
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.019766

Article

Intelligent Transmission Control for Efficient Operations in SDN

Reem Alkanhel1, Abid Ali2,3, Faisal Jamil4, Muzammil Nawaz2, Faisal Mehmood5 and
Ammar Muthanna6,7,*

1Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint
Abdulrahman University, Riyadh, Saudi Arabia

2Department of Computer Science, University of Engineering and Technology, Taxila, 47080, Pakistan
3Department of Computer Science, Govt. Akhtar Nawaz Khan(Shaheed) Degree College KTS, Haripur, 22620, Pakistan

4Department of Computer Engineering, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, 63243,
Korea

5School of Information and Communication Engineering, Zhengzhou University, China
6Department of Telecommunication Networks and Data Transmission, The Bonch-Bruevich Saint-Petersburg State

University of Telecommunications, 193232, Saint Petersburg, Russia
7Peoples Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya St, Moscow, 117198, Russian

Federation
*Corresponding Author: Ammar Muthanna. Email: ammarexpress@gmail.com

Received: 25 April 2021; Accepted: 28 September 2021

Abstract: Although the Software-Defined Network (SDN) is a well-controlled
and efficient network but the complexity of open flow switches in SDN
causes multiple issues. Many solutions have been proposed so far for the
prevention of errors and mistakes in it but yet, there is still no smooth
transmission of pockets from source to destination specifically when irregular
movements follow the destination host in SDN, the errors include packet
loss, data compromise etc. The accuracy of packets received at their desired
destination is possible if networks for pockets and hosts are monitored instead
of analysis of network snapshot statistically for the state, as these approaches
with open flow switches, discover bugs after their occurrence. This article
proposes a design to achieve the said objective by defining the Intelligent
Transmission Control Layer (ITCL) layer. It monitors all the connections
of end hosts at their specific locations and performs necessary settlements
when the connection state changes for one or multiple hosts. The layer
informs the controller regarding any state change at one period and controller
collects information of end nodes reported via ITCL. Then, updates flow
tables accordingly to accommodate a location-change scenario with a route-
change policy. ICTL is organized on prototype-based implementation using
the popular POX platform. In this paper, it has been discovered that ITCL
produces efficient performance in the trafficking of packets and controlling
different states of SDN for errors and packet loss.

Keywords: Software-defined network; ITCL; POX; open flow

http://dx.doi.org/10.32604/cmc.2022.019766
mailto:ammarexpress@gmail.com

2808 CMC, 2022, vol.71, no.2

1 Introduction

The development in Information and Communication Technology, the advanced requirements,
and enhancements for existing computing systems led the network style towards a new software-based
networking system called software-defined networking (SDN) [1] which is a controller-based network
with OpenFlow switches (OF-switches). The controller uses the OpenFlow application, which contains
programmed modules and code, the communication medium between the controller and OpenFlow
switches while SDN provides open-source platforms to run and modify the controller’s functionality
according to the necessity of the network. It has offered several innovations in networking with more
efficiency than the traditional network, such as load balancing, network security, network intelligence,
etc. while network measurements are more straightforward because of centralized controller [2].

1.1 Infrastructure of SDN

Being a part of expanding the system of the telecommunication world, most of us are well
acquainted with traditional network construction which includes switches, routers, hubs, modems,
or network adapters interconnected either wired or wirelessly. The Intercommunication among these
network peripherals is attained by implementing several guidelines called Communication Protocols
[3]. In this network, the main tasks of the network rely on dedicated devices like routers, switches, and
controllers, unlike SDN (Software Defined Network) in which Control aircraft, Management planes,
and Data planes are accessible on the same instruments in a standard network. This means that the
packet maintained all three information about data, control, and management airplane. Configuration
of the kind of network is fixed and merchant-specific [4].

1.2 The New Paradigm Shift SDN

SDN is a new paradigm shift which is capable of overcoming the security issues and other
limitations of traditional networking. Unlike the conventional network, two device planes, i.e., control
and data planes, have been decoupled in SDN, instead, the control plane is moved to the software
layer and behaves like a centralized control layer that manages the network policies [5]. This structure
provides more secure and flexible network configurations than manual configurations of network
devices in a traditional network [6].

SDN devices, such as switches and routers, have turned into simple forwarding devices, which only
implement data-plane logic [7] while the control of the whole network is handed over to a centralized
unit called the controller, which makes all decisions regarding the flow of packets from one location to
another location and sets the primary behaviors of the network. Moreover, the controller defines the
policies which are further used to run the whole network flow [8–10]. By using forwarding paths one
or more hosts send packets is also determined by the controller. In addition, a path-defining process
controller defines a specified rule for a specific host when the host is about to start a packet flow to
another host [11].

1.3 SDN Performance

There are many reasons which cause traffic-related issues, i.e., packet loss during data commu-
nication between hosts, in a traditional network, such a scenario may occur due to traffic or link
congestion, bad performance of a network device (switch, router, etc.), bugs on the device, or faulty
hardware used in the network [12]. For a smooth network process the links should be well active; if
somewhere a link’s capacity is full, all the packets must wait for its workable state into a queue which
cause congestion and maximizes packet loss chances. A low-performance device can only handle the

CMC, 2022, vol.71, no.2 2809

traffic according to its capacity compared to the performance of a programmed controller [13–15].
Suppose, A significant bits of traffic are to be passed through such a device, in that case, the device
can only give the number of bits according to its internal storage, which will cause communication
delay and congestion in the network while bugs on devices is another factor causing traffic issues as
most of the available devices in the market are not free of bugs and faults [16]. Moreover, damaging of
hardware equipment also causes link failure and disconnections between network links.

1.4 Traffic/Packets Loss Issues in SDN Network

In software-defined networking, all process of traffic flow is controlled by a centralized controller.
As in SDN switches are OpenFlow that take instructions from the controller. When hosts start
communication, the routing path for the flow of packets between hosts is defined by the controller
by installing rules [17]. For example, when ‘host A’ sends packets to another ‘host B’, the information
packet first travels towards the controller to take direction for its packet’s flow and according to the
defined SDN policy, the controller then assigns the shortest or suitable forwarding path [18]. The rest
of the packages follow the rule and start flow according to the controller’s defined control. Though,
there exist some traffic-related issues in SDN on its level which may cause a forwarding loop and
traffic congestion, packets drop may also occur due to the said reasons or by facing an unexpected
link failure in the network [19].

1.5 The Considerable Packets Loss in SDN

SDN is based on a centralized operating controller, the handling of activity and state-change
events of the network are also based on how smartly the controller monitors the complexity of network
states. In each newly starting communication, the first packet goes to the controller where the controller
finds its destination and then its location on the network [20]. Then, the controller sets a switch-by-
switch forwarding path to flow all packets of its sequence to the destination host [21]. After taking
the rule from the controller, the rest of the packets only follow the controller’s defined path to reach
the destination host. Meanwhile, if the host moves from its original location and appears to another
site, the OpenFlow switch of the last location of the destination host gets confused. This time packets
reach their destination switch, but there is no host available on the OF-Switch to receive these packets,
which causes silent drop of packets [22].

SND plays a vital role in the operation of OpenFlow traffic enhancement. The complexity of
Networks leads towards facing bugs. The proposed solutions, so far, cannot prevent it entirely crowd
and errors as the variety of mistakes are also arising with the growing worth of OpenFlow. The SDN
network traffic may cause errors and bugs while using the OpenFlow information. The congestion
and other such problems may arise, and these problems motivate us to define a new solution through
a control transmission layer to deliver the traffic flow efficiently. The primary motivation is absence of
effective material that monitors all the connections of end hosts at their specific locations and performs
necessary settlements when the connection state changes for one or multiple hosts while the layer
informs the controller regarding any state change at one period.

The rest of the paper is generally organized as; in Section 2, we presented the related work based
on Load balancing in SDN, Section 3 presented the framework of the proposed solution and model
diagram, in Section 4, we simulate our techniques. Finally, in Section 5, we have shown results and
graphs, and at last, conclusion and future directions are discussed.

2810 CMC, 2022, vol.71, no.2

2 Related Work

SDN consists of three main stacks SDN applications, SDN controller, and SDN networking
devices. The data plane and control plane are decoupled in SDN architecture and distributed as
the application, control, and infrastructure layers into the layered structure. Some of the existing
techniques are used to monitor and control SDN networks to manage network performance. A
CharryPick [23] technique is used to trace packet trajectories and minimize two data plane resources.
One is Reduces Switch flow rules, and the other Minimizes packet header space. Each network link is
assigned a unique identifier in this technique, and all switches embed this identifier into each packet
header during the forwarding process. This minimizes the switch flow rules, with this process, the
packet header goes with a high packet header space, especially the line of packet transverse in the
forwarding loop due to the failure of short paths. To reduce packet header space, only minimum
number of essential links are picked. For a 48-port switch, CherryPick requires (log (48) = 6 bits)
to represent each link. Simultaneously, the path tracer, the previous technique, required log(p) bits
for packet header space where P represents the number of absolute paths between the source host
and destination host. After evaluation, the cherrypick technique used minimal header space and
reduced switch flow rules compared to other approaches (Pathlettracer, Pathquery). On the other
hand, many switch-flow rules are required in the Pathlet-tracer technique which is used to reduce the
packet headers. Controller floods a packet to learning switch to find about an unknown destination
host [24,25].

One of the flooded packets responds to the controller about its host destination’s location and
learns its location. Here the remaining packets in flood can cause additional, unnecessary rules
installed in the network, which might occur a packet storm. In the said situation, such bugs can cause
serious consequences. For example, a forwarding loop is considered the first bug that would stay until
it is related to the rule expires. Writing of additional rules (excess restrictions may decrease the network
performance [26]. 12_multi, a POX platform component, involves maintaining the mapping of hosts
at a switch and port for every control in the network. According to the controller’s code, it is located
for the destination host when a packet is sent to it because the host’s destination is unknown [27].

The controller floods the packets to switches to find an unknown destination. When flooded
packets reach their adjacent switches, the controller instructs to continue flooding of packets, then it
sees reply packets and learns the host’s destination. The remaining flood stays there in the network,
and by forwarding these packets, the switch to switch reaches them for OpenFlow switches [28]. These
duplicate packets are again sent to the controller by OpenFlow switches as the destination’s location
is unknown. The controller resultantly installs additional rules for duplicate packets, which may cause
inefficiency in network performance. Query language has been introduced called path query [29]
through regular expressions, which also includes SQL-like group-by construct to take information
from the network. The path query monitors network traffic by transmitting packet trajectories at
any network level on the data plane. It is also possible to specify different queries at a time that are
independent. Tab. 1 depicts more in-depth literature after comparing the related works of flow table
entries reduction mechanism.

CMC, 2022, vol.71, no.2 2811

Table 1: Comparison of the related works of flow table entries reduction mechanism

Related Work Methodology Algorithm Advantages Disadvantages Use case

[30] Hidden markov
model (HMM)

Quine-
Mcclustkey
algorithm.

• Manage
multiple
flow table.
• Reduce flow
processing time

• No
OpenFlow
Management

Flowtable
Management

[31] Binary tree
aggregation

Shrink the flow
table size

• Reduce flow
table size
• fast rule
updating time

• Not
intelligently
define control
flow
information

Flowtable
Management

[32] Binary Tree
aggregation

Rule
optimization

• Reduce the
number of
flows entries
• full-filled
flow tables.
• Retaining the
original QoS

• Extends the
range of
transmission

Flowtable
Management

[33] aggregation Redundant
flow entries

• Reduce flow
table overflow
problem
• Less flow
aggregation
convergence
time.

• Not
effectively
enhance the
extraction of
flow data
entries.

Flowtable
Management

[34] Flow entry
compression

Flow entry
compression

• Reduce flow
table size

• Through
comparing the
header
matching
• Throughput
may be
compromised

Flowtable
Management

[35] One big switch One big switch • Distribute
rules
• Abstracted
forwarding
element called
“one big
switch.”

• The fault
tolerance
reduces the
network
performance.

Distributed
ACL and load
balancer

(Continued)

2812 CMC, 2022, vol.71, no.2

Table 1: Continued
Related Work Methodology Algorithm Advantages Disadvantages Use case

[36] Flow entry
compression

Flow entry
compression

• To maximize
the utilization
of SDN
switches, flow
table

• The switch
optimization
enhances
• Less effective
elemental
techniques.

Traffic
engineering

[37] Partition based Bit and subset
weaving to
merge flow
entries

• Reduce flow
table size
• Fast rule
updating time

• The
enhancement
of the
rulemaking
process.

Flow table
Management

[38] Flow Entries
and
management
Protocol

Split flow table
entries
management

• Decompose
flow entries
into smaller
part

• All the entries
are checked
and provide

Distributed
ACLs

[39] Optimization Linear
optimization
model

• Modeled rule
allocation
problem in
• Resource-
constrained
OpenFlow
networks

• More
bandwidth
utilization for
effective
monitoring.

Traffic
engineering

[40] Divide and
conquer

Break tables
into several
smaller
sub-tables.

• Ternary
content
addressable
• memory
(TCAM)
shortage
problem

• Enhance the
processing
time.

Distributed
ACLs

The SDN is convenient, flexible in its structure, and economical by providing programmable
controlled strategies as OpenFlow layered architecture [41]. The OpenFlow is programmed for better
performance and mature network architecture utilizing error-free communication. But there are
several issues and problems faced, when nodes want to communicate with each other. An SDN Switch
process packet_in and packet_out messages and generates a possible reply to the controller. But a
completely processed Packet_out message does not assure the guarantee for the actual existence of
its included packet in the switch, which may be dropped due to switch failure, congestion, or by facing
invalid ports. In authors [42] propose a hierarchical SDN control plane approach to guarantee the
E2E QoS among multiple domains with various QoS classes on the E2E path. We propose a controller
module for selecting the most suitable QoS class for each domain in the E2E path, based on multi-
criteria decision-making by using the technique for order of preference by similarity to ideal solution
(TOPSIS). A new approach is proposed with a controller with an optimum feature set that must be
available for SDN. Furthermore, a cluster of optimum feature set controllers will overcome a SPOF

CMC, 2022, vol.71, no.2 2813

and improve the QoS in SDN. Herein, leveraging an analytical network process (ANP), we rank SDN
controllers regarding their supporting features and create a hierarchical control plane-based cluster
(HCPC) of the highly ranked controller computed using the ANP, evaluating their performance for
the OS3E topology. In [43], a two-step approach is proposed for SDN controller selection. First, the
controllers are ranked with analytical network process (ANP) according to their qualitative features,
which influence the performance of these controllers, then, a performance comparison is performed
to check for the QoS improvement.

Fig. 1 describes the scenario. The rest of the packets should be forwarded to the new location
of Host B, which is accommodated in our proposed solution. In the SDN environment, the packet
loss problem always occurred with a simple SDN environment where all the hosts are connected
and provide packet flow rates. The SDN network traffic may cause errors and bugs while using
the OpenFlow information. The congestion and other such problems may arise, and these problems
motivate us to define a new solution through a control transmission layer to deliver the traffic flow
efficiently. The Transmission Control Layer provides efficient packet transmission and packet delivery
control using OpenFlow switches in VANET.

Figure 1: Packets discarded on all switches as per controller’s rule

3 Proposed System

To handle the packet loss problems discussed in our problem statement, we proposed an efficient
working mechanism capable of monitoring end nodes and informing the controller regarding any
state of change within a specific time. It detects a movable host and informs the controller. Then the
controller updates the switch to move the rest of the packets towards the new destination of the portable
host instead of discarding these packets. Figs. 2a and 2b present that the packets are being forwarded
towards the changed location of the destination host. These packets were discarded in the existing
solution.

2814 CMC, 2022, vol.71, no.2

Figure 2: Packet forwarding techniques through destination host in proposed work (a) ITCL Layer
instructing controller about movable host (b) all packets forwarded to changed location of destination
host

3.1 Preparation and Implementation of Rules

By getting information on topology from the network, we need to install flow tables for switches.
First, we maintain I.P. and MAC tables for all active hosts on the network. Second, we implement a
MAC-matching policy for end nodes of switches that match the destination host’s MAC address while
delivering packets to destination end nodes. Finally, we instruct the SDN controller to install flow
rules to all available switches on the network.

3.2 Activation of ITCL

We keep active a transmission control layer named “Intelligent Transmission Control Layer,”
pronounced as ITCL. The said layer intelligently monitors the network, especially the movement of
hosts during communication. For example, suppose a host moves from its location to another location
during communication within a specific timeout period. In that case, ITCL informs the controller
about its new location and instructs to update the flow table of all switches according to the location
change state. Updating of flow table forwards the packets of the movable host towards its changed
location.

3.3 Workflow of Proposed Solution

When the network starts, ITCL also starts functioning. First, it starts getting information of hosts
with I.P. & MAC, then, it instructs the controller to implement an IP-MAC-Matching policy for the
packets while delivering them to their end nodes. By implementing the said policy, the packages are
tagged with I.P., and the MAC address of the destination host also matches with the I.P. address and
MAC address of the destination host before delivering it to the end node.

If I.P. and MAC tagged in packet header matches with the I.P. and MAC of the destination host,
the packet delivers to the end node, otherwise, ITCL keeps its I.P. and MAC Address reserve if the
host moves to another location until Idle Timeout/Hard Timeout is nonzero. In this state, when I.P.
and MAC do not match, the packet also does not get deliver to the end host. Packet waits for new
instructions initiated by ITCL to the controller, and controller assigns forwarding path and updates
flow table in switches. When the destination host appears on another location within the timeout

CMC, 2022, vol.71, no.2 2815

period, the ITCL identifies it by its MAC. The controller assigns the reserved I.P., which is retained
with the same MAC address instructed by ITCL. As a result, the rest of the packets start travelling
towards the changed location of the destination host and gets delivered there. The proposed solution
prevents packet loss (packet discard and packet drop) due to the movable host. As the flow diagram
in Fig. 7 presents step by step flow of the system.

3.4 Table of Notation

Tab. 2 summarizes the symbols and notations used in this paper and in algorithm one and explains
the corresponding meanings.

Table 2: Table of notations

Notation Explanation

Forwardpath Path forward transmission ratio
Pk Packet of request
Ns Number of switches in the network
SSDN

witch SDN Switch
L.B Load balancer
CSDn SDN controller
Hinfo Header info

n∑

1

Li Links between nodes in SDN network

Finfo Flow information
FT Flow table
Npath New forward path
Dpacket The packets that needs to forwards for the

distributions.
Ptrans() Transmit the packets from node to node (Nodes are

any devices linked with the network)
Pktpuched Pushed any packet towards the destination.

Fig. 3 contains the flow diagram; it describes how the controller is updated for a host changing
its location, and the rest of the packets travel towards the host’s changed location.

Algorithm 1: Installation of Flow Rules
Input: Network Packets
Output: (Forwardpath) + (IP

MAC
matching on end node) + ActiveITCL

Procedure:
Start
Ptrans() ← Dpacket()

(Continued)

2816 CMC, 2022, vol.71, no.2

if ((pkt.DistIP ← EndNode.IP)&& (pkt.DistMAC ← EndNode.MAC)

Pktpuched→ endNode()

else while (Tout →
i∑

0

NonZero)

Store()pkt ← ITCLroute_change()

if (RouteChange()← router)
pkt ← newNode()

End loop
end if

else
pkt ← send(C, R, pkt)
Packet_discard ()

end

Figure 3: Data flow inside the implemented technique

4 Results and Discussion

We measured various parameters for evaluating our proposed solution as packet loss rate,
congestion, measurement of latency, load on CPU, and throughput of proposed algorithms. We also
tested multi-state change scenarios and measured the packet loss ratio with other aspects. Mininet
is simply a network emulator that virtually provides a complete network environment like switches,
links, and controllers. The hosts in Mininet run a standard Linux-based network software and create

CMC, 2022, vol.71, no.2 2817

a real-like virtual network environment. Mininet is based on a single Linux kernel capable of running
Mininet offers learning, research and development, prototyping, testing and debugging, and a whole
experimental network on a single machine.

Wireshark is an analyzing tool for analysis of network packets and generates detail as captured
as possible. Wireshark can be used by network administrators, network security engineers, or network
developers for network troubleshooting to examine network security issues or debug while protocol
implementation [44–46]. Furthermore, different parameters are used like bandwidth usage, packet
delivery/loss rate, and throughput to evaluate our proposed solution’s performance. We passed 1000
packets from the source host to the destination host for each scenario and repeated our scenario ten
times. The bandwidth information is saved in Tab. 3.

Table 3: Packets used

No. of packets Reach time at destination (ms)

100 30
200 60
300 90
400 120
500 150
600 180
700 210
800 240
900 270
1000 300

4.1 Movable Host Detection Time and New Host Registration Time

We evaluate the parameters as in our proposed solution, total time used in detecting a moveable
host on the network rather than sending the rest of the packets to it. In the existing solution, the
registration time of a host on the network. The time interval for both is measured by delivering N
number of packets to a movable host. To understand the scenario’s algorithm, we generated a Tab. 5
as follows. There are N numbers of packets to be sent from host to destination. In our discussed
network, there are 02 hops between source and destination. We calculated packets reaching a time in
a constant state as:

packetsreached destination() ← N Packets

hopecount(source, destination) ← H Hope

perHopetime() ← T Time

timereached(destination) ← T x H x N

Fig. 4 presents the number of packets that reach the destination with constant v. The said scenario
is before moving a destination host. After state change, when a destination host moves to another
location, the existing solution re-registers it and sends zero packets. But in the proposed solution, we
safe the packets already received by the destination host and the packets in a transit state and discarded

2818 CMC, 2022, vol.71, no.2

in the existing solution as shown in Tab. 4. Hence, the number of packets to be processed after movable
host in the current and proposed solution. So, we saved time as following:

Figure 4: Reach time calculation for packets

Table 4: Retrieved information from Wireshark during states change

Total
packets

Reached to
destination

Discarded Dropped POX controller [46] Proposed solution

Packets to
be sent

Packets
saved

Packets to
be sent

Packets
saved

1000 321 53 6 1000 0 626 374
1000 159 13 9 1000 0 828 172
1000 624 57 3 1000 0 319 681
1000 511 62 11 1000 0 427 573
1000 120 8 4 1000 0 872 128
1000 362 56 9 1000 0 582 418
1000 451 43 3 1000 0 506 494
1000 362 22 8 1000 0 616 384
1000 152 32 4 1000 0 816 184
1000 685 28 9 1000 0 287 713

4.2 Existing Solution

Totalpacket ← 1000

packetsreached destination() ← 321

packetdiscard ← 53

packetdropped ← 6

After host movable total packets to be processed ← 1000

CMC, 2022, vol.71, no.2 2819

Table 5: Bandwidth Usage

POX controller [46] Proposed solution

Packets to be processed Band width/8Mb Packets to be processed Bandwidth/8Mb total

1000 0.008 626 0.01278
1000 0.008 828 0.009662
1000 0.008 319 0.025078
1000 0.008 427 0.018735
1000 0.008 872 0.009174
1000 0.008 582 0.013746
1000 0.008 506 0.01581
1000 0.008 616 0.012987
1000 0.008 816 0.009804
1000 0.008 287 0.027875
Total 0.08 0.155651
8Mb-total used 7.92 7.844349

4.3 Proposed Solution

Totalpacket ← 1000

packetsreached destination() ← 321

packetdiscard ← 53

packetdropped ← 6

After host movable total packets to be processed: = totalpacket+packetsreacherd (dest)+packetdiscard

hosts

= 626 packets sent

Fig. 5 presents the ratio of the packets to be processed after the host movement. Because
processing fewer packets in the proposed solution saves the network’s bandwidth, which maximizes
network performance. As in Tab. 4, the packets are less processed in the proposed solution; the
bandwidth according to the number of packets is measured. Fig. 6 shows the packet ratio to get
processed when hosts move. The results demonstrate that the proposed technique has fewer packets
to be processed as security after the host move.

Bandwidth per Host = Total bandwidth
Number of packets to be processed for host

4.4 Network Throughput

Another parameter of network performance is throughput. Throughput is defined as ‘the maxi-
mum performance of the network’. Our described problem network works more after the movable host
state because it sends packets from the start after the host changes its location. But in our proposed
solution, the packets that have already been received and will be discarded due to movable host are
saved. These packets start traveling from their respective switches towards the destination, instead of
traveling again from the source host (Fig. 8). Throughput can be measured by dividing “TCP window

2820 CMC, 2022, vol.71, no.2

size (data packets)” with communication data packets. We can calculate the throughput of the existing
solution as following:

Throughput = TCP window size (Data Packets)
Round Trip Time (RTT)

Figure 5: Graph showing ratio of packets to be processed after host movable

Figure 6: Bandwidth availability in both solutions (8MBs)

Figure 7: Bandwidth availability in both solutions (10MB)

As the TCP window size is 65535 bytes (or 524280 bits) predefined in IETF RFC 1323, the round
value of the average of 10 packets calculated from the host terminal is 0.054 s.

CMC, 2022, vol.71, no.2 2821

Figure 8: Bandwidth availability in both solutions (15 MB)

So Throughput of existing solution:

Throughput = 524280 bits
0.054 seconds

= 9708888.9 = 9.259Mbps

The saved discarded packets of the existing solution will not take a full round from source host to
destination. These packets get forward from their respective switches on which these exist, when the
destination host changes its location. So, the number of hops for saved packages is reduced, time to
reach the changed destination will also be reduced for these packets. Fig. 9 shows the throughput for
500 s, and Fig. 10 shows the throughput for 1000 s.

Figure 9: Throughput comparison between existing solution and proposed solution

Here we take the average time of minimum hops of saved packets + time of maximum hops of
packets and divide by total hops in the path as:

Reducedtime = (0.0135 + 0.054)

4
= 0.016seconds

So through of proposed solution:

Throughput = TCP window size (Data Packets)
Round Trip Time (RTT) − Reduced time of saved packets

2822 CMC, 2022, vol.71, no.2

Hence it is:

Throughput = 524280 bits
0.054 seconds − 0.016 seconds

= 13796842.105 = 13.157Mbps

Figure 10: Throughput comparison between existing solution and proposed solution

5 Conclusion

In this paper, we examined the loosing of packets due to moveable hosts in two forms: One is
examined as dropped packets when a destination host changes its location while the other is due to
discard of the packets in transit state or midway between source and destination. We conclude that
our proposed solution has well rectified this issue and produced better evaluation results. We have
achieved more network efficiency, saved the bandwidth, protected packets from loss, and our proposed
solution has achieved better throughput. In future work, one can utilize the proposed technique for
large data centers and wireless SDN network setup as this technique can be utilized in SDN-based
cellular networks, as it is cost-effective and a programmed network technique for efficiently monitored
networks. The chances of data lost during communication are reduced, and the time-saving approach
will lead nicely to the organizational networks through such a programmatically controlled network.
Our results show that the bandwidth, packet delivery ratio, and Hop Count are better from the existing
technique by 28%. Furthermore, the results show that the packet does not lose and improved 60% from
the existing technique, on 8Mb, 10Mb, and 15Mb, the bandwidth is effectively utilized for all values.
The network throughput is checked and measured for 500 sec and 1000 sec. The effectiveness of the
results show that the proposed technique outperformed the existing approaches in network bandwidth
and throughput.

Funding Statement: This research was funded by the Deanship of Scientific Research at Princess
Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Conflicts of Interest: “The authors declare that they have no conflicts of interest to report regarding
the present study.”

CMC, 2022, vol.71, no.2 2823

References
[1] S. Bera, S. Misra and A. V. J. I. I. o. T. J. Vasilakos, “Software-defined networking for internet of things: A

survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1994–2008, 2017.
[2] M. Karakus and A. J. C. N. Durresi, “A survey: Control plane scalability issues and approaches in software-

defined networking (SDN),” Computer Networks, vol. 112, pp. 279–293, 2017.
[3] C. Li, Z. Qin, E. Novak and Q. J. I. I. o. T. J. Li, “Securing SDN infrastructure of IoT–Fog networks from

MitM attacks,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1156–1164, 2017.
[4] F. R. de Souza, C. C. Miers, A. Fiorese, M. D. de Assunção and G. P. J. J. o. G. C. Koslovski, “Qvia-sdn:

Towards QoS-aware virtual infrastructure allocation on sdn-based clouds,” Journal of Grid Computing, vol.
17, no. 3, pp. 447–472, 2019.

[5] G. Ruggeri, M. Amadeo, C. Campolo, A. Molinaro, A. J. I. T. o. N. Iera and S. Management, “Caching
popular transient IoT contents in an SDN-based edge infrastructure,” IEEE Transactions on Network and
Service Management, vol. 18, no. 3, 2021.

[6] D. Sinh, L.-V. Le, B.-S. P. Lin and L.-P. Tung, “SDN/NFV—a new approach of deploying network
infrastructure for IoT,” in 2018 27th Wireless and Optical Communication Conf. (WOCC), Hualien,
Taiwan, pp. 1–5, 2018.

[7] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee and G. Jiang, “Hybnet: network manager for a hybrid
network infrastructure,” in Proc. of the Industrial Track of the 13th ACM/IFIP/USENIX Int. Middleware
Conf., Québec city, QC, Canada, pp. 1–6, 2018.

[8] F. Jamil and D. H. Kim, “Improving accuracy of the alpha–beta filter algorithm using an ANN-based
learning mechanism in indoor navigation system,” Sensors, vol. 19, no. 18, pp. 3946, 2019.

[9] F. Jamil, S. Ahmad, N. Iqbal and D. H. Kim, “Towards a remote monitoring of patient vital signs based on
IoT-based blockchain integrity management platforms in smart hospitals,” Sensors, vol. 8, no. 20, p. 2195,
2020.

[10] F. Jamil, M. A.Iqbal, R. Amin and D. H. Kim, “Adaptive thermal-aware routing protocol for wireless body
area network,” Electronics, vol. 8, no. 1, pp. 47, 2019.

[11] F. Jamil, L. Hang, K. H. Kim and D. H. Kim, “A novel medical blockchain model for drug supply chain
integrity management in a smart hospital,” Electronics, vol. 8, no. 5, pp. 505, 2019.

[12] K. Govindarajan, K. C. Meng, H. Ong, W. M. Tat, S. Sivanand et al., “Realizing the quality of service (QoS)
in software-defined networking (SDN) based cloud infrastructure,” in 2014 2nd Int. Conf. on Information
and Communication Technology (ICoICT), Bandung, Indonesia, pp. 505–510, 2014.

[13] A. Gelberger, N. Yemini and R. Giladi, “Performance analysis of software-defined networking (SDN),” in
2013 IEEE 21st Int. Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, San Francisco, CA, USA, pp. 389–393, 2016.

[14] S. Ahmad, F. Jamil, A.Khudoyberdiev and D. H. Kim, “Accident risk prediction and avoidance in intelligent
semi-autonomous vehicles based on road safety data and driver biological behaviours,” J. Intell. Fuzzy Syst,
vol. 38, no. 4, pp. 4591–4601, 2020.

[15] F. Jamil, H. K. Kahng, S. Kim and D. H. Kim. “Towards secure fitness framework based on IoT enabled
blockchain network integrated with machine learning algorithms,” Sensors, vol. 21, no. 5, pp. 1640, 2021.

[16] Y. Zhao, L. Iannone and M. Riguidel, “On the performance of SDN controllers: A reality check,” in
2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN),
San Francisco, CA, USA, pp. 79–85, 2015.

[17] S. Rowshanrad, V. Abdi and M. J. I. E. J. Keshtgari, “Performance evaluation of SDN controllers:
Floodlight and open Daylight,” IIUM Engineering Journal, vol. 17, no. 2, pp. 47–57, 2016.

[18] M. M. Tajiki, B. Akbari, M. Shojafar and N. J. A. S. Mokari, “Joint QoS and congestion control based on
traffic prediction in SDN,” Applied Sciences, vol. 7, no. 12, pp. 1265, 2017.

[19] H. Yahyaoui, S. Aidi and M. F. Zhani, “On using flow classification to optimize traffic routing in SDN
networks,” in 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), pp.
1–6, 2020.

2824 CMC, 2022, vol.71, no.2

[20] R. Mohammadi, R. Javidan, M. Keshtgari and N. Rikhtegar, “SMOTE: An intelligent SDN-based multi-
objective traffic engineering technique for telesurgery,” IETE Journal of Research, vol. 139, pp. 1–11, 2021.

[21] A. Tahmasebi, A. Salahi and M. A. J. W. P. C. Pourmina, “A novel feature-based DDoS detection and
mitigation scheme in SDN controller using queueing theory,” Wireless Personal Communications, vol. 117,
no. 3, pp. 1–22, 2021.

[22] N. Abdolmaleki, M. Ahmadi, H. T. Malazi, S. Milardo, “Fuzzy topology discovery protocol for SDN-
based wireless sensor networks,” Simulation Modelling Practice and Theory, vol. 79, pp. 54–68, 2017.

[23] Z. Shi, Y. Tian, X. Wang, J. Pan and X. J. C. N. Zhang, “Po-Fi: Facilitating innovations on WiFi networks
with an SDN approach,” Computer Networks, vol. 187, pp. 107781, 2021.

[24] Yazdinejad, A., M. P. Reza, D. Ali, S. Gautam et al., “Cost optimization of secure routing with untrusted
devices in software defined networking,” Journal of Parallel and Distributed Computing, vol. 143, pp. 36–46,
2020.

[25] A. Ali, M. M. Iqbal, H. Jamil, F. Qayyum, S. Jabbar et al., “An efficient dynamic-decision based task
scheduler for task offloading optimization and energy management in mobile cloud computing,” Sensors,
vol. 21, no. 13, pp. 4527, 2021.

[26] A. M. El-Shamy, N. A. El-Fishawy, G. Attiya and M. A. J. E. I. J. Mohamed, “Anomaly detec-
tion and bottleneck identification of the distributed application in cloud data center using software–
Defined networking,” Egyptian Informatics Journal, 2021. https://www.sciencedirect.com/science/article/
pii/S1110866521000013.

[27] L. Bonati, M. Polese, S. D’Oro, S. Basagni and T. J. C. N. Melodia, “Open, programmable, and virtualized
5G networks: State-of-the-art and the road ahead,” Computer Networks, vol. 182, p. 107516, 2020.

[28] P. Kokkinos, P. Soumplis, A. Kretsis and E. M. Varvarigos, “Network slicing in 5G infrastructures from
the edge to the core,” in 12th Int. Symposium on Communication Systems, Networks and Digital Signal
Processing (CSNDSP), Porto, Portugal, pp. 1–5, 2020.

[29] R. Mohammadi, R. Javidan and M. J. I. J. o. B. -I. C. Keshtgari, “An intelligent traffic engineering method
for video surveillance systems over software defined networks using ant colony optimization,” International
Journal of Bio-Inspired Computation, vol. 12, no. 3, pp. 173–185, 2018.

[30] K. Jung, “Platform-independent Live Process Migration for Edge Computing Applications,” Vancouver,
Canada: University of British Columbia, 2021.

[31] M. Alsaeedi, M. M. Mohamad and A. A. J. I. A. Al-Roubaiey, “Toward adaptive and scalable openflow-
SDN flow control: A survey,” IEEE Access, vol. 7, pp. 107346–107379, 2019.

[32] T. Jamal, P. Amaral and K. Abbas, “Flow table congestion in software defined networks,” in ICDS, Rome,
Italy, pp. 57, 2018. https://www.iaria.org/conferences2018/ICDS18.html.

[33] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid et al., “STAR: Preventing flow-table overflow in software-
defined networks,” Computer Networks, vol. 125, pp. 15–25, 2017.

[34] T.-Y. Chao, K. Wang, L. Wang and C.-W. Lee, “In-switch dynamic flow aggregation in software defined
networks,” in 2017 IEEE Int. Conf. on Communications (ICC), Paris, France, pp. 1–6, 2021.

[35] A. J. I. N. Ghiasian, “Impact of TCAM size on power efficiency in a network of openflow switches,” IET
Networks, vol. 9, no. 6, pp. 367–371, 2020.

[36] J. Yan, X. Liu and D. Jin, “Simulation of a software-defined network as one Big switch,” in Proc. of the 2017
ACM SIGSIM Conf. on Principles of Advanced Discrete Simulation, Singapore Republic of Singapore, pp.
149–159, 2017.

[37] Rifai, M., H. Nicolas, C. Christelle, G. Frederic et al., “Minnie: An sdn world with few compressed
forwarding rules,” Computer Networks, vol. 121, pp. 185–207, 2017.

[38] J. Park, J. Hwang and K. J. M. I. S. Yeom, “Nsaf: An approach for ensuring application-aware routing
based on network qos of applications in sdn,” Mobile Information Systems, vol. 2019, 2019.

[39] X. Li and W. Xie, “CRAFT: A cache reduction architecture for flow tables in software-defined networks,”
in 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, pp. 967–972,
2017.

https://www.sciencedirect.com/science/article/pii/S1110866521000013
https://www.sciencedirect.com/science/article/pii/S1110866521000013
https://www.iaria.org/conferences2018/ICDS18.html

CMC, 2022, vol.71, no.2 2825

[40] Q. Li, N. Huang, Y. Jiang, R. Sinnott and M. Xu, “Scale the data plane of software-defined networks: A
lazy rule placement approach,” in 2020 IEEE 40th Int. Conf. on Distributed Computing Systems (ICDCS),
Singapore, Singapore, pp. 366–376, 2020.

[41] J.-P. Sheu, W.-T. Lin, G.-Y. J. I. T. o. N. Chang and S. Management, “Efficient TCAM rules distribution
algorithms in software-defined networking,” IEEE Transactions on Network and Service Management, vol.
15, no. 2, pp. 854–865, 2018.

[42] S. Tamleh, G. Rezaei and J. J. P. L. A. Jalilian, “Stress and strain effects on the electronic structure and
optical properties of ScN monolayer,” Physics Letters, vol. 382, no. 5, pp. 339–345, 2018.

[43] J. Ali and B. H. Roh, “An effective hierarchical control plane for software-defined networks leveraging
TOPSIS for end-to-end QoS class-mapping,” IEEE Access, vol. 8, pp. 88990–89006, 2020.

[44] J. Ali, B. H. Roh and S. Lee, “Qos improvement with an optimum controller selection for software-defined
networks,” Plos One, vol.14, no. 5, pp. 0217631, 2019.

[45] J. M. Schmidt-Engler, L. Blankenburg, B. Błasiak, L. J. Van Wilderen, M. Cho et al., “Vibrational lifetime
of the SCN protein label in H2O and D2O reports site-specific solvation and structure changes during
PYP’s photocycle,” Analytical Chemistry, vol. 92, no. 1, pp. 1024–1032, 2019.

[46] G. Jain, “Application of SNORT and wireshark in network traffic analysis,” IOP Conference Series:
Materials Science and Engineering, vol. 1119, no. 1, pp. 012007, 2021.

	Intelligent Transmission Control for Efficient Operations in SDN
	1 Introduction
	2 Related Work
	3 Proposed System
	4 Results and Discussion
	5 Conclusion

