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Abstract:Background: In medical image analysis, the diagnosis of skin lesions
remains a challenging task. Skin lesion is a common type of skin cancer
that exists worldwide. Dermoscopy is one of the latest technologies used for
the diagnosis of skin cancer. Challenges: Many computerized methods have
been introduced in the literature to classify skin cancers. However, challenges
remain such as imbalanced datasets, low contrast lesions, and the extraction
of irrelevant or redundant features. Proposed Work: In this study, a new tech-
nique is proposed based on the conventional and deep learning framework.
The proposed framework consists of twomajor tasks: lesion segmentation and
classification. In the lesion segmentation task, contrast is initially improved by
the fusion of two filtering techniques and then performed a color transforma-
tion to color lesion area color discrimination. Subsequently, the best channel
is selected and the lesion map is computed, which is further converted into a
binary formusing a thresholding function. In the lesion classification task, two
pre-trained CNN models were modified and trained using transfer learning.
Deep features were extracted from both models and fused using canonical
correlation analysis. During the fusion process, a few redundant features were
also added, lowering classification accuracy. A new technique calledmaximum
entropy score-based selection (MESbS) is proposed as a solution to this issue.
The features selected through this approach are fed into a cubic support
vector machine (C-SVM) for the final classification. Results: The experimental
process was conducted on two datasets: ISIC 2017 and HAM10000. The
ISIC 2017 dataset was used for the lesion segmentation task, whereas the
HAM10000 dataset was used for the classification task. The achieved accuracy
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for both datasets was 95.6% and 96.7%, respectively, which was higher than
the existing techniques.

Keywords: Skin cancer; lesion segmentation; deep learning; features fusion;
classification

1 Introduction

Skin cancer is a popular research topic due to the high number of deaths and diagnosed
cases [1]. Cancer is a group of diseases characterized by unrestrained development and the spread
of atypical cells. This may cause death if the expansion of irregular cells is not controlled. Skin
carcinoma is an irregular expansion of skin cells that frequently appears on the skin when exposed
to sunlight or ultraviolet rays. Skin cancer is a fatal disease that can be classified into two types:
melanoma and benign (basal cell and squamous cell carcinoma). Benign is constantly retorting to
treatment and hardly spreads to other skin tissues. Melanoma is a dangerous type of skin cancer
that starts in the pigment cells. Skin cancer develops as a result of malignant lesions and accounts
for approximately 75% of all deaths [2].

In the United States of America, 2021 cases are reported to be 207,390, of which 106,110
are noninvasive and 101,280 are invasive, including 62,260 men and 43,850 women. The estimated
death count in 2021 in the USA is 7,180, including 4600 men and 2580 women (https://www.
cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figu-
res/2021/cancer-facts-and-figures-2021.pdf). The number of cases reported in the United States of
America in 2020 is 100,350, including 60,190 men and 40,160 women, with 6,850 deaths from
melanoma, including 4,610 men and 2,240 women. Since 2019, the total number of skin cancer
patients in the USA has been 192,310. The death count has been 7,230, including 4,740 men and
2,490 women. In 2020, it is estimated that over 16,221 novel cancer cases were analyzed in Aus-
tralia, including 9,480 men and 6,741 women, with a death count of 1,375, including 891 men and
484 women (https://www.canceraustralia.gov.au/affected-cancer/cancer-types/melanoma/statistics).
According to dermatologists, if a melanoma is not detected at a very early stage, it spreads
to the entire body or nearby tissues. However, if detected early on, there is a good chance of
survival [3]. Melanoma has received a lot of attention from the research community because of
its high mortality rate.

Dermatologists have previously used the ABCDE rule, a seven-point check list, laser tech-
nology, and a few other methods [4]. However, these methods require an expert dermatologist.
In addition, manual inspection and diagnosis of skin cancer using these methods is difficult,
time-consuming, and expensive. Therefore, it is essential to develop a computerized method for
automated skin cancer segmentation and classification [5]. Dermoscopy is a new technology for
the diagnosis of skin cancer [6]. Through dermoscopy technology, RGB images of the skin are
captured and later analyzed by experts. A computerized method consists of the following steps:
preprocessing of dermoscopic images, segmentation of skin lesions, feature extraction, and finally
classification [7]. Preprocessing is the step in which low-contrast images are enhanced and artifacts
such as hair and noise can be removed through different dermoscopic image techniques [8]. This
step follows the segmentation step in which the lesion region is segmented based on the shape and
color of the lesion, and irregularity of the border [9]. Many techniques for lesion segmentation
have been introduced in the literature. Some focused on traditional techniques, and few used
convolutional neural networks (CNNs). Feature extraction is the third step used to represent an
image [10]. In this step, image features are extracted such as color, texture, shape, and name.

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf
https://www.canceraustralia.gov.au/affected-cancer/cancer-types/melanoma/statistics
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Color is an important feature in skin cancer classification [11]. These different features are fused
later to obtain the maximum image information [12]. However, one major disadvantage is high
computational time required to complete this step. Many researchers have implemented feature
selection techniques to select the most valuable features. The main purpose of this approach is
to obtain maximum accuracy with less computational time. In addition, this step is useful for
the redundancy of irrelevant features for classification [13,14]. The final step is to classify the
features. Features are classified using different classifiers in a relevant category, such as benign or
malignant [5].

More recently, deep learning models have been shown to significantly contribute to medical
image analysis for both segmentation and classification [15,16]. In deep learning, CNNs are used
for classification as they are composed of several hidden layers such as convolutional, pooling,
batch normalization, ReLU, and fully connected layers [17,18]. CV studies have introduced many
techniques for the segmentation and classification of skin lesions. Afza et al. [19] presented
a hierarchical framework for skin lesion segmentation and classification. They began with a
preprocessing step to enhance the quality of images before running a segmentation algorithm.
Later, the ResNet50 model was fine-tuned, and features were extracted. The extracted features are
refined using the grasshopper optimization algorithm, which is classified using the Naïve Bayes
algorithm. The experimental process was conducted on three dermoscopy datasets, and improved
accuracy was achieved. Zhang et al. [20] presented an intelligent framework for multiclass skin
lesion classification. In this method, the skin lesions were initially segmented using MASK RCNN.
In the classification phase, they proposed 24 layered CNN model. Three datasets were used for the
experimentation of the segmentation phase and the HAM10000 dataset was used for classification.
On these datasets, the accuracy of the proposed method was improved. Akram et al. [21] presented
a CAD system for skin lesion localization. They applied a de-correlation operation at the initial
step and then passed it to the MASK RCNN for lesion segmentation. In the next step, the
DenseNet201 pre-trained model is modified, and features are extracted from the two layers. The
extracted features were fused and further refined using a selection block. The experimental process
was conducted on dermoscopy datasets, and improved performance was achieved. Alom et al. [22]
introduced a deep learning architecture for the segmentation of skin lesions. In this model, the
best features are initially selected to better represent the lesion region, and then inception RCNN
was applied for the final lesion classification. Dermoscopy datasets were employed for evaluation
and achieved improved accuracy. Thomas et al. [23] applied interpretable CNN models for the
classification of skin cancers. In this method, the outer padding was applied in the first step
and then iterated through overlapping tiles. The next step segments the lesion, which later crops
for the final segmentation. Al-Masni et al. [24] presented a two-stage deep learning framework
for skin lesion segmentation and classification. The segmentation was performed using a fully
resolved CNN (FrCNN), and four pre-trained networks were considered for the final classification.
Sikkandar et al. [25] presented a computerized method for the segmentation and classification of
skin lesions using traditional techniques. The authors combined the performance of the GrabCut
and Neuro Fuzzy (NF) classifier for the final classification. In the preprocessing step, top-hat
filtering and in-painting techniques were applied. In the later step, the GrabCut algorithm was
applied to the segmentation task. In the feature extraction phase, deep learning features are
extracted and finally classified using the NF classifier. A mutual bootstrap method was also
presented in [26] for skin lesion classification.

The methods discussed above have some limitations that affect the performance of skin lesion
segmentation and classification. The following are the major issues: i) the presence of hair bubbles
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and irrelevant areas not required for detecting accurate skin lesions; ii) low contrast skin lesions
are a factor for inaccurate lesion segmentation; iii) knowledge of useful feature extraction for the
accurate classification of skin lesion types; iv) presence of irrelevant features that mislead correct
classification; v) manual inspection of skin lesions is time consuming, and vi) accuracy is always
dependent on an expert. In this work, we proposed a new computerized method by amalgamating
traditional and deep learning methods. The proposed method includes contrast enhancement of
dermoscopic images, segmentation of skin lesions, deep learning feature extraction and fusion,
selection of the best features, and classification. Our major contributions are as follows:

• A contrast enhancement approach was implemented based on the fusion of the haze
reduction approach and fast local Laplacian filters. The fusion process followed the HSV
color transformation.

• The best channel is selected based on the probability value, and then a saliency map is
constructed, which is later converted into a binary form using a threshold function.

• Two modified pre-trained models, MobileNet V2 and VGG16, were trained on dermoscopic
datasets using transfer learning. Later, the features were extracted from the dense layers.

• Canonical correlation-based features were fused and later refined using the maximum
entropy score-based selection(MESbS).

The remainder of this article is organized as follows: the proposed methodology is presented
in Section 2, the results are detailed in Section 3. Finally, the conclusions are presented in
Section 4.

2 Proposed Methodology

The proposed method comprises two main tasks: lesion segmentation and classification. For
lesion segmentation, a hybrid contrast enhancement technique was proposed, and the best channel
was selected based on the histogram. Subsequently, an activation function was proposed to con-
struct a saliency map. In the later stage, the threshold function is applied to convert the image into
binary form, which is then mapped onto the original image for final detection. For classification,
two pre-trained models were modified and trained through transfer learning. The features were
extracted from both models and fused using canonical correlation analysis (CCA). Subsequently,
the fused vector was further refined using the highest entropy score. Finally, multiple classifiers
were used for the classification of selected features. Several datasets were used for the experimental
process, and the results were obtained in visual and numeric form. The detailed architecture of
the proposed methodology is illustrated in Fig. 1.

2.1 Lesion Segmentation Task
As shown in Fig. 1, the proposed method performs two tasks: lesion segmentation and

classification. The lesion segmentation task is described in this section. Here, a hybrid method
was initially proposed for contrast enhancement of the original dermoscopy images. Then, an
HSV color transformation was applied and the best channel was selected based on the activation
function. Subsequently, a lesion map was constructed based on the selected channel. The resultant
lesion map was finally converted into binary form based on a threshold function. The details of
each step are as follows:

Hybrid Contrast Enhancement: The first step was the hybrid contrast enhancement. Here,
the image quality is enhanced and bubbles are removed. For this purpose, two techniques were
implemented, and the resultant information was fused into one image. First, a haze reduction
technique was implemented to clear the boundaries of the lesion region. Assume U(x) is the input
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image, S(x) is the hazy image, and Y (x) is the medium of transmission. Seff (x) is the image
affected by haze and is represented as follows:

Seff (x)=U(x)Y (x) (1)

Figure 1: Proposed parallel architecture of skin lesion segmentation and classification

This image is affected by reflected light represented as follows:

SRL(x)=R(1−Y (x)) (2)

Udark(X)= min
i ∈�(x) (minU

c(I)) (3)

Here, � represents a local patch with its origin atX . After this method, an estimation of
transmission Y (x) is required before proceeding. Second, a fast local Laplacian filter was imple-
mented to smooth the image and emphasize the edges. The local Laplacian can be defined as
follows:

Z(I)=
{
h+ sign(|I − h|)ωz(|I − h|/ωz)γ if I ≤ωz
h+ sign(I − h)(α(|I − h| −wz)+wz) if I >ωz

(4)

where, Z(I) is a sample function, where h is the reference value, γ controls the amount of
increasing and decreasing value, α controls the dynamic range compression and expansion, and
wz defines the threshold function.
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wz = ηP
ηr

= div(u(�P)�P) (5)

where r represents distribution time that how much time the process will run and u is the weighted
function which is 1.

Pr+1(t)=Pr(t)+
∑

i�A4(t)

u(Pr(i)−Pr(t))− [Pr(i)−Pr(t)] (6)

where t represents number of iterations have been performed, A4 represents the 4-neighborhood
of t, and P shows the input image. Mathematically, it is defined as follows:

GFt= 1
Rt

∑
i

Hωx(i− t)Hωz(Pi−Pt)Pi (7)

Rt=
∑
i

Hωx(i− t)Hωz(Pi−Pt) (8)

GFt=Pt+ 1
Rt

∑
b>0

Hωx(b)
∑

‖i−t‖=b
Hωz(Pi−Pt)(Pi−Pt) (9)

GFt=Pt+ 1
Rt

∑
i

Hωx(i− t)Hωz(Pi−Pt)(Pi−Pt) (10)

where Hωx and Hωz are the Gaussian kernels. After that HSV color transformation is applied.
HSV consists of three channels such as hue, saturation, and value. Through this transformation,
the image is refined in terms of lesion colors. The visual results of this transformation are
showing in Fig. 2b. From this figure, we extracted the Hue channel for lesion map construction.
Mathematically, this channel is defined as follows:

H=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

60◦ ∗
(G′ −B′

∇ mod6
)
,Amax=R′

60◦ ∗
(B′ −R′

∇ + 2
)
,Amax=G′

60◦ ∗
(R′ −G′

∇ + 4
)
,Amax=B′

∵∇ = 0 (11)

where, R′ =R/255, G′ =G/255, B′ =B/255, Amax =max(R′ , G′ , B′), and ∇ =Amax−Amin. In
the next step, an activation function was constructed based on the multiplication function after
which a lesion map was constructed, this was later converted into a binary form using a threshold
function. Mathematically, the activation and threshold functions are defined as follows:

Actv= [H×U(x)] (12)

Th=
{
1 forActv> s

0 Elsewhere
, s= 0.4 (13)
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Figure 2: Proposed lesion segmentation task results. (a) Original image; (b) Enhanced image; (c)
Binary segmented image; (d) Mapped image; (e) Localized image
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Here, 0.4 is computed based on the mean value of all computed pixels of H. The visual results
of the threshold function are shown in Fig. 2. In this figure, the binary images are shown in (c),
whereas the lesion mapped and final localized images are illustrated in (d) and (e), respectively.
The final localized images are compared with the ground truth images for the final evaluation
process. The numerical segmentation results are presented in Tab. 1. The ISIC 2017 dataset was
used for the experimental process, and an average dice rate of 95.6% was achieved. For each
image, three parameters were computed: dice, Jaccard distance, and Jaccard index.

Table 1: Sample numerical results of lesion segmentation task

Images Dice Jaccard distance Jaccard index

0010094 93.53 12.15 87.85
0010080 96.87 6.06 93.94
0006800 94.51 10.40 89.60
0004110 93.75 11.77 88.23
0002439 95.21 9.14 9.86
0002093 98.18 3.58 96.42
0001140 95.48 8.65 91.35
0000104 94.87 9.75 90.25
0000147 95.17 9.22 90.78
0000505 92.32 14.26 85.74
0000199 98.18 3.58 96.42
0000029 97.91 4.09 95.91
0000155 94.34 10.72 89.28
0000034 92.16 14.53 85.47
0000181 94.77 9.95 90.05
0000125 92.97 13.14 86.86
0000550 91.94 14.92 85.08

2.2 Skin Lesion Classification
During this phase, skin lesions are classified into relevant categories such as melanoma, bkl,

and others. For classification, the features were extracted from the input images. Feature extraction
is an important step in pattern recognition, and many descriptors have been extracted from the
literature. More recently, deep learning has shown success in the classification of medical infec-
tions [27,28]. A CNN is a deep learning method used for feature extraction [29]. A simple CNN
model consists of many layers, such as a convolutional layer, ReLU layer, pooling, normalization,
fully connected, and softmax.

VGG16—VGG-16 contains N number of fully connected layers, where N = 1, 2, 3. . .. The
PN units are in the Nth layer for NST = 224, NX = 224, and NXH = 3. The dataset is represented
by γ and the training sample is shown by Xy

z ∈ γ . Each Xy
z is a real number .

ϕ(1)= r(n(1)Xy
z+β (1)) ∈R(1) (14)

where r(.) represents the activation function ReLu6. ST expresses the no of rows, X symbolizes

the number of columns, and XH symbolizes number of channels. (1)β Represents the bias vector
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and n(1) express the weights of the first level which is defined as below:

n(1) ∈RN(1)×v (15)

The output of the first layer is used as the input of the second layer and so on. This is shown
in the mathematical form below:

ϕ(2)= r(n(2)ϕ(1)+β (2)) ∈R(2) (16)

ϕ(3)= r(n(3)ϕ(2)+β (3)) ∈R(3) (17)

ϕ(4)= r(n(4)ϕ(3)+β (4)) ∈R(4) (18)

ϕ(5)= r(n(5)ϕ(4)+β (5)) ∈R(5) (19)

ϕ(6)= r(n(6)ϕ(5)+β (6)) ∈R(6) (20)

where n(2) ∈ RN(2)×N(1) and n(2) ∈ RN(2)×N(1). So ϕ(z) represents the last fully connected layer
that is used for high level feature extraction. Mathematically expression of last layer is shown as
below:

ϕa(Xy
z )= ϕ(16) = r(n(16)ϕ(15)+β (16)) ∈R(16) (21)

Visually, the architecture of VGG16 is showing in Fig. 3.

Figure 3: Architecture of VGG-16 CNN model

In Fig. 3, the original architecture includes a total of 16 layers; the first 13 layers are
convolutional and the final three are fully connected. The output was generated using softmax.
In this study, we modified the VGG-16 pre-trained CNN model for skin cancer classification. For
this purpose, the last layer was removed, and a new layer that included seven classes of skin
carcinoma was added. These classes are known as the target labels. Transfer learning was then
applied to transfer the knowledge of the original model to the target model and obtain a new
customized CNN model. This model can be used for feature extraction. The modified architecture
of the VGG-16 model is shown in Fig. 4.

MobileNetV2—MobileNet V2 is a CNN model designed specifically for portable and resource-
constrained circumstances. It is founded on an upturned residual structure in which the
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connections of the residual structure are linked to the bottleneck layers [30]. There are 153 layers
in MobileNet V2, and the size of the input layer is h× w× k, where h = 224, w = 224, and k
represents the channels, three of which are in the first layer. There are two types of residual blocks
in MobileNet V2, with strides 1 and 2. These blocks had three types of layers and were used
for downsizing. The first layer is 1× 1 convolutions with ReLU6, where ReLU6 is an activation
function. It is min (max(x, 0), 6). The second layer is a depthwise convolution used to crop
the unnecessary information, and the third layer is a 1× 1 convolution, but without nonlinearity.
Each layer has batch normalization and activation functions, but the third layer has only batch
normalization because the output of this layer has less dimension, and by using ReLU6, the
performance will decrease [31]. The convolutional block of MobileNet V2 is shown in Fig. 5. In
the basic architecture of MobileNet V2, there is a convolution layer with 32 filters, followed by
19 residual bottleneck layers. The detailed architecture is presented in Tab. 2.

Figure 4: Fine-tuned VGG-16 model for lesion classification

Figure 5: MobileNetV2 convolutional blocks [31]

In the original architecture, there were 153 layers. The output is generated in the last layer. In
our work, we used the MobileNet-V2 pre-trained CNN model for skin cancer classification. For
this purpose, the original architecture was fine-tuned and the last layer was removed. Subsequently,
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a new layer was added that includes seven skin classes. These classes are known as the target
labels. Subsequently, transfer learning (TL) was used to transfer the knowledge of the original
model to the target model and obtain a new customized CNN model. The TL process is discussed
in the next section. After the training process, features are extracted from the feature layer
(convolutional layer).

Table 2: Architecture of mobileNetV2 [31]

Input Operator T C N S

2242× 3 conv2d – 32 1 2
1122× 32 bottleneck 1 16 1 1
1122× 16 bottleneck 6 24 2 2
562× 24 bottleneck 6 32 3 2
282× 32 bottleneck 6 64 4 2
142× 64 bottleneck 6 96 3 1
142× 96 bottleneck 6 160 3 2
72× 60 bottleneck 6 320 1 1
72× 320 conv2d 1× 1 – 1280 1 1
72× 1280 avgpool7× 7 – – 1 –
1× 1×1280 conv2d 1× 1 – K –

2.2.1 Transfer Learning for Feature Extraction
Transfer learning is a technique that transfers information from a pre-trained model to a

modified CNN model for a new task. The primary objective was to obtain the result for the
target problem with better performance [32]. Given a source domain Ds and target domain as
DT, the learning task is Ts, and Tt. Transfer learning assists the learning of the target predictive
function F(t) in the target domain with knowledge in the source domain and learning task, where
Ds 
= Dt and Ts 
= Tt. Fig. 6 illustrates the TL process for the modified VGG16 model for skin
lesion feature extraction. Fig. 6 illustrates that the source data ∅D are from the Imagenet dataset,
the source model is VGG16, represented by ∅Mod and the source labels ∅L are 1000. The target
data ψτ are the HAM10000 dataset, the target model is modified VGG16, and the target labels
are seven, represented by ψL. Through TL, the weights, and parameters of the VGG16 model are
transferred to the modified VGG16 model, whereas the following condition holds.

∅D 
=ψτ ,∅L 
=ψL (22)

Similarly, this process was performed for the modified MobileNet V2 CNN model. In this
study, the MobileNet V2 model was used as the source model and the modified MobileNet V2
model was used as the target model (Fig. 6). After training both modified models, the deep
learning features were extracted from the FC7 layer (modified VGG16) and convolutional layer
(modified MobileNet V2). The extracted feature vector sizes of both vectors were N × 4096 and
N× 1056, respectively.
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Figure 6: Transfer learning process for VGG16 CNN model

2.2.2 Features Fusion and Selection
Feature fusion is an important research area and many techniques have been introduced for

the fusion of two or more feature vectors [33]. The most useful fusion techniques are serial-based,
parallel, and correlation-based approaches. In this study, we used the CCA approach [34] for the
fusion of both extracted feature vectors. Using CCA, a fused vector is obtained with N × 1750
dimensions. However, after the fusion process, we determined that some features had repeated and
had to be removed from the final vector. For this purpose, a new method called the MESbS has
been proposed. In this approach, initially, the entropy vector is computed using the fused feature
vector (column-based). Then, the entropy vector is sorted in descending order. Subsequently, we
computed the mean value of the entropy vector and used this value as a threshold function for
selecting the best features. Mathematically, this process is defined as follows:

EnFV =−
K∑
i=1

Pi(Fv)log2(Pi(Fv)), C (23)

μ=
∑N

f (En
FV (f ))

N
(24)

Func=
{
Selected forFv(i)≥μ
Discard, Elsewhere

(25)
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where, EnFV represents the entropy feature vector, μ is the mean entropy value, and Func is the
final threshold function. Through this function, the feature Fv(i) values greater than the mean
value are considered for the final selection, and the remaining features are discarded. Lastly,
the final selected features are classified using a multiclass SVM classifier with a one-against-all
method.

3 Experimental Results and Discussion

3.1 Experimental Setup
This section presents the experimental process for the proposed classification process. The

HAM10000 dataset [35] was used. This dataset consists of approximately 10,000 dermoscopic
images in RGB format. A total of seven skin lesion classes, Bkl, Bcc, Vasc, Akiec, Nevi, Mel,
and Df. This dataset is highly imbalanced because of the high variation in the number of sample
images in each class. Many classifiers are used to compare the accuracy of the proposed method
on a cubic SVM. To train the classifiers, a 70:30 approach was used. This ratio indicates that
70% of the images were considered for the training process and 30% for the testing process.
The recall rate (TPR), precision rate (PPV), FNR, AUC, accuracy, and time were calculated for
each classifier in the evaluation process. All experiments were conducted in MATLAB 2020b on
a system with an Intel(R) Core(TM) i5-7200u CPU running at 2.50 and 2.7 GHz, with 16 GB
RAM, and an 8 GB graphics card.

3.2 Proposed Classification Results
This section presents the proposed classification results in a numerical and confusion matrix.

The results were obtained using four different experiments. The first experiment extracted features
from the modified VGG16 CNN model and used them in the experimental process. The results
are presented in Tab. 3. In this table, it can be observed that the cubic SVM showed a better
accuracy of 78.2%, whereas the computational time of this classifier was approximately 468 s. The
minimum computational time of this experiment was 83.230 s for the Fine KNN classifier. The
recall rate of the cubic SVM was 78.2%.

Table 3: Classification results using modified VGG16 CNN model

Classifiers Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy % Time (s)

Cubic SVM 78.20 78.40 21.60 0.95 78.2 468.600
Quadratic SVM 76.50 77.00 23.00 0.95 76.8 455.420
Medium gaussian SVM 74.00 73.71 26.29 0.88 74.0 1230.00
Subspace KNN 73.71 73.57 26.43 0.84 73.8 85.620
Subspace discriminant 73.57 74.28 25.72 0.94 73.7 653.700
Linear SVM 73.71 73.42 26.58 0.93 73.7 2034.700
Fine KNN 71.71 71.71 28.29 0.93 71.8 83.230
Weighted KNN 69.00 68.85 31.15 0.91 68.9 125.260
Linear discriminant 67.71 68.00 32.00 0.92 67.5 348.130
Medium KNN 63.2 63.00 37.00 0.90 63.4 87.647

In the second experiment, features were extracted from the modified MobileNet V2 CNN
model and used in the experimental process. The results presented in Tab. 4 show that the best
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accuracy of 82.1% was achieved on the cubic SVM. This classifier performed better than the other
classifiers listed in this table. The computational time of the cubic SVM was approximately 91 s,
whereas the minimum noted time was 20 s for the linear discriminate classifier. The recall rate
of the cubic SVM was 82.1%. This table illustrates that the correct prediction accuracy of each
class is better than that of the confusion matrix of the modified VGG16 (Tab. 4). In addition,
the accuracy of this experiment was improved compared to Experiment 1.

Table 4: Classification results using modified mobileNetV2 model

Classifiers Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy % Time (s)

Cubic SVM 82.10 82.10 17.10 0.97 82.1 91.522
Quadratic SVM 80.67 80.72 19.28 0.97 80.7 84.398
Medium gaussian SVM 79.24 79.38 20.62 0.96 79.2 112.94
Subspace KNN 78.12 77.57 22.43 0.94 78.1 364.65
Subspace discriminant 77.85 77.81 22.19 0.95 77.8 155.93
Linear SVM 76.75 76.85 23.15 0.95 76.8 73.976
Fine KNN 75.64 75.08 24.92 0.85 75.6 30.314
Weighted KNN 74.22 73.71 26.29 0.94 74.2 29.399
Linear discriminant 73.61 73.57 26.43 0.92 73.6 20.575
Medium KNN 68.97 68.71 31.29 0.92 69.0 29.265

In this experiment, we fused the features of both models using CCA. The results are presented
in Tab. 5 which shows that the maximum accuracy achieved is 82.8% on the cubic SVM. The
other calculated evolution measures include a recall rate of 82.1%, a precision rate of 82.97%, an
FNR of 17.03%, and an AUC value of 0.97. The computational time of this classifier is 988.07 s.
The recall rate of the cubic SVM is 82.81%, as shown in Fig. 7. The minimum time required for
this experiment was approximately 245 s. From Tab. 5, it can be observed that the accuracy of all
classifiers increases slightly, however, the execution time increases significantly. This indicates that
there are many redundant features included in the fused vector, which degrades the classification
accuracy.

Table 5: Classification result of fused models

Classifiers Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy % Time (s)

Cubic SVM 82.81 82.97 17.03 0.97 82.8 988.07
Quadratic SVM 82.41 82.67 17.33 0.97 82.4 1202.4
Medium gaussian SVM 67.71 68.08 31.92 0.81 67.7 293.95
Subspace KNN 79.67 80.2 19.8 0.96 79.7 1553.7
Subspace discriminant 28.02 32.64 67.36 0.68 28.0 2047.2
Linear SVM 68.38 69.62 30.38 0.92 68.4 232.70
Fine KNN 62.87 62.84 37.16 0.89 62.9 310.89
Weighted KNN 78.15 78.38 21.62 0.96 78.2 657.71
Linear discriminant 68.21 68.17 31.83 0.92 68.2 245.40
Medium KNN 63.21 65.42 34.58 0.90 63.2 4460.8
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Figure 7: Confusion matrix of cubic SVM for fused features of both models

In this experiment, features were selected based on the MESbS approach; the results are
detailed in Tab. 6. In Tab. 6, it can be observed that the top-attained accuracy is 96.7% on cubic
SVM, whereas the additional calculated measures have a recall rate of 88.31%, a precision rate
of 94.48%, an FNR of 5.52%, and an AUC value of 0.98. The computational time is 51.771 s,
which is significantly minimized compared to Experiments 1 and 3. The recall rate of the cubic
SVM was 88.31%, as shown in Fig. 8. From Fig. 8, it can be observed that the correct prediction
accuracy of each skin lesion class is considerably higher than that of the first three experiments.
In addition, the overall computational time of this experiment decreased. Hence, based on the
results, we can demonstrate that the proposed method outperforms the proposed framework. A
fair comparison was also conducted with the recent techniques, given in Tab. 7, which shows the
proposed framework outclass for multiclass lesion classification.

Table 6: Skin lesion classification results using proposed framework

Classifiers Recall rate (%) Precision rate (%) FNR (%) AUC Accuracy % Time (s)

Cubic SVM 88.31 94.48 5.52 0.98 96.7 51.77
Quadratic SVM 84.40 96.67 3.33 0.98 96.5 54.93
Medium gaussian SVM 78.07 91.17 8.83 0.94 93.6 68.00
Subspace KNN 79.20 91.22 8.78 0.88 93.6 53.99
Subspace discriminant 76.02 97.82 2.18 0.98 95.0 73.17
Linear SVM 88.51 93.38 6.62 0.98 96.6 79.00
Fine KNN 71.44 95.40 4.6 0.94 92.8 85.75
Weighted KNN 68.22 93.78 6.22 0.95 92.4 62.80
Linear discriminant 83.02 97.17 2.83 0.98 96.2 58.17
Medium KNN 84.37 96.94 3.06 0.98 96.4 53.15
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Figure 8: Confusion matrix of cubic SVM using proposed framework

Table 7: Comparison of the proposed method with recent techniques

Reference Year Accuracy (%)

[36] 2020 92.83
[19] 2021 85.50
[37] 2021 95.8
Proposed 2021 96.7

4 Conclusion

A conventional and deep learning-based framework is proposed in this study for skin lesion
segmentation and classification using dermoscopy images. Two tasks were performed. In the first
task, conventional techniques-based skin lesions were segmented. The contrast of lesions was
improved for accurate lesion map creation. The accurate lesion map creation process improves
segmentation accuracy. The segmentation performance was evaluated on the ISIC 2017 dataset
and achieved an accuracy of 95.6%. In the classification tasks, VGG16 and MobileNet V2
CNN models were fine-tuned and trained through TL on dermoscopic images. These models
performed better according to recent studies in the medical image processing field. The features
were extracted from these fine-tuned trained CNN models and fused using the CCA approach.
The main purpose of fusion in this study was to increase image information. However, some
redundant features were also added during the fusion process. The redundant features have an
impact on classification accuracy. Therefore, we propose MESbS, a novel feature selection method.
This method selects the features and classifies them using the C-SVM classifier. The results of our
experiments demonstrate better accuracy than the existing techniques. We conclude that the lesion
contrast enhancement step improves segmentation accuracy. In addition, the selection of the best
features increases classification accuracy and minimizes execution time. Future studies will focus
on the CNN for lesion segmentation and provide segmented lesions to modified models for useful
feature extraction.
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