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Abstract: The capability of piles to withstand horizontal loads is a major
design issue. The current research work aims to investigate numerically the
responses of laterally loaded piles at working load employing the concept of
a beam-on-Winkler-foundation model. The governing differential equation
for a laterally loaded pile on elastic subgrade is derived. Based on Legendre-
Galerkin method and Runge-Kutta formulas of order four and five, the
flexural equation of long piles embedded in homogeneous sandy soils with
modulus of subgrade reaction linearly variable with depth is solved for both
free- and fixed-headed piles. Mathematica, as one of the world’s leading
computational software, was employed for the implementation of solutions.
The proposed numerical techniques provide the responses for the entire pile
length under the applied lateral load. The utilized numerical approaches are
validated against experimental and analytical results of previously published
works showing a more accurate estimation of the response of laterally loaded
piles. Therefore, the proposed approaches can maintain both mathematical
simplicity and comparable accuracy with the experimental results.

Keywords: Numerical solution; laterally loaded pile; cohesionless soil;
Legendre-Galerkin; Runge-Kutta

1 Introduction

Pile foundations are frequently used, especially in weaker soils, to support various structures
subjected to lateral loads such as high-rise buildings, communication towers, wind turbines, earth-
retaining structures, bridges, tanks and offshore structures. Lateral loads owing to wind, wave,
dredging, traffic and seismic events are considered significant on these structures since they are
eventually transmitted to the piles [1,2]. As a result, the piles have been analyzed by considering a
concentrated force and/or moment acting on the top of the pile. Over many decades, several methods
have been proposed for designing and analysis of piles subjected to lateral loads including the subgrade
reaction approach [3], the p-y approach [4,5], the finite element approach [6], the finite difference
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approach [7], and the analytical method [8]. Of these approaches, elastic solutions based on beam-
on-Winkler-foundation model, albeit approximate, are probably the most widely used in engineering
practice due to their simplicity, as well as they provide satisfactory results. Winkler’s model is a
particularly attractive approach used to reliably capture the soil-pile interaction. In this model the pile
is simulated as a flexural beam connected to a series of narrowly spaced independent and continuous
Winkler springs and dashpots distributed along the pile shaft. To investigate the mechanical behavior
of laterally loaded piles in clay, several numerical investigations using the LPILE software were
performed by Moayed et al. [9]. Moreover, Chang [10] derived an analytic solution to get the responses
of laterally loaded long piles in cohesive soil considering constant subgrade reaction modulus.
Furthermore, Different techniques have been proposed to analyze the behaviour of piles frequently
subjected to lateral loads in sandy soil with different boundary conditions at their ends, including
power series solution [11], finite element method [12], and finite difference method [3,13]. Further full-
scale tests were performed to explore the behavior of laterally loaded piles either in sand [14] or in clay
[15]. Numerical simulations considering both theoretical predictions and experimental validations are
the common powerful tools of analysis in the field of geotechnical engineering particularly complex
applications.

Recently, many researchers used Legendre polynomials in different methods to construct various
mathematical models. These methods can solve Lane-Emden type of differential equation [16],
differential equation with second and fourth order [17], the equation of Cahn-Hilliard [18], integral
equation of Fredholm type [19], Helmholtz equation [20], Volterra integral equations in the second
kind [21], integral-differential of Fredholm type in linear form [22] and Abels integral equation [23].
Based on Legendre-Galerkin method, the pile flexural equation can be written as Ay(η) = f , where A
is a differential operator. The solution of our problem can be approximated in Legendre series as y =∑n

j=0 cj Pj(η). By applying the Galerkin method to minimize the residual yields
∑n

j=0 cj〈A Pj(η) − f ,
Pr(η)〉 = 0. The differential equation is converted into discrete linear system. This system is solved, and
the coefficients are determined for our approximate solution of the differential equation. In addition
to the above method, the Bogacki–Shampine method [24] is a powerful numerical solution used for
solving ordinary differential equations of the investigated problem. It is a Runge–Kutta method of two
successive orders, for example 4th and 5th, with multi stages. An adaptive step size is implemented
based on the error estimated between the solutions of the two successive orders. Elbashbeshy et al.
[25,26] used this method in flow and heat transfer problems of fluid/nanofluid over different stretching
surfaces and found that it is accurate by comparing it with methods used to solve the same problems.

This paper aims to present simple numerical methods to capture the behaviour of single piles
under lateral working loads. First, mathematical formulation of the problem and the derivation of the
governing differential equations are presented. Thereafter, two techniques are developed for numerical
approximations of the derived equations. Then the effect of boundary conditions of the pile head on
the behaviors of piles is studied as well. In order to examine the validity of the proposed numerical
techniques, the obtained numerical results for deflection and bending moment along the laterally
loaded piles are compared with results of previous studies. The proposed numerical techniques in the
current study provide a better approach for structural designers to simply solve for the displacement
and bending moment responses of laterally loaded piles. Consequently, the techniques can be easily
applied in practice as an alternative approach to analyze and design laterally loaded long piles. It
is worth noting that, the proposed solutions are applicable only for homogeneous soil with reaction
modulus that varies linearly with depth. So, further investigation and analyses are needed for multi-
layered soil with the modulus of subgrade reaction varies with any functions with the depth.
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2 Mathematical Formulation

The model under examination consists of a pile that is assumed to be perfectly glued to the
surrounding soils suggesting that there is no relative movement between the soil and the pile [27].
It is worth noting that the horizontal and vertical loads are rarely coupled. Thereupon, it is common
among structural designers to neglect the vertical load effect during handling the laterally loaded pile
problem. Accordingly, the pile under consideration is subjected to applied lateral force H0 at distance
e above the soil surface, as shown in Fig. 1. Furthermore, the thickness of soil strata, L, coincides
with the embedment length of pile. The pile elastic modulus and moment of inertia are Ep and Ip,
respectively. The soil is characterized by a subgrade modulus k which linearly increases with the depth
as a good approximation for granular soils [28]. For a laterally loaded pile on elastic homogeneous
foundation, the governing differential equation employing the subgrade reaction theory can be derived
by considering the equilibrium of transverse forces over a differential segment of the pile, as shown in
Fig. 2.

Figure 1: Illustration of pile–soil system using Winkler model

Figure 2: Forces acting in differential pile element

Assuming all forces acting horizontally and applying equilibrium conditions leads to

V −
(

V + dV
dz

dz
)

− k(z)y(z)dz = 0 (1)
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According to that,

dV
dz

+ k(z)y(z) = 0 (2)

Summation of moments about axis at end of element yields

M −
(

M + dM
dz

dz
)

+ Vdz = 0 (3)

The relation between bending moment and the shear force is given by

V = dM
dz

(4)

Differentiating Eq. (4) with respect to z and substituting it into Eq. (2) provide

d2M
dz2

+ k(z)y(z) = 0 (5)

The basic moment-curvature relationship of elementary pile can be written as

M = EpIp

d2y
dz2

(6)

The differential equation of a laterally loaded pile can take the form

EpIp

d4y
dz4

+ k(z)y(z) = 0, (7)

where y(z) is the horizontal pile deflection at depth z and EpIp is the flexural stiffness of pile.

Assuming a linear variation of soil stiffness with soil depth, k can be written as follows [29]

k = nhz, (8)

where here nh is the coefficient of subgrade reaction that represents the rate of increase of subgrade
reaction modulus with depth z.

Eqs. (7) and (8) yield

EpIp

d4y
dz4

+ nhzy(z) = 0. (9)

The solution of Eq. (9) requires an iterative procedure to achieve convergence of the relative
stiffness factor T as follows [30]

T =
(

EpIp

nh

)0.2

. (10)
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Defining a dimensionless variable x = z/T and introducing it into Eq. (9) yields

EpIp

nhT 5

d4y
dx4

+ xy(x) = 0. (11)

By substituting Eq. (10) into Eq. (11), the governing equation for the soil-pile system is rewritten
the form
d4y
dx4

+ xy(x) = 0. (12)

3 Boundary Conditions

As shown in Fig. 3, the solution of Eq. (12) requires boundary conditions to balance the number
of equations and the number of unknowns.

Figure 3: Boundary conditions for the pile under consideration

Boundary conditions of infinitely long piles fixed at the bottom can be written as

y
(

L
T

)
= 0, y′

(
L
T

)
= 0, y′′

(
L
T

)
= 0, y′′′

(
L
T

)
= 0. (13)

The boundary conditions at the top of the pile depend on the circumstances of the lateral
deflection, slope, bending moment and shear force. These are generalized into the following two
categories.
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3.1 Free-Head Pile

The pile head is not restrained against rotation and translation. Therefore, the boundary condi-
tions at the pile head can take the form

y′′′(0) = HOT 3

EpIp

, y′′(0) = MOT 2

EpIp

. (14)

3.2 Fixed-Head Pile

The pile head is completely restrained against rotation. The boundary conditions at the pile head
are given by

y′′′(0) = HOT 3

EpIp

, y′(0) = 0. (15)

4 Legendre-Galerkin Method
4.1 Preliminaries

Orthogonal systems play a vital role in performing mathematical analysis. This can be due to
functions belonging to very general classes can be expanded in series of orthogonal functions e.g.,
Fourier-Bessel series, Fourier series, etc. Orthogonal polynomials of degree n, Pn(x); n = 0, 1, 2, . . .,
represent an important class of orthogonal systems where many of the special functions encountered
in the applications, such as Jacobi, Legendre, Laguerre, Hermite and Chebyshev polynomials, are part
of that class. The Legendre polynomial is defined as [31].

Pn(x) = 2n

n∑
k=0

(
n
k

) ( n + k − 1
2
n

)
xk, (16)

with the orthogonality on the interval [−1, 1], i.e.,
1∫

−1

Pn(x)Pm(x)dx =
⎧⎨⎩

2
2n + 1

, if m = n

0, if m �= n
. (17)

Lemma [32]: If the arbitrary constants q, k, m and j are positive integers then

P(q)

k (x) =
k−q∑
i=0

Cq(k, i) Pi(x), (k + 1) is even (18)

and

xmPj(x) =
2m∑

n=0

Θm,n(j) Pj+m−n(x), P−r(x) = 0 for r ≥ 1, (19)
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where

Cq(k, i) =
2q−1 (2i + 1)Γ

(
q + k − i

2

)
Γ

(
q + k − i + 1

2

)
Γ (q) Γ

(
2 − q + k − i

2

)
Γ

(
3 − q + k − i

2

) , (20)

Θm,n(j) = (−1)
n 2j+m−n m! (2j + 2m − 2n + 1)Γ (j + 1)

Γ (j + m − n + 1)

×
j+m−n∑

k=max(0, j−n)

Γ (j + k + 1)

2k (n + k − j)! Γ (3j + 2m − 2n − k + 2)
,

×
j−k∑
�=0

(−1)
�
Γ (2j + m − n − k − � + 1)Γ (j + m + � − n + 1)

�! (j − k − �)! Γ (j − � + 1) Γ (k + � + 1)
×2F1(j − k − n, j + m + �; 3j + 2m − 2n − k + 2; 2),

(21)

and

2F1(N, a; 2a; 2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for N odd(
1
2

)
N
2(

a + 1
2

)
N
2

, for N even
.

Theorem: If the arbitrary constants k, l, q and m are positive integers, then
1∫

−1

P(q)

k (x)Pl(x)dx =
⎧⎨⎩ 2

k−q∑
i=0

Cq(k, i)
2i + 1

, if l = i, (k + 1) is even

0, if l �= i
(22)

and
1∫

−1

xmPk(x)Pl(x)dx =

⎧⎪⎨⎪⎩ 2
2m∑

n=0

Θm,n(j)
2(j + m − n) + 1

if l = j + m − n

0, if l �= j + m − n

, (23)

where Cq(k, i) and Θm,n(j) are defined in Eqs. (20) and (21), respectively.

Proof. By using the given lemma and Eq. (17), the theorem is proved.

4.2 Legendre-Galerkin Method

To solve Eq. (12), the solution domain of our problem must be changed from the interval [0, L]
where L → ∞ to the interval [−1, 1] using the linear transformation

x = L
2

(η + 1). (24)

So, Eq. (12) could be rewritten as

y′′′′(η) +
(

2
L

)3

(η + 1) y(η) = 0, (25)
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subject to the conditions of free-head pile

y′′′(−1) =
(

2
L

)3 HT 3

EpIp

, y′′(−1) =
(

2
L

)2 MT 2

EpIp

, y(1) = y′(1) = y′′(1) = y′′′(1) = 0, (26)

Moreover, the conditions of fixed-head pile are:

y′′′(−1) =
(

2
L

)3 HT 3

EpIp

, y′′(−1) = y(1) = y′(1) = y′′(1) = y′′′(1) = 0, (27)

The solution of Eq. (25) subject to the conditions given in Eqs. (26) or (27) is written in finite
expansion of shifted Legendre function as

yn(η) ≈
n∑

j=0

cj Pj(η). (28)

Reducing Eq. (25) is performed by orthogonalizing the residual with respect to the basic functions
as follows

〈y′′′′(η), Pr(η)〉 + 〈
(

2
L

)3

(η + 1)y(η), Pr(η)〉 = 0, (29)

where the inner product 〈· , ·〉 is defined as

〈ζ(η), χ(η)〉 =
1∫

−1

ζ(η) χ(η)dη. (30)

By substituting Eq. (28) into Eq. (29), a discrete system of n + 1 unknowns is given in the form

Ac = b, (31)

where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0, 0 a0, 1 a0, 3 . . . a0, n−1 a0, n

a1, 0 a1, 1 a1, 3 . . . a1, n−1 a2, n

a2, 0 a2, 1 a2, 3 . . . a2, n−1 a2, n

...
...

...
...

...
...

P′′′
0 (−1) P′′′

1 (−1) P′′′
2 (−1) . . . P′′′

n−1(−1) P′′′
n (−1)

P′′
0(−1) P′′

1(−1) P′′
2(−1) . . . P′′

n−1(−1) P′′
n (−1)

P0(1) P1(1) P2(1) . . . Pn−1(1) Pn(1)

P′
0(1) P′

1(1) P′
2(1) . . . P′

n−1(1) P′
n(1)

P′′
0(1) P′′

1 (1) P′′
2(1) . . . P′′

n−1(1) P′′
n(1)

P′′′
0 (1) P′′′

1 (1) P′′′
2 (1) . . . P′′′

n−1(1) P′′′
n (1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

c = [c0 c1 c3 · · · cn−1 cn]T and aj, r = 〈Pj
′′′′
(η), Pr(η)〉+〈( 2

L

)3
(η + 1)Pj(η), Pr(η)〉. All values

of aj, r could be calculated using the given theorem. The vector b based on the boundary conditions as
follows.
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4.2.1 Free-Head Piles

In this case, the vector b is written as

b =
[

0 0 0 · · ·
(

2
L

)3 HT 3

EpIp

(
2
L

)2 MT 2

EpIp

0 0 0 0

]T

. (32)

The linear system in Eq. (31) is solved using one of the available numerical techniques. By
obtaining the coefficients values of {cj}n

0, the approximate solution given in Eq. (28) becomes

y(η) = 3.99H

EI2/5n3/5
h

(−1.9 × 10−6 + 8.02 × 10−5
η − 8.4 × 10−4

η2 + 2.9 × 10−3
η3 + 9.6 × 10−3

η4

−0.109η5 + 0.284η6 − 0.012η7 − 1.13η8 + 2.06η9 − 3.17η10 + 5.04η11 + 6.35η12

−35.29η13 + 24.47η14 + 52.42η15 − 74.02η16 − 24.81η17 + 82.27η18 − 9.96η19

−47.01η20 + 16.04η21 + 13.97η22 − 6.69η23 − 1.73η24 + η25) + 2.58M

EI2/5n3/5
h

(9.44 × 10−7

+3.61−5η − 8.31−4η2 + 6.121−3η3 − 0.010η4 − 0.079η5 + 0.376η6 − 0.373η7

−0.591η8 + 1.02η9 − 2.26η10 + 11.16η11 − 9.75η12 − 33.95η13 + 59.65η14 + 23.97η15

−103.32η16 + 18.82η17 + 88.61η18 − 40.16η19 − 41.67η20 + 26.40η21 + 10.35η22

−8.13η23 − 1.06η24 + η25).

(33)

By using the inverse linear transformation η = (
2
L

)
x−1 and x = z

T
, the solutions of the governing

differential equation for a laterally loaded pile on elastic subgrade, Eq. (12), are given for deflection
and moment as

y(z) = 2.429H

n3/5
h

(EI5 − 0.67EI24/5z n1/5
h + 0.07EI22/5z3 n3/5

h − 3.05 × 10−7EI21/5z4 n4/5
h

−8.33 × 10−3 EI4z5 nh + 1.84 × 10−3 EI19/5z6 n6/5
h + 1.7 × 10−5EI18/5z7 n7/5

h

−5.7 × 10−5EI17/5z8 n8/5
h + 1.04 × 10−5EI16/5z9 n9/5

h − 2.99 × 10−6EI3z10 n2
h

+1.28 × 10−6 EI14/5z11 n11/5
h − 3.73 × 10−7EI13/5z12 n12/5

h + 7.28 × 10−8EI12/5z13 n13/5
h

−1.02 × 10−8EI11/5z14 n14/5
h + 1.07 × 10−9EI2z15 n15/5

h − 8.76 × 10−11EI9/5z16 n16/5
h

+5.62 × 10−12EI8/5z17 n17/5
h − 2.84 × 10−13EI7/5z18 n18/5

h + 1.13 × 10−14EI6/5z19 n19/5
h

−3.52 × 10−16EIz20 n20/5
h + 8.35 × 10−18EI4/5z21 n21/5

h − 1.46 × 10−19EI3/5z22 n22/5
h

+1.79 × 10−21EI2/5z23 n23/5
h − 1.36 × 10−23EI1/5z24 n24/5

h + 4.85 × 10−26z25 n5
h)

+1.619M
nh

3/5
(EI5 − 1.08 nh

1/5EI24/5z + 0.31nh
2/5EI23/5z2 + 1.1 × 10−6nh

4/5EI21/5z4

−8.34 × 10−3nhEI4z5 + 3.01 × 10−3nh
6/5EI19/5z6 − 3.8 × 10−4nh

7/5EI18/5z7

+1.2 × 10−5nh
8/5EI17/5z8 − 4.8 × 10−6 nh

9/5EI16/5z9 + 2.6 × 10−6nh
2EI3z10

−3.97 × 10−7nh
11/5EI14/5z11 − 2.81 × 10−8nh

12/5EI13/5z12

+2.15 × 10−8nh
13/5EI12/5z13 − 3.97 × 10−7nh

11/5EI14/5z11

−2.81 × 10−8nh
12/5EI13/5z12 + 2.15 × 10−8nh

13/5EI12/5z13

−4.47 × 10−9nh
14/5EI11/5z14 + 5.82 × 10−10nh

3EI2z15 − 5.44 × 10−11nh
16/5EI9/5z16

+3.84 × 10−12nh
17/5EI8/5z17 − 2.09 × 10−13nh

18/5EI7/5z18

+8.86 × 10−15nh
19/5EI6/5z19 − 2.89 × 10−16nh

4EIz20 + 7.17 × 10−18nh
21/5EI4/5z21

−1.31 × 10−19nh
22/5EI3/5z22 + 1.65 × 10−21nh

23/5EI2/5z23

−1.29 × 10−23nh
24/5EI1/5z24 + 4.71 × 10−26nh

5z25)

(34)
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and

M(z) = H(EI27/5z − 8.8 × 10−6nh
1/5EI26/5z2 − 0.41nh

2/5EI5z3 + 0.134nh
3/5EI24/5z4

+1.8 × 10−3nh
4/5EI23/5z5 − 7.8 × 10−3nhEI22/5z6 + 1.8 × 10−3nh

6/5EI21/5z7

−6.5 × 10−4nh
7/5EI4z8 + 3.4 × 10−4nh

8/5EI19/5z9 − 1.19 × 10−4nh
9/5EI18/5z10

+2.7 × 10−5nh
2EI17/5z11 − 4.5 × 10−6 nh

11/5EI16/5z12 + 5.48 × 10−7nh
12/5EI3z13

−5.11 × 10−8nh
13/5EI14/5z14 + 3.71 × 10−9nh

14/5EI13/5z15

−2.11 × 10−10nh
3EI12/5z16 + 9.41 × 10−12nh

16/5EI11/5z17

−3.24 × 10−13nh
17/5EI2z18 + 8.52 × 10−15nh

18/5EI9/5z19

−1.64 × 10−16nh
19/5EI8/5z20 + 2.20 × 10−18nh

4EI7/5z21

−1.82 × 10−20nh
21/5EI6/5z22 + 7.07 × 10−23nh

22/5EIz23) + M
nh

1/5
(EI28/5

+2.3 × 10−5nh
2/5EI26/5z2 − 0.27nh

3/5EI5z3 + 0.15nh
4/5EI24/5z4

−2.64 × 10−2nhEI23/5z5 + 1.1 × 10−3nh
6/5EI22/5z6 − 5.6 × 10−4 nh

7/5EI21/5z7

+3.8 × 10−4 nh
8/5EI4z8 − 7 × 10−5nh

9/5EI19/5z9 − 6.01 × 10−6 nh
2EI18/5z10

+5.4 × 10−6 nh
11/5EI17/5z11 − 1.3 × 10−6nh

12/5EI16/5z12 + 1.978 × 10−7nh
13/5EI3z13

−2.11 × 10−8nh
14/5EI14/5z14 + 1.69 × 10−9nh

3EI13/5z15

−1.038 × 10−10nh
16/5EI12/5z16 + 4.91 × 10−12nh

17/5EI11/5z17

−1.781 × 10−13nh
18/5EI2z18 + 4.878 × 10−15nh

19/5EI9/5z19

−9.76 × 10−17nh
4EI8/5z20 + 1.349 × 10−18nh

21/5EI7/5z21

−1.151 × 10−20nh
22/5EI6/5z22 + 4.57 × 10−23nh

23/5EIz23).

(35)

4.2.2 Fixed-Head Piles

In this case, the vector b is written as b =
[
0 0 0 · · · (

2
L

)3 HT3

EpIp
0 0 0 0 0

]T

.

The approximate solution given in Eq. (28) becomes

y(η) = 1.599H

EI2/5n3/5
h

(−6.15 × 10−6 + 1.45 × 10−4
η − 8.656 × 10−4

η2 − 1.82 × 10−3
η3

+3.95 × 10−2η4 − 0.153η5 + 0.147η6 + 0.527η7 − 1.94η8 + 3.62η9 − 4.53η10 − 4.10η11

+30.45η12 − 37.298η13 − 28.146η14 + 94.987η15 − 30.193η16 − 90.098η17 + 72.802η18

+35.205η19 − 54.997η20 + 0.553η21 + 19.385η22 − 4.528η23 − 2.727 + η25).

(36)

By using the inverse linear transformation η = (
2
L

)
x − 1 and x = z

T
, the solutions of the

governing differential equation for a laterally loaded pile on elastic subgrade, Eq. (12), are given for
deflection and moment as

y(z) = 0.928H

n3/5
h

(EI5 − 0.50EI23/5z2n2/5
h + 0.179EI22/5z3n3/5

h − 2.72 × 10−6EI21/5z4n4/5
h

−8.308 × 10−3EI4z5nh − 6.2 × 10−5EI19/5z6n6/5
h + 6.75 × 10−4EI18/5z7n7/5

h

−1.7 × 10−4EI17/5z8n8/5
h + 3.5 × 10−5EI16/5z9n9/5

h − 1.21 × 10−5EI3z10n2
h

+4 × 10−6EI14/5z11n11/5
h − 9.336 × 10−7EI13/5z12n12/5

h + 1.557 × 10−7EI12/5z13n13/5
h

−1.944 × 10−8EI11/5z14n14/5
h + 1.870 × 10−9EI2z15n3

h − 1.414 × 10−10EI9/5z16n16/5
h

+8.484 × 10−12EI8/5z17n17/5
h − 4.048 × 10−13EI7/5z18n18/5

h

+1.529 × 10−14EI6/5z19n19/5
h − 4.526 × 10−16EIz20n4

h + 1.026 × 10−17EI4/5z21n21/5
h

−1.725 × 10−19EI3/5z22n22/5
h + 2.025 × 10−21EI2/5z23n23/5

h

−1.482 × 10−23EI1/5z24n24/5
h + 5.089 × 10−26z25n5

h)

(37)
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and

M(z) = −0.927H EI

n4/5
h

(EI23/5 − 1.078EI22/5z n1/5
h + 3.2 × 10−5EI21/5z2n2/5

h + 0.166EI4z3n3/5
h

+1.8 × 10−3EI19/5z4n4/5
h − 0.028EI18/5z5 nh + 9.624 × 10−3EI17/5z6 n6/5

h

−2.5 × 10−3EI16/5z7 n7/5
h + 1.09 × 10−3EI3z8 n8/5

h − 4.4 × 10−4EI14/5z9 n9/5
h

+1.2 × 10−4EI13/5z10 n2
h − 2.43 × 10−5EI12/5z11 n11/5

h + 3.5 × 10−6EI11/5z12 n12/5
h

−3.93 × 10−7EI2z13 n13/5
h + 3.397 × 10−8EI9/5z14 n14/5

h − 2.31 × 10−9EI8/5z15 n3
h

+1.24 × 10−10EI7/5z16 n16/5
h − 5.236 × 10−12EI6/5z17 n17/5

h + 1.72 × 10−13EIz18 n18/5
h

−4.316 × 10−15EI4/5z19 n19/5
h + 7.979 × 10−17EI3/5z20 n4

h

−1.026 × 10−18EI2/5z21 n21/5
h + 8.186 × 10−21EI1/5z22 n22/5

h

−3.056 × 10−23z23 n23/5
h ).

(38)

5 Runge-Kutta Formulas of Order 4 and 5 (RKBS45)

The differential equation of laterally loaded pile, Eq. (12), subjected to the boundary conditions
in Eqs. (14) or (15) is converted into a system of linear first-order differential equations as follows

y′ = y1, y′
1 = y2, y′

2 = y3, y′
3 = −xy. (39)

If the pile top condition is a free-head one, then the system of equations given in Eq. (39) is
subjected to the initial conditions

y(0) = s1, y1(0) = s2, y2(0) = MT 2

EpIp

, y3(0) = HT 3

EpIp

, (40)

where the constants s1 and s2 are unknowns to be evaluated during the process of solution.

On the other hand, if the pile top condition is a fixed-head one, then the system of equations given
in Eq. (39) is subjected to the initial conditions

y(0) = s3, y1(0) = 0, y2(0) = s4, y3(0) = HT 3

EpIp

, (41)

where the constants s3 and s4 are unknowns to be determined as a part of the numerical solution.

The system of equations Eq. (39) can be rewritten in the vector form as

Y′(x) = F(x, Y(x)), 0 ≤ x ≤ xmax, (42)

where Y(x) = [y(x) y1(x) y2(x) y3(x)] and xmax is used as an adaptation for x → ∞.

To obtain local error estimates for adaptive step-size control effectively, consider two Runge-Kutta
formulas of different orders p and p̂ = p + 1. A Runge-Kutta process generates a sequence Yn as an
approximation of Y(xn) for 0 = x0 < x1 < · · · < xn = xmax. In the interval from xn to xn+1 = xn + hn,
there are two approximations of Y(xn+1) called Yn+1 and Ŷn+1 for p and p̂ = p + 1, respectively. Their
forms are

Yn+1 = Yn + hn

s∑
i=0

biKi and Ŷn+1 = Yn + hn

s∑
i=0

b̂iKi, (43)
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where s is the number of stages and,

K0 = F(xn, Yn) and Ki = F

(
xn + cihn, Yn + hn

i−1∑
j=0

(ai,jKj)

)
, i = 1, 2, . . . , s, (44)

Considering p = 4 and s = 7, the coefficients ai,j, bi, b̂i and ci = ∑i−1

j=0 ai,j, i = 1, 2, · · · , s, can
be evaluated by Bogacki and Shampine [24] to produce the efficient pair of formulas Yn+1 (4th order
formula) and Ŷn+1 (5th order formula).

The solution Y(xmax) = [y(xmax) y1(xmax) y2(xmax) y3(xmax)] is generated based on the unknowns s1

and s2 for free-head pile and the unknowns s3 and s4 for fixed-head pile cases. The values of all these
unknowns are determined upon solving the equations y(xmax) = y1(xmax) = y2(xmax) = y3(xmax) = 0
to satisfy the given boundary conditions given in Eqs. (14) and (15). The value of xmax is adapted by
gradual increase till the maximum difference between any values of s1, s2, s3 or s4 in succession is less
than the required accuracy τ = 10−6.

The error between the two numerical solutions Yn+1 and Ŷn+1 is calculated as

en+1 = max |Yn+1 − Ŷn+1|. (45)

In case of en+1 ≤ τ , one can use Yn+1 or Ŷn+1 as the final approximate value of Y(xn+1). On the other
hand, if en+1 > τ , the error en+1 is used to adapt the step size hn to ĥn as follows

ĥn = hn

(
τ

en+1

)1/p

. (46)

The adapted step size is used to estimate the new values of Yn+1 and Ŷn+1 until achieving en+1 ≤ τ .

6 Validation of the Proposed Methods

The performance and capability of the proposed methods to predict the behavior of laterally
loaded piles in cohesion1ess soil have been demonstrated by comparing the obtained numerical results
and the observed results from field experiments in full-scale lateral load tests reported by Cox. et
al. [33]. In these tests, the flexible free-head steel tube pipe pile of 0.61 m in diameter, 21 m in
length, 9.525 mm in wall thickness and 163000 kN·m2 bending rigidity, was embedded in a deposit
of submerged sand. The soil profile at the site is composed of a uniformly fine-graded sand with
internal angle of friction, φ = 39◦ and submerged density of γ=10.4 kN/m3. To investigate the soil
properties below the ground surface, the Standard Penetration Test, SPT, was performed by [33] and
reported as 18 blows per 30 cm. Accordingly, the recommended value of the horizontal subgrade
reaction constant nh for submerged sand is estimated to be 15 MN/m3, [34]. Moreover, an analytical
power series solution is also used for comparison, including the solution proposed by Fayun et al.
[11], which reported a simplified analytical solution for laterally loaded long piles based on Fourier-
Laplace integral. The computed pile head deflections are plotted and compared with both field
experiments results and results from Fayun et al. as shown in Fig. 4. The figure indicates that the
proposed numerical solutions are consistent with both original analytic results and experimental test
results, which further validates the proposed numerical solutions. The figure clearly indicates that the
presented numerical solutions are more suitable for analyzing the response of laterally loaded long
piles in sand layers.



CMC, 2022, vol.71, no.2 2187

Figure 4: Comparison between the numerical, analytical and experimental lateral deflections of pile
head vs. applied lateral force

7 Results and Discussion

The design of pile foundation under lateral loads is extensively bound to study both the pile
head deflection and the maximum bending moment. Legendre-Galerkin method and Runge-Kutta
formulas of order four and five were employed to solve the flexural equation of long piles embedded
in homogeneous cohesionless soil with a modulus of subgrade reaction increases linearly with depth. In
the numerical simulation, the pile is subjected to horizontal force H0 = 100 kN at distance e = 0.305 m
above-soil level, as shown in Fig. 1. The considered parameters in terms of pile length L, pile bending
rigidity EPIP and coefficient of subgrade reaction nh, are set to be 21 m, 163000 kN/m2 and 15000 kN/m3

respectively. In order to ensure that our results produce reliable pile deflection and bending moment
not only at the pile head but also for the entire pile length, and the analysis is equally applicable for
different pile head conditions, the obtained results are compared with the results of simplified solution
proposed by Fayun et al. [11]. The responses of free-head pile foundation in terms of lateral deflection
and bending moment distributions are shown in Fig. 5. In addition, the corresponding responses in
the case of fixed-head pile foundation are also presented in Fig. 6.

Figure 5: Pile deflection and bending moment profiles of free-head long pile

The plotted curves reveal complete overlaps between Legendre-Galerkin solution and Runge-
Kutta solution. Furthermore, the comparison charts demonstrate a very good agreement between the
numerical results estimated via Legendre-Galerkin and Runge-Kutta and the corresponding procedure
introduced by Fayun et al. [11]. These observations suggest that the lateral deflection and bending
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moment profiles can be represented accurately by the proposed method. However, insignificant
differences between the location of peak deflection and bending moment from proposed methods
and solution proposed by Fayun et al. can also be observed regardless the type of head condition.

Figure 6: Pile deflection and bending moment profiles of fixed-head long pile

8 Conclusion

In the present study, Legendre-Galerkin and Runge-Kutta formulas of order four and five
methods have been introduced to obtain simplified numerical approaches for understanding the
behaviour of single piles against lateral loads. For the purpose of analysis and design of laterally
loaded piles crossing sandy soil, simple expressions for the pile lateral deflection and bending moment
can be evaluated. The procedure is programmed with the most computational software program
Mathematica, which is considered as the world’s leading computational software. The numerically
computed pile responses are compared with the results from the full-scale lateral load tests. The
proposed approaches are well validated. Moreover, these proposed approaches provide evidence that
high precision can be achieved with a small amount of computational work. It has been found from
the study that the Legendre-Galerkin solution almost coincides with the Runge-Kutta solution for
both free-head and fixed-head piles. The suggested numerical expressions obtained in this study can
be reasonably applied to analyze and design laterally loaded long piles conveniently. In addition, these
techniques can also modify to design/analyze laterally loaded long piles in soil with the modulus
of subgrade reaction in any functions of the depth. The proposed approaches capture the long pile
behaviour. Furthermore, the proposed solutions are aimed at providing an effective and convenient
method for engineers to predict the responses of the entire pile length under the applied lateral load.
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