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Abstract: Deformable medical image registration plays a vital role in medical
image applications, such as placing different temporal images at the same
time point or different modality images into the same coordinate system.
Various strategies have been developed to satisfy the increasing needs of
deformable medical image registration. One popular registration method is
estimating the displacement field by computing the optical flow between two
images. The motion field (flow field) is computed based on either gray-value or
handcrafted descriptors such as the scale-invariant feature transform (SIFT).
Thesemethods assume that illumination is constant between images.However,
medical images may not always satisfy this assumption. In this study, we
propose a metric learning-based motion estimation method called Siamese
Flow for deformablemedical image registration.We trainmetric learners using
a Siamese network, which produces an image patch descriptor that guarantees
a smaller feature distance in two similar anatomical structures and a larger
feature distance in two dissimilar anatomical structures. In the proposed reg-
istration framework, the flow field is computed based on such features and is
close to the real deformation field due to the excellent feature representation
ability of the Siamese network. Experimental results demonstrate that the
proposed method outperforms the Demons, SIFT Flow, Elastix, and Voxel-
Morph networks regarding registration accuracy and robustness, particularly
with large deformations.

Keywords: Deformation registration; feature extraction; optical flow; con-
volutional neural network

1 Introduction

Medical image registration refers to seeking one or a series of spatial transformations for
a medical image (moving image) to achieve spatial and anatomical position correspondence to
another fixed image [1–3]. In many clinical applications, medical image registration can provide
complementary information for accurate diagnosis and tumor treatment planning. For instance,
aligning a map of important anatomical structures to patient images provides useful guidance for
preoperative and intraoperative planning in neurosurgery. In addition, image registration technol-
ogy is used to put studied patient images into a common coordinate system to study anatomical
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and functional variations in the population. Image registration is also used to compensate for
motion, such as breathing and cardiac motions, in dynamic images. In computer-aided diagnosis
and radiation therapy, image registration also plays an important role in aligning and tracking
tumor growth in longitudinal images.

Deformable image registration is an active field of medical image analysis [4–6], and many
studies have investigated this topic [7–9]. The optical flow-based method [10–12] was proposed
to estimate object motion in two successive images in [13]. Thirion et al. [14] proposed the
Demons image registration algorithm based on the similarity between the deformation field and
the optical flow field. The Demons approach solves the image registration problem by considering
the optical flow and calculates the optical flow field based on the difference in intensity of pixels
between the fixed and moving images. Due to nonuniform illumination and abnormal lesions in
medical images, the intensity difference-based optical flow method cannot correctly estimate the
deformation field, and it is difficult to achieve accurate registration results.

To overcome this problem, Ce Liu et al. proposed the scale-invariant feature transform (SIFT)
Flow algorithm, which computes the optical flow field based on the difference in SIFT features
of a pixel between fixed and moving images [15,16]. Although this method can obtain a more
accurate deformation field than traditional optical flow methods, such as Demons, it also has
limitations: (1) because SIFT features are based on gradient information, the SIFT Flow method
mismatches SIFT features and cannot accurately register medical images with weak contrast and
complex structures; and (2) because a SIFT feature is a low-level image feature and cannot
represent a higher level or abstract image feature [17], the SIFT Flow method cannot robustly
estimate the deformation field or effectively register medical images with large deformations.

Recently, in the field of computer vision, machine-learning methods have been used to learn
feature descriptions from large datasets. In particular, convolutional neural networks (CNNs) have
strong feature representation abilities and exhibit good performance for various computer vision
tasks [18–20]. In this study, we propose a deep metric learning feature-based optical flow method
(Siamese Flow) for deformable medical image registration. This method is composed of three
primary steps: deep metric learning feature extraction, deformation field estimation and warping.
Specifically, we obtain image patches that are densely clustered around a given pixel. Then, we
extract the deep metric learning feature of the pixel using the Siamese network [21]. Finally, we
calculate the optical flow field based on these in-depth learning features and obtain the registered
image by warping the moving image using the computed deformation field.

To construct the proposed registration framework, the learned image patch representation
using deep contrastive metric learning and the deformation field estimation using such learned
representations are developed. The learned image patch representation uses the Siamese network
to train the metric learner, which produces an image patch descriptor that guarantees a smaller
feature distance in two similar anatomical structures and a larger feature distance in two dissimilar
anatomical structures. Unlike the SIFT feature and general deep learning features, such as those
from the Visual Geometry Group (VGG) networks [22], the proposed deep metric learning feature
is more discriminative and more stable. The proposed Siamese Flow method can thus solve the
optical flow field with regard to the real deformation field. To our knowledge, this is the first study
that combines contrastive metric learning into optical flow to solve the problem of deformable
medical image registration. Experimental results show that the proposed method outperforms the
Demons [14], SIFT Flow [16], Elastix [23], and VoxelMorph [24] networks regarding registration
accuracy and robustness, particularly with large deformations.
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2 Method

Fig. 1 shows an overview of the proposed Siamese Flow method, which consists of three pri-
mary components: Siamese feature extraction, deformation field estimation and warping. Among
these components, Siamese feature extraction is the most critical. After obtaining the deformation
field, we obtain the registered image by warping the moving image according to the determined
deformation field.

Figure 1: Overview of the proposed image registration framework using the Siamese Flow method

2.1 Siamese Feature Extraction
In the context of image registration, a good local image representation can significantly

improve the corresponding point matching performance, leading to an accurate and robust defor-
mation field. To perform this process accurately without using manually designed features, we
propose to learn local image representations directly from the data using contrastive metric
learning, a Siamese network.

Fig. 2 shows the structure of the proposed Siamese network, which consists of two CNN
networks, in which we share computations across two networks. The input of each network
is an image patch of size 15× 15. The output of the network is a 128-dimensional feature
representation. The convolution layers of each network use a 3× 3 convolution kernel with a
stride of 1 following a leaky rectified linear unit (LeakyReLU) activation function. In addition,
the fully connected layers (Dense 1 and Dense 2) use an ReLU activation function, and we add
a dropout layer after the flattened layer to mitigate overfitting. Network parameters are shown in
Fig. 2.

The proposed Siamese network makes a discriminative image feature by minimizing a con-
trastive loss function, which is shown as follows:

L= 1
2N

N∑
i=1

yid2i + (1− yi)max(margin− di, 0)2 (1)

where N is the number of input sample pairs; di = ||xi1−xi22|| is the Euclidean distance of each
pair; margin is a constant value of 1; and yi is the binary label for input pairs, where 1 indicates
that it is a positive sample pair without deformation, and 0 indicates that it is a negative sample
pair with deformation.
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Figure 2: Architecture of the Siamese network

The mapping learned using contrastive metric learning can make the Euclidean distance
between the Siamese features small for two patches without deformation and large for two patches
with deformation. Therefore, compared with the SIFT feature and general deep learning features,
such as the VGG [22], the proposed Siamese feature extracted by the Siamese network is more
discriminative in the context of the image registration problem.

2.2 Deformation Field Estimation
Inspired by the SIFT Flow method, we incorporate the learned feature representation into an

optical flow-based image registration framework to estimate a dense deformation field. The goal
of this method is to match the Siamese features densely in two images and then minimize the
energy loss function to obtain the displacement vector for each pixel. We defined the energy loss
function as follows:

E(w)=
∑
p

min(||S1(p)−S2(p+w(p))||1, t) (2a)

+
∑
p

η(|u(p)| + |v(p)|) (2b)

+
∑
p,q∈ε

min(α|u(p)− u(q)|,d)+min(α|v(p)− v(q)|,d) (2c)

where S1 and S2 are the Siamese feature vectors of the fixed and moving images; w(p) =
(u(p), v(p)) is the flow vector at pixel location p = (x,y); ε contains all the spatial neighborhoods
(an eight-neighbor system is used); and η and α are used to maintain the desired balance between
the terms. The first term Eq. (2a) accounts for the dissimilarity of the Siamese feature between
the fixed and moving images; the second term Eq. (2b) provides a regularization on the first-order
magnitude of w; and the third term Eq. (2c) enforces a smooth flow field, which constrains the
flow vectors of adjacent pixels to be similar. We use the thresholds t and d to consider matching
outliers and flow discontinuities. These thresholds allow large deformations in soft tissues and
discontinuous displacements between adjacent tissues. Due to large deformations, such as those
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caused by cardiac and respiratory motions, the weight of α in Eq. (2c) should be larger than that
of η in Eq. (2b).

To optimize the objective function E(w), we use a dual-layer loopy belief propagation (BP-
S) [25] method that is similar to that used in SIFT Flow. In addition, we use a coarse-to-fine
matching scheme to speed up optimization [26]. Finally, we warp the moving image to obtain the
registered result based on the deformation field using cubic spline interpolation [27].

3 Experiment and Results

3.1 Dataset and Ground Truth
We validated the proposed method with the BrainWeb [28–30], EXPIRE10 [31], and

ACDC [32] datasets, as well as with our own nasopharyngeal carcinoma (NPC) patient data.
BrainWeb is a simulated brain database (SBD) produced by an MRI simulator and contains
simulated brain MRI data based on two anatomical models: normal and multiple sclerosis (MS).
Full 3-dimensional data volumes were simulated using three sequences (T1-, T2- and PD-weighted)
and a variety of slice thicknesses, noise levels, and levels of intensity nonuniformity. This dataset
has rich image texture information and good image quality. EMPIRE10 is a lung dataset that
contains 30 clinical chest CT scans and their corresponding masks obtained using the lung
segmentation method that was proposed by Rikxoorta et al. [33]. ACDC is a multislice cine MRI
clinical cardiac dataset that contains 150 patients. Finally, NPC is a 3D CT and MRI clinical
nasopharyngeal cancer dataset that includes 100 patients (male/female: 52/48; mean age± standard
deviation: 50.3± 11.2 years old; age range: 21–76 years old), who underwent chemoradiotherapy
or radiotherapy at West China Hospital.

We randomly selected 45 T1 and T2 images from BrainWeb and 30 MRI lung images from
EXPIPE10 to create training and validation datasets. Furthermore, to obtain the corresponding
moving images, we deformed those images using the method proposed by Patrice et al. [34] with
the deformation level parameter λ from 50 to 200 to control the degree of deformation. Then, we
densely extracted image patches with a size of 15× 15 pixels from the fixed and moving images.
We used the patch pairs as the training data and validation data. A patch pair received a positive
label if the patches were generated from the same location of the same fixed image; a negative
label was applied if the patches were created from the same place of the fixed and moving images.
Fig. 3 shows example patches with positive and negative labels. The patches in pairs with positive
labels are identical; there is a deformation between the patch pair with a negative label.

Figure 3: Some positive and negative sample pairs for Siamese network training. (a) BrainWeb T1
positive sample pair (b) BrainWeb T2 positive sample pair (c) EXPIPE10 positive sample pairs (d)
BrainWeb T1 negative sample pair (e) BrainWeb T2 negative sample pair (f) EXPIPE10 negative
sample pair
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3.2 Experiment Setup
We compared the proposed Siamese Flow to Demons [14], SIFT Flow [16], the Elastix

toolbox [23], and VoxelMorph [24]. The Elastix toolbox consists of a collection of algorithms that
are commonly used to solve rigid and nonrigid medical image registration problems. VoxelMorph
is a self-supervised end-to-end deep learning-based registration method and is one of the most
advanced existing methods.

We generated image patch pairs following Section 3.1 and used 6,000,000 and 1,200,000
patch pairs as training and validation data for the Siamese network, respectively. We implemented
the Siamese network using Keras, where the training batch size was 512, the optimizer was
RMSprop [35] with momentum, and the initial learning rate was 0.001 with a momentum of 0.9.
The training of each epoch took approximately 52 s on an NVIDIA Tesla K40C GPU. We trained
the Siamese network with 200 epochs, and it converged before the end of training.

In the experiments, for the Demons parameters, we set the number of histogram levels and
iterations to 1024 and 50, respectively. For the SIFT Flow parameters, we set η to 0.005, α

to 2, and the number of iterations to 200. For the elasticity parameters, we chose advanced
Mattes mutual information as the optimization criterion, adaptive stochastic gradient descent as
the optimization routine, and B-splines (BSPLINE) as the transformation model. We used the
four image pyramids (resolutions), each with 500 iterations. For VoxelMorph, we used the mean
squared error (MSE) as the loss function and implemented EMPIRE10 and BrainWeb as training
datasets to train the model using the released code from the authors [36].

3.3 Evaluation Indices
3.3.1 Root Mean Squared Difference (RMSD)

The RMSD measures the difference between the two images and has the following definition:

RMSD=
√√√√ 1

|�I |
∑
xi∈ΩI

(I1(χi)− I2(xi))2 (3)

where I1 and I2 are images; I1(p) and I2(p) are the gray values at location p = (x,y); ΩI is the
image domain of I1 and I2; and |ΩI | is the number of pixels in I1 or I2. The smaller the RMSD
value between the registered and fixed images is, the more accurate the registration result is.

3.3.2 DICE Coefficient
We also compare the corresponding regions of interest (ROIs) of fixed and moving images.

The method behind this comparison assumes that the ROI is given in the fixed image and that
the corresponding ROI in the moving image is computed by warping the ROI in the fixed image
using a computed deformation field. We use the DICE coefficient to determine this comparison
evaluation index [37]. The DICE coefficient is defined as follows:

DICE= 2|X ∩Y |
|X | + |Y | (4)

where X and Y are the ROIs of the two images, and X ∩Y is the overlapping ROI. For images
from EMPIRE10, the ROI is the lung segmentation. For images from ACDC, the ROIs are the
annotated left ventricular endocardium (LV), right ventricular endocardium (RV) and myocardium
(MC). Fig. 4 shows examples of lung and cardiac images and their masks.
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Figure 4: Examples of (a) a lung image (b) its lung mask (c) a cardiac image and (d) its LV, RV
and MC masks

3.3.3 Mutual Information (MI)
MI measures the similarity between the two images, and the following is one of the standard

mathematical definitions for MI:

MI(I1, I2)=E(I1)+E(I2)−E(I1, I2) (5)

where E(I1) and E(I2) are the individual entropies and E(I1, I2) is the joint entropy. When two
similar images are perfectly aligned, the joint entropy E(I1, I2) is minimized, and thus, MI reaches
its maximum. Thus, the greater the MI value between the registered and fixed images is, the more
accurate the registration result is.

3.4 Registration Accuracy
We randomly chose twenty images from BrainWeb and EMPIRE10 as the fixed images and

deformed them with a specific deformation level λ from 50 to 200 with a step of 50 to create
the moving images. There are a total of 160 paired fixed and deformable moving images used to
validate the registration accuracy of the five methods.

Tab. 1 summarizes the average RMSD indices of the five compared methods with the Brain-
Web and EMPIRE10 datasets. Tab. 2 summarizes the average DICE indices of the five methods
with the EMPIRE10 dataset. The results shown in Tabs. 1 and 2 demonstrate that the pro-
posed approach outperforms Demons, SIFT Flow, and the most advanced methods (Elastix and
VoxelMorph) in all cases in terms of RMSD and DICE.

Figs. 5 and 6 show two examples of registration results with different methods (Demons,
SIFT Flow, Elastix, VoxelMorph, and the proposed Siamese Flow) from the test BrainWeb and
EMPIRE10 datasets. Fig. 5a is the fixed T1 image; Fig. 5b is the moving T1 image; Fig. 5c is the
heatmap between the fixed and moving images; Figs. 5d–5h are the registered images obtained by
Demons, SIFT Flow, Elastix, VoxelMorph and Siamese Flow, respectively; and Figs. 5i–5m are
the heatmaps between the fixed and registered images. The heatmap shows the absolute difference
between the fixed and registered images. Figs. 5 and 6 show that the heatmaps of the five methods
are consistent with their RMSD and DICE results, and the proposed Siamese Flow achieves the
most accurate registration results.

3.5 Cross-Modality
To demonstrate the cross-modality registration capability of the proposed method, we applied

the proposed method to two new tasks (multimodality applications). The first task was to register
T1 and T2 images from BrainWeb, and the second task was to register CT and MRI images from
NPC. For the two tasks, we trained the Siamese networks on image patch pairs taken from the
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T1-T2 slices of BrainWeb and the CT-MR slices of NPC. For each task, we used 150,000 and
40,000 patch pairs as training data and validation data, respectively.

Table 1: RMSD results with BRAINWEB and EMPIRE10 at different deformation levels

Dataset Unregistered Demons SIFT Flow Elastix VoxelMorph Siamese Flow

BrainWeb
(λ=50)

13.50± 2.60 4.61± 1.07 1.86± 0.84 1.56± 0.73 1.50± 0.73 1.10± 0.30

BrainWeb
(λ=100)

24.07± 4.35 5.60± 1.85 6.28± 1.26 4.61± 1.12 4.28± 1.01 3.04± 0.62

BrainWeb
(λ=150)

33.16± 7.04 11.72± 2.48 8.49± 1.61 7.36± 1.46 6.13± 1.20 4.68± 0.73

BrainWeb
(λ=200)

35.87± 9.62 15.70± 3.56 12.22± 2.30 10.50± 2.14 9.30± 1.89 6.87± 1.12

EMPIRE10
(λ= 50)

11.07± 2.10 6.90± 1.32 5.94± 1.26 5.11± 1.01 4.78± 0.81 2.73± 0.28

EMPIRE10
(λ= 100)

15.93± 3.81 8.96± 1.77 7.34± 1.52 6.01± 1.24 5.19± 1.17 3.23± 0.57

EMPIRE10
(λ= 150)

21.22± 4.09 11.75± 2.64 8.52± 1.81 7.31± 1.38 6.51± 1.24 3.98± 0.64

EMPIRE10
(λ= 200)

22.45± 4.25 14.19± 3.08 9.62± 2.03 8.49± 1.67 6.92± 1.32 5.03± 0.89

Table 2: DICE results with EMPIRE10 at different deformation levels

Dataset Unregistered Demons SIFT Flow Elastix VoxelMorph Siamese Flow

EMPIRE10
(λ= 50)

0.982± 0.121 0.995± 0.102 0.997± 0.110 0.998± 0.087 0.999± 0.100 0.999± 0.076

EMPIRE10
(λ= 100)

0.964± 0.136 0.994± 0.114 0.996± 0.125 0.996± 0.095 0.998± 0.103 0.999± 0.081

EMPIRE10
(λ= 150)

0.930± 0.142 0.985± 0.137 0.991± 0.122 0.995± 0.099 0.996± 0.118 0.997± 0.089

EMPIRE10
(λ= 200)

0.920± 0.157 0.979± 0.148 0.988± 0.129 0.994± 0.124 0.995± 0.103 0.996± 0.094

We randomly chose fifteen paired T1-T2 and CT-MR images from BrainWeb and NPC
separately, took T1 and CT as the fixed images, and deformed the paired T2 and MRI with a
specific deformation level λ from 50 to 200 with a step of 50 to create the moving images. There
are a total of 120 paired fixed and distorted moving images to validate the proposed method’s
ability to register the multimodality registration.

Tab. 3 summarizes the average MI of the five compared methods on the BrainWeb and NPC
datasets. The results presented in Tab. 3 demonstrate that the proposed approach outperforms
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VoxelMorph, Demons, SIFT Flow, and the most advanced cross-modality registration method
Elastix in all cases.

(a) (b) (c)

(d) (e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 5: Visualization of registration accuracy results using a heatmap for a randomly selected
BrainWeb T1 image and its deformable image (λ= 150). (a) Fixed T1 (b) Moving T1 (c) Heatmap
of the fixed and moving T1 (d) Demons (e) SIFT Flow (f) Elastix (g) VoxelMorph (h) Siamese
Flow (i) Heatmap of Demons (j) Heatmap of SIFT Flow (k) Heatmap of Elastix (I) Heatmap of
VoxelMorph (m) Heatmap of Siamese Flow

Figs. 7 and 8 show how well different registration algorithms perform in the application of
registering a pair of images from the different image modalities. Fig. 7a is the fixed T1 MR
image; Fig. 7b is the corresponding T2 MR slice (ground truth); Fig. 7c is the moving T2 MR
image generated by distorting image (b) with λ= 150; Fig. 7d is the ground truth T2 MR image
overlayed on the fixed T1 image; Fig. 7e is the moving T2 MR image overlayed on the fixed
T1 image; and Figs. 7f–7j are the registration results obtained by Demons, SIFT Flow, Elastix,
VoxelMorph and Siamese Flow overlayed on the fixed T1 image, respectively. The proposed
method is shown to achieve better registration accuracy than Elastix when registering images from
cross-modalities.
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(a) (b) (c)

(d) (e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 6: Visualization of registration accuracy results using a heatmap for a randomly selected
EMPIRE10 image and its deformable image (λ = 150). (a) Fixed image (b) Moving image (c)
Heatmap between the fixed and moving image (d) Demons (e) SIFT Flow (f) Elastix (g) Voxel-
Morph (h) Siamese Flow (i) Heatmap of Demons (j) Heatmap of SIFT Flow (k) Heatmap of
Elastix (I) Heatmap of VoxelMorph (m) Heatmap of Siamese Flow

Table 3: MI results with BrainWeb T1-T2 and NPC CT-MRI at different deformation levels

Dataset Unregistered Demons SIFT Flow Elastix VoxelMorph Siamese Flow

BrainWeb (λ=50) 1.09± 0.38 1.13± 0.35 1.24± 0.37 1.68± 0.25 0.97± 0.35 1.72± 0.22
BrainWeb (λ=100) 1.01± 0.41 1.08± 0.33 1.16± 0.34 1.58± 1.12 0.96± 0.41 1.63± 0.23
BrainWeb (λ=150) 0.98± 0.45 1.03± 0.31 1.13± 0.42 1.48± 0.32 0.96± 0.45 1.59± 0.31
BrainWeb (λ=200) 0.92± 0.50 0.97± 0.40 1.09± 0.36 1.38± 0.37 0.89± 0.46 1.51± 0.28
NPC (λ=50) 0.54± 0.12 0.54± 0.10 0.58± 0.09 0.59± 0.08 0.52± 0.10 0.67± 0.07
NPC (λ=100) 0.53± 0.13 0.54± 0.10 0.57± 0.09 0.59± 0.09 0.52± 0.10 0.66± 0.08
NPC (λ=150) 0.52± 0.15 0.53± 0.11 0.56± 0.11 0.58± 0.09 0.51± 10.11 0.66± 0.08
NPC (λ=200) 0.51± 0.18 0.51± 0.12 0.53± 0.11 0.58± 0.10 0.49± 0.11 0.65± 0.09

3.6 Large-Deformation and Unseen Dataset
Large deformations due to heartbeat and respiration effects lead to a challenging deformable

image registration task. In this section, we investigated registration performance in the case of
the large deformable motion of cardiac tissue from ACDC for the five compared methods. The
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cardiac cine MRI scans in ACDC consist of short-axis cardiac image slices, each containing 20
time points that encompass the entire cardiac cycle. An expert annotated the LV, the RV and the
MC at end diastolic (ED) and end systolic (ES) time points. To facilitate quantitative evaluation,
we took the images in the ED and ES phases as fixed and moving images, respectively. We also
trained the Siamese network on the image patches taken from the MR slices from BrainWeb and
EMPIRE10, and the testing images were randomly selected from ACDC (unseen dataset and body
part).

Tab. 4 shows the average DICE of the annotated LV, RV and MC regions that correspond
to the registered images obtained by the five methods for ED and ES frames from the ACDC
dataset. Tab. 4 shows that the proposed Siamese Flow achieves the highest average DICE.

Fig. 9 shows a comparison among different registration algorithms with large deformations
and unseen datasets. Fig. 9a shows one fixed image randomly selected from ACDC; Fig. 9b is
the corresponding moving image at the ES time point; and Figs. 9c–9h are superimposed LV,
RV and MC regions of the ground truth (red) and the deformed regions of the registered image
(green). Specifically, Fig. 9c is the result before registration; and Figs. 9d–9h are the results after
registration using Demons, SIFT Flow, Elastix, VoxelMorph and Siamese Flow, respectively. Fig. 9
shows that the deformed region attained by Siamese Flow achieves the closest alignment with the
ground truth region.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Illustration example of T1-T2 images from BrainWeb with different registration methods.
(a) Fixed T1 (b) True T2 (c) Initial moving image (d) Ground truth overlay (e) Unregistered (f)
Demons (g) SIFT Flow (h) Elastix (i) VoxelMorph (j) Siamese Flow
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Illustration examples of CT-MR slices from NPCs with different registration methods.
(a) Fixed CT (b) True MR (c) Initial moving image (d) Ground truth overlay (e) Unregistered (f)
Demons (g) SIFT Flow (h) Elastix (i) VoxelMorph (j) Siamese Flow

Table 4: DICE results for ACDC with different time points

Dataset Unregistered Demons SIFT Flow Elastix VoxelMorph Siamese Flow

LV 0.594± 0.235 0.700± 0.241 0.867± 0.230 0.813± 0.210 0.931± 0.294 0.960± 0.092
RV 0.782± 0.331 0.821± 0.259 0.905± 0.201 0.904± 0.200 0.901± 0.306 0.924± 0.150
MC 0.497± 0.224 0.531± 0.218 0.745± 0.212 0.719± 0.238 0.620± 0.332 0.781± 0.104

4 Discussion

In this study, we proposed a deep learning feature-based optical flow method (Siamese
Flow) for deformable medical image registration. Experimental results show that the proposed
method outperforms Demons, SIFT Flow, and the most advanced existing methods (Elastix and
VoxelMorph) with regard to registration accuracy, robustness, and large deformation.

The registration accuracy results (Tabs. 1 and 2, and Figs. 5 and 6) show that the proposed
Siamese Flow method performs better than the comparison methods regarding RMSD, DICE,
and heatmap visualization. Demons, SIFT Flow, and Siamese Flow are optical flow-based regis-
tration methods that align the fixed and moving images by minimizing image dissimilarities in the
context of the optical flow approach. The feature representation derived from the proposed deep
learning approach outperforms handcrafted features, such as SIFT Flow and pixel intensity-based
approaches. The proposed approach thus produces better registration accuracy than Demons and
SIFT Flow-based approaches.

Conversely, Elastix and VoxelMorph perform image registration via an optimizer that max-
imizes the intensity-based similarity between the overall fixed and moving images. The cost
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function thus plays an essential role in these methods to achieve an accurate registration result.
Using the same cost function, we observed that the RMSD and DICE results in these two
algorithms are similar. While it is a challenging task to design an optimal cost function in a
specific task, we do not need to use an explicit image registration cost function in the proposed
approach because image similarity is learned via metric learning and contrastive samples prepared
in the learning stage. From comparative experiments that consider RMSD and DICE indices
as well as heatmap visualization on BrainWeb and EMPIRE10, we observed that the proposed
approach outperformed these two methods.

(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 9: Example results for large-deformation cardiac-motion registration. (a) Fixed image (ED
time point) (b) Moving image (ES time point) (c) unregistered (d) Demons (e) SIFT Flow (f)
Elastix (g) VoxelMorph (h) Siamese Flow

From the results in Tab. 3, Figs. 7, and 8, the proposed algorithm is shown to be capable of
registering multimodal deformable images. Demons and VoxelMorph fail to align two images in
the case of appearance variations across different modalities because they assume that illumination
is constant between images. SIFT Flow also fails because the SIFT feature is based on the
gradient information and does not consider multimodal information. Unlike Demons, SIFT Flow
and VoxelMorph, Elastix and Siamese Flow perform well in these cross-modality registration
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tasks. In addition, from the MI results in Tab. 3 and the color coding results in Figs. 7 and 8,
particularly the red arrows pointing in Fig. 7h, Siamese Flow is shown to perform better than
Elastix, which uses handcrafted mutual information as a cost function to measure image similarity
under a global statistical assumption. However, Siamese Flow calculates image similarity via
metric learning image features, making it more suitable for deformable medical image registration
and allowing it to produce more accurate results.

Better registration is reflected by closer alignment of the fixed and moving images. Based on
the DICE results in Tab. 4 and the superimposed LV, RV and MC regions in Fig. 9, Siamese
Flow is shown to be capable of managing large tissue or organ deformations and achieves the
best performance among all investigated methods. The Demons approach fails to align two images
because the underlying assumptions (constant gray values and constant gradient) are unsatisfac-
tory in optical flow estimation. VoxelMorph fails to attain accurate registered results due to the
large unseen deformation level. SIFT Flow obtains alignment results that are comparable to those
of Elastix for this large-deformation registration task. Elastix fails to align two images under a
certain iteration number (e.g., 500 iterations). SIFT Flow also fails to use the handcrafted SIFT
feature. In contrast, Siamese Flow is successful in all of these cases because the learned image
patch representation is robust and generalizable, even to large deformations.

Furthermore, Tab. 4 and Fig. 9 show that Siamese Flow can generalize different tasks without
retraining the model. The model learns a generic local descriptor that is applicable to other unseen
datasets (ACDC) and unseen body parts (cardiac).

5 Conclusion

In this study, we presented a deep metric learning feature-based optical flow method for
deformable medical image registration. In this framework, the critical components are the learned
image patch representation that uses contrastive loss and the proposed optical flow that uses this
learned representation. Experimental results show that the proposed Siamese Flow-based registra-
tion method performs better than pixel intensity and SIFT feature-based optical flow methods.
Additionally, the proposed method outperforms conventional intensity-based image registration
methods, such as Elastix, and end-to-end deep learning-based image registration methods, such
as VoxelMorph, with regard to registration accuracy, robustness, and ability to manage large
deformations.

In the future, we plan to extend the proposed algorithm as follows. First, we plan to
investigate the end-to-end deep learning feature-based optical flow method (Siamese Flow) for
deformable image registration to reduce computation time. Second, we plan to investigate the
deep learning feature-based optical flow method for multimodality deformable image registration.
Last, we plan to use the proposed algorithm to register lungs with large deformations to evaluate
regional lung deformation.
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