. (13):

u(t) = kpe(t) + ki

∫
e(t) (13)
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where e denotes the feedback error defining the variation among the truly computed values of variables
states and the reference values. Afterward, kp is proportional gain and ki is integral gain.

4.2 FOPID Controller

Another Version of the PID controller design has higher degree of freedom compared to the
conventional PID controller. It is evolved from the integrator as well as differentiator with respect to
λ and μ, correspondingly. The fractional operator is obtained using different forms [25–27]. But the
commonly employed definitions are Rieman-n-Liouville, Grunwald-Letnikov Caputo as given below.
Several works demonstrated that the RL definition is highly appropriate in power electronics.

0Dα

t f (t) = 1
Γ (m − α)

t∫
0

f m(τ )

(1 − τ)
α−m+1 dτ (14)

αDα

t f (t) = lim
h→0

1
Γ (α)hα

[(t−α)/h]∑
k=0

Γ (α − 1)

Γ (α + k)
f (t − kh) (15)

0Dα

t f (t) = 1
Γ (m − α)

t∫
0

f m(τ )

(1 − τ)
α−m+1 dτ . (16)

For implementing the FOPID in simulation and practically, an approximation with integer order
transfer function is needed. Here, the Crone approximation is employed in which the approximation
utilizes a recursive distribution of N poles and N zeros.

C(s) = k′
N∏

n=1

(1 + ωzn)

(1 + ωpn)
(17)

where k′ is a modified static gain. The zeros and poles are computed in the range of frequencies as
defined in the following.

α =
(

ωh

ωl

) v
n

(18)

η =
(

ωh

ωl

)l− v
N

(19)

ωzl = ωl

√
η (20)

ωpn = ωz,n−1α, n = 1 . . . N (21)

ωzn = ωp,n−1η, n = 2 . . . N. (22)

Here, the frequency range is chosen as ωl = 0.001 rad/srad/s, ωl = 40 rad/s and pole and zeros count
N = 3. The FOPID controller can be mathematically defined by the use of differential equation, as
given in Eq. (23):

u(t) = kpe(t) + kiD−λ

t e(t) + kdDμe(t) (23)
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where kd depicts derivative gain, kp signifies proportional gain, u(t) denotes control signa, ki indi-
cates integrator gain, e(t) indicates error, and λ, μ are the fractional integrator and derivatives,
correspondingly.

4.3 Algorithm Process of OBSO Algorithm

The BSO technique is inspired using the concept of brainstorming, and it is an extensively utilized
tool to increase inspiration in organizations that have attained broad acceptance as means of assisting
creativeness [28]. A possible solution in the solution space denotes a BSO idea. The BSO follows the
procedure of interchanging ideas by a team and utilizes three processes for producing global optimal
generations. In BSO process, initially, N ideas are arbitrarily initiated with the solution space, and
later every idea is calculated based on FF. Then m points of cluster centres are chosen arbitrarily and
initiated as Nideas, whereas m is lesser compared to N. The BSO procedure is defined in Algorithm 1.

Algorithm 1: Pseudo code of BSO algorithm
Begin

Parameter initialization and create N ideas;
While

Cluster;
Choose cluster centers;
If (rand(0, 1) < p_replacement)

Choose a random cluster randomly and replaces the cluster center with an
arbitrary created idea;

End
FOR (every idea)

If (rand(0, 1) < p_1)
Arbitrarily choose a cluster with a probability p;
If (random(0, 1)<p_1_center)

Append arbitrary values to the chosen cluster center to produce new idea;
Else

Append arbitrary values to arbitrary idea of the elected cluster to produce
new idea;

End if
Else

Arbitrarily choose 2 clusters
If (rand (0, 1)<p_2_clusters

Aggregate 2 chosen cluster centers and append to arbitrary values to produce
new idea;

Else
Integrate 2 arbitrary ideas from 2 chosen clusters and append to arbitrary
values to create a new idea;

End If
End If

End For
End While

End
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Clustering Individuals: It is a procedure of integrating same objects, and, in every generation, every
idea is clustered to m cluster based on individual feature. The optimum concept in every center is
selected as cluster center, and its function could improve search field. The K-means technique is a
common method utilized in clustering.

Disrupting Cluster Center: It arbitrarily selects a cluster center and gets replaced with the recently
created idea using a likelihood of p_replace, that is so called replacing function. The p_replace value
is utilized for controlling likelihood to replaces cluster center with arbitrarily created solution. It is
utilized for avoiding early convergences and assist individual “jump out” of local optimal.

Creating Individuals: For maintaining population diversity, a novel idea (individual) is created
according to one or two ideas in one or two clusters, correspondingly. In generating function, initially,
BSO arbitrarily selects more than one cluster based on a likelihood of p_ one. Later, it is based on
selecting one or two clusters, a concept of cluster centers or an arbitrary idea is chosen by a likelihood
of p_1_center and p_2_center. The selection function is determined by

Xselect =
{

Xi 1 cluster
rand ∗ Xi1 + (1 − rand) ∗ Xi2 2 clusters, (24)

Whereas rand denotes arbitrary value among [0, 1].

Afterward selecting one/two ideas, the chosen idea(s) is upgraded by

Xnew = Xselect + ξ ∗ normrnd (0, 1), (25)

whereas normrnd represents Gaussian arbitrary value with mean zero and variance one and ξ denotes
altering factor slows the convergence speeding down as evolutionary drives, that is given by

ξ = rand ∗ log sig

×
(

(0.5 ∗ max_iteration − current−iteration)

k

)
, (26)

whereas rand denotes arbitrary value among zero and one. The max and present iterations represent
highest amount of iterations and present amount of iterations, correspondingly. The logsig denotes
logarithmic sigmoid transfer function, and these forms are useful to global search capability at initial
evolution and improve local searching capability while the procedure is coming to the conclusion.
k indicates predetermined variable to change slope of logsig functions. The novel generated idea is
estimated, and when the fitness value is optimum compared to the present idea, the older idea would
be substituted by novel one. Fig. 2 demonstrates the flowchart of BSO [29].

To boost the convergence performance of the BSO technique, OBL concept is employed. OBL
concept is utilized to enhance the quality of the initial population solution by the diversification of the
solutions. The OBL scheme searches in all directions in the searching area, namely original solution
direction, and opposite solution direction. At last, the OBL concept considers the fittest solution from
every solution.

Opposite number x is denoted by a real number over the range x ∈ [lb, ub]. The opposite number
of x can be represented as x̃ and Eq. (4) can be employed for computing the value:

x̃ = lb + ub − x (27)
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Figure 2: Flowchart of BSO

The above equation can be generalized to employ it in a searching area space with multiple
dimensions. So, for generalization, each search agent and the corresponding opposite positions can
be defined using Eqs. (28)–(29):

x = [x1, x2, x3, . . . xD] (28)

x̃ = [x̃1, x̃2, x̃3, . . . , x̃D] (29)

The value of every individual element in x̃ can be computed by Eq. (30):

x̃j = lbj + ubj − xj where j = 1, 2, 3, . . . , D (30)

Here, the fitness function is f (.). When the fitness value f (x̃) of the opposite solution exceeds f (x)

of the actual solution x, then x = x̃; else x = x.

The processes involved in the OBSO algorithm are listed as follows.

1. Population initiation X as xi where (i = 1, 2, . . . , n).
2. Compute the opposite position of individuals OX as x̃i where (i = 1, 2, . . . , n).

Elect the n fittest individuals from {X ∪ OX} and it denotes the new initial population of BSO
algorithm.
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4.4 Design of FOPID Controller Using OBSO Algorithm

Here, the integral absolute error (ISE) condition is employed for minimizing the error signal. The
objective function of the OBSO algorithm can be represented in Eq. (31):

J = IAE =
tsim∫
0

|e(t)|dt (31)

where tsim is total simulation time and the typical range of the optimal parameters are provided below:

PI controller J(Kp, Ki)

{
Kmin

P < Kp < Kmax
P

Kmin
i < Ki < Kmax

i

(32)

FPID controller J(ke, kd, kp, ki)

⎧⎪⎪⎨
⎪⎪⎩

Kmin
e < Ke < Kmax

e

Kmin
d < Kd < Kmax

d

Kmin
P < Kp < Kmin

P

Kmin
i < Ki < Kmax

i

(33)

FOPID controller J(ke, kp, ki, kd, λ, μ)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Kmin
e < Ke < Kmax

e

Kmin
p < Kp < Kmax

p

Kmin
i < Ki < Kmax

i

Kmin
d < Kd < Kmax

d

λmin < λ < λmax

μmin < μ < μmax

(34)

5 Performance Validation

In this paper, the WT is modeled and designed by the use of Bladed software. The parameter
setting of the WTs is given in Tab. 1. Owing to the non-linear characteristics of aerodynamics and
actuators, the WTs are highly non-linear. This paper validates the performance of three controllers as
PID, FPID, and FOPID are used to pitch control a 5 MW WT.

Table 1: Parameter of the WT

Parameters Values

Air density (ρ) 1.22 kg/m3

Air viscosity 1.82 e−5 kg/ms
Nominal power (Pnom) 5 MW
Gearbox ratio (G) 83.33
Total hub height 80 m
Rotor diameter 118 m

(Continued)
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Table 1: Continued
Parameters Values

Time constant (τβ) 0.3 s
Cut-in wind speed (Vcin) 3.5 m/s
Cut-out wind speed (Vcout) 25 m/s

The results of the OBSO algorithm under three different controllers are investigated in terms
of ISE, NFE, SD, and CPU running time. An ISE analysis of the OBSO with other optimization
algorithms under three controllers is made in Tab. 2 [11].

Table 2: Results of different optimization results in terms of integral absolute error (ISE)

Methods Controllers ISE

BAT PID 10.389
FPID 06.390
FOPID 08.521

BSO PID 08.482
FPID 05.391
FOPID 07.652

OBSO PID 07.681
FPID 04.918
FOPID 06.739

Fig. 3 examines the ISE analysis of the OBSO with other algorithms under PID controller. From
the figure, it is apparent that the BAT algorithm has failed to achieve effective outcome and offered
a higher ISE of 10.389. At the same time, the BSO algorithm has tried to show slightly improved
performance with a moderate ISE of 8.482. However, the proposed OBSO algorithm has accomplished
better performance with a minimal ISE of 7.681. Similarly, Figs. 4 and 5 examine the ISE analysis of
the OBSO with other algorithms under FPID and FOPID controllers. From the figures, it is stated
that the BAT algorithm has failed to attain effective outcome and offered a higher ISE of 6.390. At
the same time, the BSO algorithm has tried to show slightly improved performance with a moderate
ISE of 5.391. But, the proposed OBSO algorithm has accomplished better performance with the lesser
ISE of 4.918.

A detailed comparative results analysis of the OBSO algorithm with other methods in terms
of CPU time is given in Tab. 3 and Fig. 6. On examining the performance of the OBSO with other
algorithms under PID controller, it is evident that the DE algorithm has shown worse performance by
offering a higher CPU time of 34271 s. Eventually, the PSO and CDE algorithms have demonstrated
slightly enhanced outcomes with the CPU time of 34218 s and 34189 s respectively. Meanwhile, the
CPSO algorithm has demonstrated moderate performance over the other algorithms with a CPU time
of 33984 s. Though the BSO algorithm has reached a reasonable CPU time of 32839 s, the proposed
OBSO algorithm exhibited superior performance with the least CPU time of 32647 s.
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Figure 3: PID controller analysis is of OBSO model

Figure 4: FPID controller analysis of OBSO

Figure 5: FOPID controller analysis of OBSO model
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Table 3: Performance of proposed OBSO with existing optimization algorithms

Controllers Methods CPU time (s)

PID DE 34271
CDE 34189
PSO 34218
CPSO 33984
BSO 32839
OBSO 32647

OBSO DE 36105
CDE 34530
PSO 34895
CPSO 34137
BSO 33998

FOPID DE 38850
CODE 38729
PSO 38601
CPSO 39146
BSO 38953
OBSO 38326

Figure 6: Comparative results analysis of OBSO method with other models

Besides, on investigating the performance of the OBSO with other approaches under FPID
controller, it is evident that the DE algorithm has shown worse performance by offering a supe-
rior CPU time of 36105 s. Eventually, the PSO and CDE algorithms have demonstrated slightly
enhanced outcomes with the CPU time of 34895 s and 34530 s respectively. In the meantime, the
CPSO algorithm has revealed moderate performance over the other systems with a CPU time of
34137 s. Though the BSO algorithm has reached a reasonable CPU time of 33998 s, the proposed
OBSO algorithm displayed superior performance with the least CPU time of 33864 s. Finally, on
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inspecting the performance of the OBSO with other algorithms under FOPID controller, it is evident
that the DE algorithm has shown worse performance by offering a higher CPU time of 38850 s.
Eventually, the PSO and CDE algorithms have demonstrated slightly enhanced outcomes with the
CPU time of 38601 s and 38729 s respectively. Meanwhile, the CPSO algorithm has demonstrated
moderate performance over the other algorithms with a CPU time of 39146 s. But, the BSO technique
has reached a reasonable CPU time of 38953 s, the proposed OBSO system exhibited superior
performance with the least CPU time of 38326.

Fig. 7 showcases the convergence analysis of the OBSO algorithm with other optimization
algorithms in the design of FOPID controller [10]. From the figure, it is demonstrated that the
proposed OBSO algorithm has reached to effective convergence rate over the other algorithms due
to the inclusion of OBL concept and opposition based population initialization. From the above-
mentioned tables and figures, it is apparent that the proposed model is found to be an effective tool
for the design of FOPID controller of pitch control in WT systems. Therefore, it can be employed to
achieve sustainable and secure energy from WT systems.

Figure 7: Convergence characteristics for FOPID

6 Conclusion

This paper has devised an effective OBSO technique in the designing of FOPID controller
to accomplish sustainable and secure energy in WT systems. The FOPID controller is proficiently
designed with an aim of proficiently extracting the MPPT under different weather conditions using
pitch control. The optimal design of FOPID pitch control in WT system results in enhanced
performance under different aspects. In addition, the inclusion of OBL concept in the classical BSO
algorithm results in improved convergence rate. For examining the improved outcomes of the proposed
model, a simulation process takes place on the 5 MW WT. The experimental results highlighted
the promising outcomes of the presented technique over the recent methods. In future, the settling
time of the WT system can be reduced to boost the system stability. In addition, the multi-objective
optimization method to reduce error and rate of control effort two paradoxical objectives could be
utilized in future.
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