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Abstract: Smart healthcare applications depend on data fromwearable sensors
(WSs) mounted on a patient’s body for frequent monitoring information.
Healthcare systems depend on multi-level data for detecting illnesses and
consequently delivering correct diagnostic measures. The collection of WS
data and integration of that data for diagnostic purposes is a difficult task.
This paper proposes an Errorless Data Fusion (EDF) approach to increase
posture recognition accuracy. The research is based on a case study in a
health organization.With the rise in smart healthcare systems,WS data fusion
necessitates careful attention to provide sensitive analysis of the recognized
illness. As a result, it is dependent on WS inputs and performs group anal-
ysis at a similar rate to improve diagnostic efficiency. Sensor breakdowns,
the constant time factor, aggregation, and analysis results all cause errors,
resulting in rejected or incorrect suggestions. This paper resolves this prob-
lem by using EDF, which is related to patient situational discovery through
healthcare surveillance systems. Features of WS data are examined extensively
using active and iterative learning to identify errors in specific postures. This
technology improves position detection accuracy, analysis duration, and error
rate, regardless of user movements. Wearable devices play a critical role in
the management and treatment of patients. They can ensure that patients are
provided with a unique treatment for their medical needs. This paper discusses
the EDF technique for optimizing posture identification accuracy through
multi-feature analysis. At first, the patients’ walking patterns are tracked at
various time intervals. The characteristics are then evaluated in relation to the
stored data using a random forest classifier.

Keywords: Data fusion (DF); posture recognition; healthcare systems
(HCS); wearable sensor (WS); medical data; errorless data fusion (EDF)

1 Introduction

A Wearable Sensor (WS) is utilized in the healthcare system to provide technical help as
well as remote patient monitoring. The sensor is attached to the user’s body and detects their
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motions at various time intervals. The collected information is forwarded to a healthcare facility
for suggested treatments for the remote user [1]. On the heterogeneous platform, data is shared
and compared to a predefined dataset. The dataset is made up of a predefined set of medical
data and patient information [2]. It is indicated that the patient has a history of communication
with healthcare providers and therapy. As a result, medical data is sensitive and private, and
must be secured against unauthorized access [3], which may pose a serious threat to the patient’s
health. The WS monitors bodily function-related concerns at predetermined intervals and stores
the data [4]. There may be errors and latency when storing the data, problems that must be
addressed at the outset. In healthcare, WS data is an important element of safe data transfer [5].

The Microelectromechanical System (MEMS) is used in data analysis to improve the quality
of medical data. It is used to help the caregivers acquire relevant data for providing appropriate
treatment to the patient [6]. The data prediction is used to assess serial and current medical data.
The data is then compared to current data [7]. It improves accuracy and enhances the security of
medical data by creating a forecast. Data analysis (DA) is accomplished through the development
of sensor-improved health information systems for decision-making. [8] The data is evaluated to
see if it is relevant or not. It is carried out on time. The data collection and comparison are
performed in a set period, and if there is a delay, an error occurs [5]. The data is received from the
WS in order to complete the task within the specified period. It provides safe DA and transmits
the outcomes to the HCS for evaluation [9].

Data fusion (DF) is performed for medical data collected through extraction and classification
techniques. The retrieved data is categorized in order to decrease mistakes and improve the
medical system’s accuracy [10]. Numerous data from the sensors are combined to achieve WS
fusion. Sensor fusion is the process of merging integrated data that is less ambiguous. Three forms
of DF can be used: low level, feature level, and decision level [11]. Low-level refers to the merging
of two sensors’ information, while feature-level is defined as extracting medical data features [12].
Finally, using current medical data, decision-level DF is used to reach an appropriate judgment.
Three fusion models are utilized for DA: reactive, proactive, and interactive [13].

In Section II, the relevant research conducted to date is discussed in order to provide an
overview of the current scenario. Section III illustrates how the Errorless Data Fusion (EDF)
approach is achieved. The collected data is sent for feature extraction, followed by the classifica-
tion of features. Finally, the random forest algorithm is used to acquire optimum data fusion. In
Section IV, a comparative study of the suggested EDF approach’s performance is given, which
addresses the metrics identification accuracy, fusion error, and detection time. The objective of
this work is to use Random Forest (RF) Machine Learning (ML) to enhance the precision of
medical data by 20%. In this work, DF is accomplished by categorizing features in assigned time
period, and forecasting is conducted through the use of an ML method.

2 Literature Review

Past research studies have helped in providing insight into the application of technology in
healthcare institutions. These research studies have come up with the different findings that indi-
cate the effectiveness of using the IoT to connect to various health devices and systems [14–19].
Wang et al. [20] proposed a hybrid sensory system for patients to monitor routine activities and
identify walking patterns. For DF methods collected from the WS, human activity recognition is
employed. The features are categorized using a Feature Selection (FS) approach based on data and
Support Vector Machine (SVM). A long Short-Term Memory and Convolutional Neural Network
(LSTM-CNN) [15] fusion system is presented to identify unusual posture by Gao et al. [21],



CMC, 2022, vol.71, no.2 2581

utilizing a Wearable Inertial Measurement Unit (IMU). This study involves leg Euler angle data
to calculate classification precision.

The rapid development in technology has led to significant changes in the healthcare system.
Currently, healthcare organizations depend on advanced technology to deliver healthcare products
to patients. The IoT has played a critical role in changing the healthcare system. The emergence
of wearable sensors has led to significant improvement in patient care and treatment. It enables
medical practitioners to monitor patients in the hospital or remotely. Various wearable devices are
designed to meet the specific and unique needs of patients. The IoT connects the various wearable
devices to the patients and thus helps in gathering important data and information that can be
used to make proper healthcare decisions and facilitate the efficient treatment of the patient.

The concept of smart healthcare was introduced to provide proper solutions in the delivery
of efficient healthcare. Smart healthcare is regarded as a smart infrastructure that typically uses
WSs to help detect and perceive information and data from the patient. The gathered information
is then transmitted through the IoT and processed using cloud computing and supercomputers.
Additionally, it can coordinate the integrated social system in order to understand the dynamic
management of human services. Smart healthcare normally uses technology that includes wearable
devices, IoT, and the mobile internet to help obtain data, and connect to individuals, institutions,
and materials that are associated with healthcare. The information gathered is actively managed
and responds to the needs of the medical ecosystem in an intelligent manner.

Smart healthcare is made up of patients, physicians, research institutes, and hospitals. In fact,
it is viewed as an organic whole including different aspects like illness control and monitoring,
diagnosis, treatment, health decision-making, hospital administration, and medical research. IoT,
cloud computing, mobile internet, 5G, big data, Artificial Intelligence (AI), and contemporary
biotechnology are all examples of current Information Technology (IT) and are key components
of SCH [14]. These technologies can be used to monitor a patient’s health via wearable devices.
Wearable devices can also be by the patient to obtain medical assistance and services from
one’s own home. It also allows clinicians to handle medical data and information using an inte-
grated information infrastructure that consists of a Laboratory Information Management System
(LIMS), Electronic Medical Records (EMRs), an image archiving system, and other technologies.
The adoption of Surgical Robots (SRs) and the mixed reality technique allows for more precise
surgery. The usage of medical platforms can assist patients to have a better experience. Big data
may also be used to examine a certain issue. The use of IoT and new technologies may decrease
the risks and expenses of medical procedures and processes.

The application of technology such as AI, SRs, and mixed reality, has made the treatment
and diagnosis of illnesses more efficient and intelligent. In most cases, the accuracy of AI
diagnosis findings surpasses that of human doctors. ML-based systems are regarded as more
accurate than the expert medical practitioners. In recent years, wearable IoT devices have been
increasingly adopted in various application fields. The wearable devices are embedded or worn
on the human body. The architecture of the wearable IoT network enables it to store important
health information that facilitates the treatment and management of patients. The integration of
several types of sensors into wearable IoT devices has led to significant improvement in their
functionality. Smartwatches, for example, may be used for not just localization, entertainment,
social networking, and payment, but also health and routine task tracking.

The software and hardware devices used in the healthcare system to support IoT can be
exposed to certain challenges that can compromise their effectiveness. Unauthorized individuals’
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access is one of the most significant challenges. Smart healthcare services, like any other internet-
connected devices, are vulnerable to hackers [16]. Many wearable devices in the healthcare industry
are subject to security threats and vulnerabilities. The intruders may obtain access to the IoT
connected to numerous medical devices. They have access to and can change the data and
information recorded on the devices. This may endanger the patients’ ability to get effective
treatment. Furthermore, patient data may be compromised as a result of illegal access to the
health organization’s computer network. An attacker may have access to the patient’s private and
sensitive data. As a result, it is critical that cybersecurity measures are implemented to safeguard
wearable devices from third-party attacks.

Zahra et al. [22] proposed multimodal sensor fusion (SF) to detect action in assembly produc-
tion. Information from the wearable IMU and EMG is used for optimizing the training of CNN.
Efficiency depends on the mixing as well as forecasting of SF data. Al-Amin et al. [23] developed
a foot-mounted inertial sensor-based fusion method for detecting the posture of older people. The
raw data is obtained using a hidden Markov model and a Neural Network (NN) in this study,
which detects six categories of positions. Rule-based recognition using an optical motion seizure
is the posture that is trained. Wang et al. [24] introduced deterministic learning based on DF
to address various walking perspectives to detect human posture. The posture motion on spatio-
temporal characteristics is extracted using the Radial Basis Function (RBF). For the identification
of human posture, the deep Convolutional and Recurrent Neural Network (CRNN) is created.

The posture examination can provide insight on how to improve patient care and ensure
enhanced quality care. The categorization of posture characteristics associated with knee,
described by Fendri et al. [25] is based on posture analysis using deterministic learning. The
patient’s knee has osteoarthritis (OA). It is common in asymptomatic (AS). The RBFNN analyzes
postural patterns and increases accuracy by separating them. Nweke et al. [26] used two branches
of CNN to create posture feature extraction and classification. For posture identification, a two-
branch CNN (TCNN) is employed. Multi-Frequency Posture Energy Images (MF-GEIs) is being
utilized to train the posture inputs. Posture energy image is being used to identify posture.

Abbas et al. [27] offer a method for detecting posture recognition. It utilizes a covariate
factor for appropriate behavioral biometric characteristics. The semantic information is utilized to
improve posture-based identification accuracy. The dynamic selection for the person is performed
in this procedure, and the human components are selected to obtain semantic information.

To evaluate human behavior and decrease the rate of misrecognition, Tran et al. [28] suggested
human action recognition for multi-sensor fusion. This approach for multi-sensor DF introduces a
Multi-View Ensemble Algorithm (MVEA). The feature vector is generated using Logistic Regres-
sion (LR) and the K-Nearest Neighbor (K-NN) technique. By using Synthetic Oversampling
Minority Techniques (SOMT), the class imbalance is reduced. Hanif et al. [29] presented a data
augmentation method for identifying the posture. It utilizes the deep neural network from the
inertial sensor. For efficient training, two types of methods are used: Arbitrary Time Deformation
(ATD) and Stochastic Magnitude Perturbation (SMP). General postures are recognized by CNN.

Dawar et al. [30] use deep learning-based fusion to incorporate depth and inertial sensing for
action identification. A camera recognizes the movement or gesture and captures depth pictures of
postures in various angles. Posture in a favorable influence is identified via a decision-level fusion.
Zou et al. [31] describe a system that integrates inertial and RGBD sensors for strong posture
identification. Eigen posture’s color and depth from the accelerometer in eigenspace are included



CMC, 2022, vol.71, no.2 2583

in posture data. The supervised classifier in this case uses a 3D dense trajectory to obtain greater
identification accuracy.

The IoT, as represented by Fan et al. [32], is used to study attitude detection and data
analysis. Through the creation of Fast Fourier Transformation (FFT), the goal of this project is
to minimize error and frequency domain by 10%. To improve activity, human motion is evaluated
by identifying posture.

Islam et al. [33] present data analytics for detecting bodily posture fatigue with the use of a
WS. Fatigue is recognized via ML, and essential traits are selected based on its knowledge. Class
dependencies are utilized to enhance accuracy when detecting fatigue.

The literature review will contribute immensely to the healthcare delivery system. It will
monitor the patient from remote places and help in the facilitation of the treatment. The medical
devices will help track the patients and record their health status at all times during and after
the treatment. It is necessary for the healthcare professional to enact appropriate healthcare
intervention measures to conform to the changes in technology. The proposed research study
will also add the most recent information and data on the errorless data fusion technique, and
therefore contribute to a new literature review on the topic.

3 Proposed Errorless Data Fusion Technique

The patients’ bodies are fitted with a WS that detects their posture and transmits their walking
pattern to the smart healthcare system. The goal of this project is to improve precision and
eliminate errors in medical data by integrating Feature Extraction (FE) and Feature Classification
(FC). For sequential analysis of walking patterns, DF is used to determine the least feature
depending on the time interval. The suggested technique’s process flow is depicted in Fig. 1.

Figure 1: Flow diagram. Multiple sensors collect data from a patient at fixed intervals and forward
data to perform feature extraction. Features are classified and passed on to apply data fusion
algorithms
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The FE is derived from the sensor using Eq. (1), and it incorporates data integrity, chaining,
and data patterns.
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The FE is performed by collecting the sensor data. Using that data, i0 represents integrity
that contains input and output data. Chaining c′ is the sensor’s data nonstop stream, a pattern
of data pa that refers to the patients’ walking patterns. The sensor data features utilizing sensor
acquisition se(q′) are included in all three. n0 represents the data sensing and g0 denotes posture
recognition, the data are {d ′ (1) ,d ′ (2) , . . .d0}, where d ′ refers to data and d0 is represented as
several data.

The walking patterns are denoted by ω. They are detected in a specific time duration. They
are tracked by sensing WB at each certain period as dt (ω) , . . .xt(ω). The features are denoted as
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(
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)
. The extraction is seen here. Following that, Eq. (2) is utilized to
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The integrity of the medical data,
(
1− [m0+u′]

ω

)
, represents the incoming and outgoing

m0 and u′. This describes the patient’s WB. A series of sensor data is represented by chaining,
n0+q′
xt

and it is followed for series of data inputs to the devices. o′ is denoted as series of WS data,

and α represents a single step made by the patients during their movement. These are employed
in the analysis of data patterns. In Eq. (3), all three are applied.
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The three features are extracted in a better way for the classification of data; the above Eq. (3)

is used to observe the fixed time DA. The calculation of q′+xt(ω)
d0

denotes that the WB is tracked in

a specific time interval, and o′ (ω)+q′.(m0+u′) are monitored and assess the outcomes of posture
in the sensor, with β represented as data analysis. After f0(i0+ c′ + pa) the FC is completed. The
least feature (LF), which describes the remaining error data, is utilized to categorize the error data
minimization. For posture identification, FC is achieved, and the error is observed using Eq. (4).
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(mō− u′)+
(
1+ o′ + –XT

∅

)
∗
ņō∏
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FE of the data is performed by detecting the WB of the patients, from which categorization
is obtained by assessing Eq. (4). ∂ is referred to as error data in identifying WB, and it contains
network traffic (NT) and delays represented as ∅ and. These two concerns are solved utilizing the

sensing WB pattern of the patients ω(f0). The calculation of
[

ω∗(y0)
∅

]
shows the walking detection

seen by delay and NT. Fig. 2a depicts the pattern classification procedure.(
1+ o′+xt

∅

)
is a series of data that prevents NT at a certain time interval xt(∅+f0). The errors

are discovered and then eliminated to improve precision. The classification is separated into two
categories, error minimization and Least Feature Extraction (LFE), with the latter representing
the remaining error. The LFE for classification is calculated using Eq. (5).
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įō
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The LF error is identified by assessing Eq. (2), and in this
∑d′
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are retrieved from the least error (LE) and are denoted as δ, which represents the ∂(d0). Eq. (6)
can be used to illustrate the two kinds of classification.
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The classification γ is accomplished by calculating both the error and the LE of the patients’
posture identification. The goal is to decrease the error. They are derived by calculating Eq. (7),
in which the error is first assessed and then decreased to enhance data precision. As a result, the

formula o′
(
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)
reflects the WB observed at each time interval. The WB is recurrently evaluated

in this way. Eq. (7) is evaluated by combining Eqs. (5) and (6), as follows:
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Calculating Eq. (7), where
(
1+ o′+xt

∅

)
is assessed to obtain the series of incoming sensor

data, the classification is accomplished by deriving errorless data. Then, using y0
∅
, the error-based

data are categorized, and the LE is achieved by calculating Eq. (8) as follows, resulting in the
classification of the two types of posture data.
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The characteristic of WB is used to determine integrity. The steps in which leg motions are
computed are tracked in this way. The classification of WB is assessed using Eq. (8), and the

sequence of incoming data is studied o′(β). Here, d ′ ∈ f0, and the features represent (m0−u′)
o′ , which

shows the α (∂) + (dt − dt). DF is done in this way, and the classification module is derived by
solving Eq. (9).
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⎫⎬
⎭(

1+ dō
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The identification of DF is achieved by computing error-free data, and the LE is produced by
using Eq. (9). The recognition is indicated as ρ. WB error is obtained through the “consequential
way,” which accurately depicts the data. The time interval is reduced by mindt (xt+α). In xt− d0,

the patients’ walking patterns are determined. Because
(
1+ d0

xt

)
is linked with DF in a certain time

interval, it employs the ∂(γ ). Fig. 2b depicts the features-based posture categorization.

Features are examined in 1 + (m0+o′)
f0

, which indicates the consequential data series and the

analysis. The improved DF is seen by determining Eqs. (8) and (9). The
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instance, and error is detected in the specified time interval. They are utilized to calculate n0+β.
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fō

)
∗
∫ fō
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Walking is identified via DF and is utilized to perform the classification process. It is denoted
by ρω (ϑ). The serial and current data are calculated. Incorporating an RF method improves
accuracy. Time-based interval is utilized to make the decision in this method. Also, DF is observed
in a better way.
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Figure 2: (a) The design classification procedure, with detection through pattern analysis and
feature extraction. (b) Posture classification procedure, with detection through pattern analysis and
feature extraction

3.1 Random Forest (RF) for Data Fusion
RF is utilized in DF, as well as classification, regression, and other task-based Decision Trees

(DT). Regression focuses on forecasting, whereas classification is for classes. The classification-
based RF is used to forecast the repeated analysis in this study. The root and leaf nodes of the
RF are described by classification and DF. The root node data features are divided into γ and ϑ

as a consequence of the results. The first stage is to make a forecast, which is then assessed using
Eq. (11).

�= 1, if
∑ϑ

ρ

(
fō+w
–XT +l

)
∗ (θ − τ )

0, otherwise

}
(11)

The computation of σ and τ is used to carry out the prediction process �. It incorporates

both serial and current data.
(
f0+ω
xt+∂

)
’s computation represents the data features. Hence, WB is
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observed. If an error arises during the preceding step, it is again monitored, then eliminated in
a continual procedure. It is accomplished with the application of a prediction-based technique,
where σ ∈ ω(∂) include error-related data and are stored in the classification node. Figs. 3a–3c
depict the initial RF tree concentration, training process, and output process, respectively.

Figure 3: (a) Prediction process used for data fusion, random forest tree � architecture. (b)
Prediction process used for data fusion, training procedure. (c) Prediction process used for data
fusion, split the root node data sorts into γ and ϑ

DF shows ϑ ∈ (γ + ∂)ω, and posture data contains error data as well as classification. The
main concept is to use ML to determine which node is best for DF processing in order to obtain
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more precision. As a result, the RF is a training-based approach for avoiding a series of errors.
The training for the RF is examined using Eq. (12).
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)
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The prediction-based technique is used for the analysis, and it is indicated as ρ(β). They are

assessed by
(

d0
σ−τ

)
, and a large number of posture-related data points are matched in a sequential

manner to anticipate current data and enhance the process. This is accomplished by assessing r0,
which represents training data that contains a sequential data error. For further processing of

posture-related WB, the forecasting is produced by calculating
(
1+ �

f0

)
+r0. The assessment results

are generated in Eq. (13) by evaluating the DF and finding the optimal node for forecasting.
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The detection for improved prediction is calculated by assessing Eq. (13), in which α+β
μ

are

utilized to represent the steps of WB as well as the repeated analysis. The outcome is associated
after features are identified in a chaining way. The prediction technique for finding nodes on

the RF is shown by the estimation
(

α∗ω
dt
�

)
. As a result, it incorporates the

(
1+ �

δ

)
least error

prediction. To obtain higher precision, the prediction is performed using RF by formulating
Eq. (14).
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In Eq. (14), when these two criteria are utilized, the RF is used to obtain higher precision,

and the outcome is either larger than or less than 1. The computation ω + d0
∂

depicts WB,
calculates the error, and reduces the calculated error from the subsequent posture identification.
The identification is based on frequent data analysis in a timely manner. In ρ

σ−τ
, the detection

denotes the serial and current data. The first condition is preferable to the other since it fulfills the
DF and improves precision more. The output processing of the classification is shown in Fig. 3c.

If there is a decrease in DF and prediction during classification, β ∈ f0 +μ ∗ � is called to
update the features. By assessment, it optimizes the model with less error for recurrent analysis
utilizing RF. It also offers higher posture accuracy and identifies the WB of the patient.
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4 Results and Discussion

Through a comparison study, this section explains the performance evaluation of the sug-
gested EDF approach. The comparison takes into account the metrics identification accuracy,
fusion error, and recognition time. In this comparison study, the suggested EDF is added to the
current techniques TCNN [20], MVEA [22], and LSTM-CNN [15]. The material in [34–36] is used
to analyze the suggested approach. The above-mentioned metrics are estimated using Dataset A
from the source, which is 16 MB in size and contains the posture patterns of 20 participants.
In this study, five participants were chosen from a total of 20 to examine the recognition of 12
occurrences each. Sub1, Sub2. . ., Sub5 were the names of the subjects, and Sub1 and Sub4 were
young subjects. Through training, 110 posture patterns were assessed on the front and back from
the observing point, with a maximum of 20 features retrieved and a 4 s observation interval.

4.1 Recognition Accuracy
The recognition accuracy is examined in Fig. 4 by changing the patterns, features, and time

intervals. While calculating
(
n0+q′
xt

)
, when the posture is detected and the WB is acquired, the

accuracy is excellent. The feature data f0(g0 + o′ − xt) is evaluated using the posture patterns.

The posture features are retrieved, and the patterns are detected at a specified period
(
g0∗d0ω

)
.

By comparing the WB with the posture database ω + (
m0+ u′

)∗pa, the accuracy of the derived
features is improved. LFs are retrieved from WB. This generated information is analyzed via
eliminating errors. Following FE, classification is performed in order to eliminate error and achieve

the LF error. The computation of
(
f0∗ (dt−d0)+o′

pa

)
is performed in a specified time duration for the

sequence of data inputs, n0(c′ +m0 + u′). For each set time interval, the identification accuracy
varies for features. As a result, it displays different patterns and features for each time period,(
ω+ (dt−xt)

d0

)
. The suggested EDF improves the recognition of posture patterns.

The above data was obtained by monitoring the movement of the patient at a different time
interval. The patient was given a wearable device that was connected to the computer system of
the client. The data collection was made possible through IoT technology. The IoT enables the
connection between the patients and the hospitals. This ensured that there is sufficient information
flow between the patient and doctors. The wearable device that was mounted on the patient
recorded important information such as posture at various intervals. It shows the trend in the
distribution of data, features, and time intervals. The data proves more authentic as compared to
the benchmark paper. The dataset obtained has components that can be used by the healthcare
organization to make important decisions regarding the treatment of the patient. It indicates how
the fusion error can be reduced due to the adoption of new technology to support the medication
of the patients.

4.2 Fusion Error

By assessing
[

ω∗(y0)
∅

]
, and detecting the patients’ WB from that classification, the fusion error

is reduced. The fusion of walking patterns is detected by minimizing the error and LFE d0 ∈
(o′ +ω). The error minimization at the initial step of data acquisition is represented by the formu-

lation of (n0+β)+∂. As a consequence, the detection comprises 1+ o′+xt
∅

, for a data sequence, and
analyzes data from the devices, which leads to NT being avoided. The categorization of feature is
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linked to the integrity, chaining, and data patterns that are calculated,
[(
i0+ c′ + p0

)∗ α
γ

]
. The sug-

gested technique reduces the fusion error when compared to the other techniques, TCNN, MVEA,
and LSTM-CNN. Training data are derived through feature classification and are collected at a
certain time period. By comparing the feature, error, and time interval, as (f0+ ∂ +xt), the fusion

error is reduced. By deriving
(
1+ (m0+o′)

f0

)
+ (xt − dt) the time-based DF error is reduced for

changing features, time intervals, and training data, as shown in Fig. 5.

Figure 4: (a) Recognition accuracy for varying patterns. (b) Recognition accuracy for varying
features. (c) Recognition accuracy for varying time intervals

4.3 Detection Time
The proposed EDF demonstrates posture recognition in a short time span, with the LFE

indicating DF from classification. It searches the walking patterns and training data at the

particular time period,
(
xt+ γ ∗ f0

β

)
, as shown in Fig. 6. The starting time and finishing time of

processing are marked as (ρ + δ∗α) in the derivation of this posture recognition. 1+ (m0+o′)
f0

is the

result of computing the consequence of a data series. To monitor and eliminate the continuous

process, the detection is acquired
(
f0+ω
xt+∂

)
for features at the appropriate time. The categorization

of error data is, ϑ ∈ (γ + ∂)ω. It shows improvement while training the data at the acquisition
time. It associates the forecast with the posture pattern and sequential data processing. �+(σ −τ )
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is included in the analysis where they are linked to the r0(ω + se). From this, the detection is
calculated as ρ

σ−τ
to the updating of features by β ∈ f0+μ∗�. At a predetermined time interval,

the prediction of current and successive posture is examined, as shown in Fig. 6. Sub3’s accuracy
and error displaying 20 features are shown in Tab. 1.

Figure 5: (a) Fusion error for varying features. (b) Fusion error for varying time intervals. (c)
Fusion error for varying training data

Figure 6: Detection time for inconsistent patterns and training data
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The result of the study shows the relationship between the accuracy ratio and error. Accuracy
and error are in inverse proportion, although it varies based on the pattern displayed by the
subject in both directions. This estimation takes into account the subject’s height, speed, and
pause time, as well as variations in orientation and motion angle, which affect precision and error.
Tab. 2. shows five subjects’ accuracy under various features.

Sub1 and Sub5 have extremely precise movement patterns. This precision may be shown for
a variety of features. This is due to the subjects’ identical patterns and maximal fused sensor
data. Furthermore, because Sub1 and Sub4 are young, they take a shorter time to display
various patterns. As a result, in the case of the two subjects, the extracted features are high. The
correlation between these patterns is typically strong, and therefore the accuracy is higher. The
error and patterns for the subjects are shown in Tab. 3.

The inverse relationship between the feature extraction and error is evident from the results
shown in Tab. 3. The error is reduced as the number of FEs rise, which is done by attaining
a large count of fused patterns. Changes in feature count help improve the correlation between
multiple stored inputs, resulting in high posture identification in various scenarios. As a result, the
accuracy of posture recognition improves, and the error is reduced. The calculation time for high
fused patterns is long, but the computation time for Sub2 is long, due to multiple iterations.

The result of the research study indicates that the errorless data fusion approach can help
address the unique needs of the patients. It allows the medical practitioners to monitor the posture
of the patients and address their needs. The data collected from advanced medical devices is likely
to improve patient care and enhance the delivery of healthcare.

Table 1: Accuracy and error in a different direction (for Sub3)

Featu Res Time interval Left Right

Accuracy Error Accuracy Error

5 12.51 85.65 0.0518 84.601 0.0681
6 17.39 88.73 0.0358 82.943 0.1272
7 9.64 91.43 0.1123 81.991 0.1684
8 12.61 79.36 0.0976 84.312 0.1316
9 7.34 79.52 0.0186 84.788 0.1999
10 7.34 84.81 0.1129 94.768 0.0689
11 13.34 82.6 0.0234 85.947 0.0574
12 9.66 84 0.1312 85.558 0.1528
13 15.83 95.58 0.1797 77.732 0.0561
14 5.68 85.93 0.1286 85.943 0.1498
15 14.36 91.6 0.047 90.244 0.046
16 10.63 90.57 0.0757 82.913 0.1117
17 16.98 93.87 0.0708 84.192 0.0634
13 15.56 92.57 0.1599 92.843 0.0142
19 10.2 86.49 0.0932 84.314 0.1463
20 18.09 94.731 0.0336 92.035 0.1503
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The result of the research study shows the relationship between the accuracy ratio and
error. Precision and error are in inverse proportion, while it is distinctive for both the headings,
contingent upon the subject’s example. The height, speed, and pause time of the subjects are
considered in this assessment, wherein the subject’s adjustments impact the accuracy and error.
Tab. 2. shows the precision of the five subjects under various parameters.

Table 2: Accuracy and error in different direction (for Sub3)

Features Sub1 Sub2 Sub3 Sub4 Sub5

5 79.6669 82.2481 89.4749 80.469 92.793
6 80.7802 82.3904 88.5191 80.269 92.042
7 81.1904 85.6005 85.1466 81.693 93.888
8 80.5274 85.1991 86.328 82.65 90.316
9 78.9743 84.8541 89.8168 82.727 90.981
10 79.5009 81.9002 85.974 81.196 95.166
11 80.6072 81.9016 85.3281 81.105 93.209
12 80.2143 87.2282 87.1611 82.272 90.933
13 79.6867 83.6132 88.0086 82.825 95.884
14 81.3808 85.6749 87.9456 80.625 91.789
15 78.5056 83.785 89.6364 80.905 92.738
16 80.9325 82.9618 88.8079 82.927 90.397
17 79.247 85.1505 88.812 82.257 92.145
18 80.0675 86.0757 87.8409 81.795 91.011
19 80.3892 82.8792 88.7359 81.004 91.601
20 81.0892 82.4575 89.8023 82.147 92.77

The development examples of Sub1 and Sub5 shows a high precision. This is due to the
comparative examples and the combined sensor information from the subjects. Sub1 and Sub4
are both young, and consequently, each subject is taken as an example in Tab. 3 to measure
precision and accuracy. Therefore, the number of extracted features for Sub1 and Sub4 is high.
The connection of these examples is expectedly high, and consequently, the precision is improved.

Table 3: Error ratio and fused patterns for different subjects

S’s Features Error (%) Computation time Fused patterns

1 18 0.019 0.468 91
2 11 0.0952 0.961 49
3 10 0.154 0.157 89
4 16 0.055 0.693 78
5 14 0.171 0.219 56

The inverse relationship between the feature extraction and error is evident from the
result demonstrated in Tab. 3. As the feature extraction expands, the errors decrease; this is
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accomplished through a high number of intertwined designs. The Feature Check Adjustments
help improve the connection between various sources of information, and subsequently, the
acknowledgment of posture in various examples is high. The location of the posture enhances the
precision, and consequently, the error rate decreases. The calculation time for high melded model
is high, while now and again, the calculation time is high because of numerous repeats (for Sub2).

The research study results indicate that the EDF approach can help medical practitioners to
monitor the posture of the patients and address their unique needs.

5 Limitations of the Proposed EDF Method

The EDF method has certain limitations, such as its inability to handle uncertainty and
inconsistency. Combining data from many sources with a multisensory DF algorithm exploits the
data redundancy to help minimize the uncertainty. These sources can lead to inconsistent data and
poor fusion when the multisensory DF’s performance is less than that of each individual sensor.

The other limitation is the inability of EDF to address the diverse needs of the patients. The
research focuses on a specific group of patients, which implies that it cannot address the needs
of all the patients requiring specific treatment. The research focuses only on posture recognition
accuracy and cannot be applied in other areas. It is thus important to improve the results of the
study to ensure that EDF it covers other areas and concerns of the patients.

6 Conclusion

This paper discusses the EDF approach for increasing the accuracy of posture identification
through multi-feature analysis. In the beginning, the patients’ walking patterns are observed at
various time intervals. The characteristics are then evaluated in relation to the saved data utilizing
an RF classifier. This procedure is dependent on several time periods in order for the iterations
to efficiently detect classification mistakes. Finally, conditional training is utilized to fuse the
disaggregated errorless data to find the posture pattern that fits the stored pattern. Patterns and
features are frequently evaluated in this classification process, and conditional training is computed
depending on the prior error in order to improve identification accuracy. The results reveal that
the proposed approach improves accuracy while reducing fusion and detection errors as well as
computation time.
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