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Abstract: In this article, a brief biological structure and some basic properties
of COVID-19 are described. A classical integer order model is modified and
converted into a fractional ordermodel with ξ as order of the fractional deriva-
tive. Moreover, a valued structure preserving the numerical design, coined as
Grunwald–Letnikov non-standard finite difference scheme, is developed for
the fractional COVID-19 model. Taking into account the importance of the
positivity and boundedness of the state variables, some productive results have
been proved to ensure these essential features. Stability of the model at a
corona free and a corona existing equilibrium points is investigated on the
basis of Eigen values. The Routh–Hurwitz criterion is applied for the local
stability analysis. An appropriate example with fitted and estimated set of
parametric values is presented for the simulations.Graphical solutions are dis-
played for the chosen values of ξ (fractional order of the derivatives). The role
of quarantined policy is also determined gradually to highlight its significance
and relevancy in controlling infectious diseases. In the end, outcomes of the
study are presented.

Keywords: Coronavirus pandemic model; deterministic ordinary differential
equations; numerical methods; convergence analysis

1 Introduction (COVID-19)

Novel coronavirus is a spherical or pleomorphic shaped, particle having single stranded
(positive sense) RNA (Ribonucleic Acid) linked to a nucleoprotein surrounded by a special type
of protein. The outer surface of the coronavirus contains the projections of the club-shaped
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structure. The Classification of the coronaviruses depends upon the appearance of the outer
surface (whether it is crown like or halo like), the replication mechanism and the distinct features
related to the chemistry of the virus. In general, these viruses belong to OC43-like or 229E-
like serotypes. Avian and mammalian species serve as hosts for them. Both types are similar
with respect to morphology and chemical structure. Corona viruses present in human beings and
animals are antigenically similar. These are capable of attacking on different types of tissues in
animals. But, in human beings this family of viruses generally cause only the upper respiratory
tract infection. This virus belons to the subclass Orthocoronavirinae, class Coronaviridae, order
Nidovirales, realm Riboviria, kingdom Orthcornavirae and phylum Pisuviricota. The dimension of
this virus varies from 26 to 32 kilobases, which is largest in the class of RNA viruses. They have
distinct protruded club or clove shaped studs or spikes [1]. Like other corona viruses, COVID-19
also contains protein in the form of spikes ejecting outside from the surface. These spikes cling
with the host (human) cells then its genome bears a structural change and the viral membrane fuse
with the host cell cytoplasm. After this step, the viral genes of the COVID-19 enter into the host
cell for replication and multiplication of the viruses. Depending upon the protease of the host cell,
cleavage reaction permits it to reach into the host cell by endocytosis or fusion. After entering into
the host cell, the virus becomes uncovered and their genome attacks on the cell cytoplasm. The
genome of the coronavirus works as a messenger and it is translated by the ribosomes of the host
cells. These viruses are divided into four categories as alpha coronavirus, beta coronavirus, gamma
coronavirus and delta coronavirus. The first two viruses infect the mammals while the last two
viruses initially attack the birds. The genera and species of these viruses are described as follows:
the species Alphacoronavirus 1, Human coronavirus 229E, Human coronavirus NL63, Miniopterus
bat coronavirus 1, Miniopterus bat cor onavirus HKU8, Porcine epidemic diarrhea virus, Rhi-
nolophus bat coronavirus HKU2 and Scotophilus bat coronavirus 512 belong to the Alpha
coronavirus. While the species, Betacoronavirus 1(Bovine Coronavirus, Human coronavirus OC43),
Hedgehog coronavirus 1, Human coronavirus HKU1, Middle East respiratory syndrome-related
coronavirus, Murine coronavirus, Pipistrellus bat coronavirus HKU5, Rousetlus bat coronavirus
HKU9, Severe acute respiratory syndrome- related coronavirus (SARS-Cov, SARS-Cov-2) and
Tylonycteris bat coronavirus HKU4 belong to Beta coronavirus. Furthermore, the species Avian
coronavirus and Beluga whale coronavirus SW1 are the members of the Gamma coronavirus.
Lastly, the Bulbul coronavirus HKU11 and Porcine coronavirus HKU15 species are the fam-
ily members of the Delta coronavirus. Coronaviruses are deleterious to health with high risk
factor. Some of them have more than 30% mortality rate, for instance MERS-COV. But other
are not so harmful like as common cold. All types of the coronaviruses can be the causative
agent of cold with prime symptoms including fever, sore throat and swollen adenoids. Moreover,
they can cause primary viral pneumonia or secondary bacterial pneumonia or bronchitis in the
same way as that of pneumonia [2]. The SARS-COV appeared in 2003, resulted in severe acute
respiratory syndrome (SARS). It effected both the upper and lower respiratory tract due to an
unmatched pathogenesis. There are six classes of human coronaviruses that are known so far,
each specie is categorized into two types. There are seven types of human coronaviruses. Four
coronaviruses which show mild symptoms are: Human coronavirus OC43 (HCOV-OC43), β-Cov,
Human coronavirus HKU1 (HCOV-HKU1) and β-Cov, Human coronavirus 229E (HCOV-229E),
α-Cov, Human coronavirus NL63 (HCOV-NL63) and α-Cov. Three coronaviruses which show
severe symptoms are middle east respiratory syndrome-related coronavirus (MERS-COV), β-Cov,
Severe acute respiratory syndrome coronavirus (SARS-COV), β-Cov and Severe acute respiratory
syndrome coronavirus-2 (SARS-COV-2) and β-Cov. The HCOV-OC43, HCOV-HKU1, HCOV-
229E and HCOV-NL63. They periodically produce the mild symptoms of the common cold in
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the population all around the year. The outburst of pneumonia in Wuhan, China declared a
pandemic by WHO (World Health Organization). This is considered due to a novel type of
coronavirus, provisionally named as 2019-nCov by WHO, later it was renamed as SARS-COV-2
by the international committee on Taxonomy of viruses. As of 24 June 2020, 476,911 deaths and
more than 9,237691 confirmed cases of COVID-19 were recorded. The Wuhan breed is recognized
as a new class of Beta coronavirus, which is genetically similar to SARS-COV. Since COVID-19
has a great resemblance with the bat coronavirus so it is suspected to be initiated from bats
also [3]. As there is no vaccination or treatment for this disease so it has become a challenge
for the scientists, health workers and policy makers to control the spreading of the infection.
However, the research community and scientists are making efforts to find the treatment, vaccine
or factors that are helpful in slowing down the dynamics of the disease. As a matter of fact,
the virus is new however the virus family is not new for the human beings. The humanity has
already faced such types of viruses on different scales in the near past. Currently, this infection
has frozen all types of academic, business, sports and many other routine activities which created
many problems and difficulties for the human beings as well as for the society [4]. The eradication
of the COVID-19 is an uphill task for the relevant authorities. The modern world is fighting
against the infectious diseases on the one hand and changing environmental conditions that are
favorable for the emergence of the viral diseases on the other hand. The examination of dead
bodies revealed that most of the patients were diagnosed with severe heart, lungs, diabetes and
some other diseases. The Disease can be communicated easily through the nasal viral secretion
that is transmitted directly or indirectly to the susceptible person. Generally, the symptoms of the
infection are mild but in some cases painful death is also observed. The effective forecast for the
disease dynamics is a prolific study matter regarding epidemiology, mathematical modeling and
simulations. There exist many classes of mathematical models that depend upon the assumptions
imposed on the process of dynamics. For instance, SIS, SIR, SEIR, SEIQR and many other
compartmental models are used to formulate nonlinear incidence rates and double epidemic
hypothesis [5]. In these types of models S, E, I , Q and R describe the susceptible, exposed,
infected, quarantined and recovered individuals. These cellular or compartmental systems are used
for adjusted incidence rate and imperfect vaccinations [6]. In these models, it is assumed that
the susceptible individuals are aware of the infection’s presence [7]. It is worth mentioning that
most of the existing deterministic models rest on the ordinary differential equations which imply
the assumption of constant diffusion in the domain population. On the other hand, the use of
partial differential equations model highlights the non-constant diffusion of the infection [8–10].
Although, many studies have been carried out for the providing the deeper insight into the disease
dynamics. Chen et al. [11] considered a model with four compartments to investigate the dynamics
of the novel infection. Shim and co-authors [12] addressed the questions relating to the effect
analysis of the disease. Naveed et al. [13] developed a mathematical model to analyze the virus
communication among the population and calculated the basic reproductive number. Many other
approaches on the infection propagation may be seen in the sequel. Fractional calculus (FC) is
the extension of the integer order calculus. On the basis of FC, the researchers are trying to
understand the real world phenomenon of the infectious diseases in a more comprehensive way.
They are developing mathematical models with derivatives of non-integer order. By the usage of
these types of fractional operators many fruitful studies have been made in the recent scenario.
New features and properties of the FC have fascinated the researchers, engineers and scientists
to model the problems in the frame work of fractional calculus. The development of new non
integer order operators have brought a number of essential features of many physical problems in
to the lime light. The history of non-integer order calculus starts with a question posed by Leibniz
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in 1965. There is a long list of existing fractional order differential operators depending upon the
nature of Kernels. Caputo, Riemann–Liouvelle and Katugampola fractional differential operators
are developed by using singular kernels. While the fractional operators without singular kernels
are of two types. In first type, exponential kernel is used for instance, Caputo–Fabrizio fractional
differential operator. Whereas Mittag-Leffler kernel is used in the second type of operators e.g.,
Atangana–Baleanu fractional operator in Caputo sense. Due to the salient features of the FC, it
is used to model a wide range of physical and dynamical problems in various fields of physical
sciences, mathematics, life sciences and engineering [14]. Positivity, boundedness and the stability
of the equilibrium points for the fractional order physical problems is a challenging task for the
scientists and mathematicians. Some researchers are working in this line, but a lot of work is
still to be done. Memory effect and hereditary properties are among the celebrated features of
the non-integer order derivatives that are helpful in describing the disease dynamics. Taking in
to account the memory effect, the fractional order models provide all the important informations
from the past that are helpful in forecasting the dynamics of the infection more accurately and
comprehensively. Saeedian and co-authors [15] designed a fractional SIR infectious disease model
with memory effect and investigated the infection spread in the population. Ucar et al. [16] studied
the dynamics of a fractional order smoking model. In the current study, an integer order model is
considered initially then we switched on the non-integer order model by using Caputo differential
operator. The fractional order model of COVID-19 can describe the complex dynamics of the
physical phenomena with a more realistic approach.

2 Preliminaries

In this section, we will present some fundamental definitions of non-integer order derivatives,
their key properties and notations used in this article.

2.1 Non Integer Order Derivatives
Fractional order derivatives have been defined by many researchers in a number of ways

according to the nature of the kernel used therein. Some basic fractional order operators are
defined in this section. Firstly, the Riemann–Liouville non integer order derivative of order
0< ξ ≤ 1 is defined as,

RLDξ

0φ (t)= 1
Γ(k− ξ)

dk

dtk

∫ t

0

φ (s)

(t− s)k−ξ−1
ds (1)

where k = [ξ ]+ 1, k − 1 < ξ ≤ k,
dk

dtk
is the kth order derivative and Γ(.) is the extensively used

gamma function presented by Euler Fractional order derivative of a function is not defined in
a unique way, as in the classical calculus an integer order derivative of a function is defined.
Fractional derivative is a generic name given to a class of differential operators used to find
the non-integer order derivative of a function. These operators are defined by a number of
researchers in different ways. Some of them are Liouville, Riemann–Liouville, Caputo, Fabrizio,
Grunwald–Letnikov and many more can be studied in the sequel. Among many other questions,
it is important that which differential operator best suits for the underlying model. A more
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generic fractional operator should be selected for the purpose. The Caputo fractional operator is
defined as,

C
0 D

ξ

0φ (t)= 1
Γ(k− ξ)

∫ t

0
(t− s)k−ξ−1 d

k

dtk
f (s)ds. (2)

The importance of this operator, when applied to solve a system of fractional differential
equations is that it can be associated with initial conditions of classical order, which results in an
initial value problem in the desired form as,

C
0 D

ξ

0φ (t)= φ (t, y (t)) ,

Dy (t0)= y0k, k= 1, 2, 3, . . . , n− 1

A very useful definition relating to this article by using the classical finite differences on

a uniform mesh partionised in [0, t] is described as follows, consider that Dξ
t φ (t) observes the

particular smoothness constraints in every interval (0, t) , t≤T with mesh points as

0= τ0 < τ1 < . . . < τn+1 = t= (n+ 1)h

where h is defined as the difference of τn+1 and τn. By using the classical finite difference symbols,
we have

1
hξ

Δ
ξ

hφ (t)= 1
hξ

(
φ (τn+1)−

n+1∑
i=1

eξi φ (τn+1−i)

)

where eξi = (−1)i−1
(

ξ

i

)
and the by Grunwald Letnikov approximation is given as

Dξ
t φ (t)= lim

h→0

1
hξ

Δ
ξ

hφ (t) (3)

This expression is derived from the famous Euler method. Consider the fractional differential
equation

C
0 D

ξ

0φ (t)= f (φ (t) ,φ(τ )) (4)

Now, by applying the G-L scheme on a uniform mesh, we obtain the following expression

φn+1−
n+1∑
i=1

−γn+1φ0 = hξ f (φm) , (5)

where e and γn satisfy the following relations ei = (−1)i−1
(

ξ

i

)
and

γn= hξ γ0 (τn+1)= γ0,−1 (n+ 1)−ξ , where the coefficient on the right hand side is described as

γ0,−1 = Γ (μξ + 1)
Γ (kξ + 1)

,

where μ, kεN∪ {0} .
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Furthermore, ei and γi observe the relations as stated in the Lemma 1.

Lemma 1 [17]: Let 0< ξ < 1, then the coefficients expressed by

ei = (−1)i−1
(

ξ

i

)
are positive and obey the relation

ei =O
(

1
e1+ξ

)
as i→∞.

Also the following two relations are satisfied

0≤ er+1 < er . . . < e1 = ξ < 1

and 0≤ γi+1 < γi . . . < γ1 = 1
Γ (1− ξ)

In this section, we present the GL-NSFD hybrid scheme is formulated by combining the
GL scheme for numerical approximation of the fractional order derivatives and NSFD scheme
constructed by using the standard rules designed by Mickens. More details can be seen in [18].
The system of equations for COVID-19 is described as follows:

C
0 D

ξ

0S (t)= λξ − (β1
ξ I (t)+β2

ξE (t)
)
S (t)−μξS(t) (6)

C
0 D

ξ

0E (t)= (β1
ξ I (t)+β2

ξE (t)
)
S (t)− (q1ξ + kξ +αξ +μξ

)
E(t) (7)

C
0 D

ξ

0I (t)= αξE (t)−
(
rξ +μξ + dξ

1

)
I (t) (8)

C
0 D

ξ

0Q (t)= q1
ξE (t)−

(
qξ +μξ + d2

ξ
)
Q (t) (9)

C
0 D

ξ

0R (t)= kξE (t)+ rξ I (t)+ qξQ (t)−μξR (t) (10)

2.2 GL-NSFD Scheme
In this portion, we will construct the proposed scheme. The discretization of fractional

derivative C0D
ξ

0S(t) is given as,

C
0 D

ξ

0S (t)= 1

φ (h)ξ

(
Sn+1−

n+1∑
i=1

eiSn+1−i− rn+1So

)
.

The above formula is used on the left hand side of Eq. (6) to get the following expression

Sn+1−
n+1∑
i=1

eiSn+1−i− rn+1So= φ (h)ξ λξ −φ (h)ξ β1
ξ In (t)Sn+1 (t)−φ (h)ξ β2

ξEnSn+1−φ (h)ξ μξSn+1.

After some simplifications, we have the final form as,

Sn+1 =
∑n+1

i=1 eiSn+1−i+ rn+1So+φ (h)ξ λξ

1+φ (h)ξ [β1
ξ In+β2

ξEn+μξ ]
(11)
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Similar procedure is adopted for the remaining compartments and we have the final forms as,

En+1 =
∑n+1

i=1 eiEn+1−i+ rn+1Eo+φ (h)ξ [β1
ξ In+β

ξ

2En]Sn

1+φ (h)ξ
(
qξ

1 + kξ +μξ +αξ
) (12)

In+1 =
∑n+1

i=1 eiIn+1−i+ rn+1Io+φ (h)ξ αEn

1+
(
rξ +μξ + dξ

1

)
φ (h)ξ

(13)

Qn+1 =
∑n+1

i=1 eiQn+1−i+ rn+1Qo+φ (h)ξ qξ

1En

1+
(
qξ +μξ + dξ

2

)
φ (h)ξ

(14)

Rn+1 =
∑n+1

i=1 eiRn+1−i+ roRo+φ (h)ξ [kξEn+ rξ In+ qξQn]

1+μξφ (h)ξ
(15)

2.3 Positivity of the Solution
In this portion, positivity of the solution will be investigated. Positivity is an important feature

of the compartmental models. Since, the state variables in these type of models describe the size
of the population that cannot be negative. So, positivity is the basic requirement of the solutions
at every moment of time. Following result is helpful in this regard.

Theorem: Assume that all the unknowns and parameters arose in the model are non-negative
i.e., So, Eo, Io, Qo and Ro are positive. Also λξ , μξ , kξ , rξ , αξ , d1

ξ , d2
ξ , β1

ξ , β2
ξ , q1ξ , q2ξ , qξ and

φ (h)ξ all are ≥ 0. Then Sn, En, In, Qn and Rn all are ≥ 0 ∀n ∈Z
+.

Proof: Taking in to account the Eqs. (11) to (15) for n= 0, we have

S1 = e1So+ r1So+φ (h)ξ λξ

1+φ (h)ξ (β
ξ

1 Io+β2
ξE0+μξ)

From the restrictions imposed on the state variables and parameters, it is evident that S1 ≥ 0.
Similarly, E1 ≥ 0, I1 ≥ 0, Q1 ≥ 0 and R1 ≥ 0. Continuing in the same way and by straight forward
calculations, it is easy to conclude that Sn+1 ≥ 0, En+1 ≥ 0, In+1 ≥ 0, Qn+1 ≥ 0 and Rn+1 ≥ 0. i.e.,

Sn+1 =
∑n+1

i=1 eiSn+1−i+ rn+1So+φ (h)ξ λξ

1+φ (h)ξ [βξ

1 In+β
ξ

2En+μξ ]
≥ 0,

En+1 =
∑n+1

i=1 eiEn+1−i+ rn+1Eo+φ (h)ξ [βξ

1 In+β
ξ

2En]Sn

1++φ (h)ξ
(
qξ

1 + kξ +μξ +αξ
) ≥ 0,

In+1 =
∑n+1

i=1 eiIn+1−i+ rn+1Io+φ (h)ξ αξEn

1+
(
rξ +μξ + dξ

1

)
φ (h)ξ

≥ 0,

Qn+1 =
∑n+1

i=1 eiQn+1−i+ rn+1Qo+φ (h)ξ qξ

1En

1+
(
qξ +μξ + dξ

2

)
φ (h)ξ

≥ 0,
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Rn+1 =
∑n+1

i=1 eiRn+1−i+ roRo+φ (h)ξ [kξEn+ rξ In+ qξQn]

1+μξφ (h)ξ
≥ 0.

2.4 Boundedness
Since the state variables in the model represent the subpopulation of a certain compartment.

So the sum of values of all the state variables must be less than or equal to the total population
or equivalently the sum of solutions at any time must be bounded. The following result is helpful
in this regard.

Theorem: Let S0, E0, I0, Q0 and R0 are all finite quantities and S0 +E0 + I0 +Q0 +R0 =N0.

Moreover, all the parameters involved in the model are positive. i.e., λξ , μξ , qξ , qξ

1, q
ξ

2, αξ , γ ξ , kξ

and φ (h)ξ are positive, then there is a constant Bn+1 such that Sn+1 ≤Bn+1, En+1 ≤ Bn+1, In+1 ≤
Bn+1, Qn+1 ≤Bn+1, Rn+1 ≤Bn+1.

Proof: Considering the Eqs. (11) to (15), we have

Sn+1

[
1+φ (h)ξ

(
β

ξ

1 In+β
ξ

2En+μξ
)]

+En+1

[
1++φ (h)ξ

(
qξ

1 + kξ +μξ +αξ
)]

+In+1

[
1+φ (h)ξ

(
rξ +μξ + dξ

1

)]
+Qn+1

[
1+

(
qξ +μξ + dξ

2

)
φ (h)ξ

]
+Rn+1

[
1+μξφ (h)ξ

]

=
n+1∑
i=1

ei(Sn+1−i+En+1−i+ In+1−i+Qn+1−i+Rn+1−i)+ rn+1 (So+Eo+ Io+Qo+Ro)+

φ (h)ξ [λξ +
(
β

ξ

1 In+β
ξ

2En
)
Sn+ (αξ + qξ

1 + kξ )En+ rξ In+ qξQn]

(16)

By applying the principle of mathematical induction,

for n= 0, we have

S1
[
1+φ (h)ξ

(
β

ξ

1 I0 +β
ξ

2E0+μξ
)]

+E1

[
1+φ (h)ξ

(
qξ

1 + kξ +μξ +αξ
)]

+I1
[
1+φ (h)ξ

(
rξ +μξ + dξ

1

)]
+Q1

[
1+

(
qξ +μξ + dξ

2

)
φ (h)ξ

]
+R1

[
1+μξφ (h)ξ

]
= e1N0 + r1N0 +φ (h)ξ [λ+

(
β

ξ

1 I0+β
ξ

2E0

)
S0 + (αξ + qξ

1 + kξ )E0+ rξ I0+ qξQ0]

S1
[
1+φ (h)ξ

(
β

ξ

1 I0 +β
ξ

2E0+μξ
)]

≤
(

ξ + 1
Γ (1− ξ)

)
N0+φ (h)ξ

[
λ+

(
β

ξ

1 +β
ξ

2

)
I0S0+

(
αξ + qξ

1 + kξ
)
E0+ rξ I0 + qξQ0

]
=B1

S1
[
1+φ (h)ξ

(
β

ξ

1 I0 +β
ξ

2E0+μξ
)]

≤B1

S1 ≤B1 as 1+φ (h)ξ
(
β

ξ

1 I0+β
ξ

2E0+μξ
)
≥ 1

In the same way E1 ≤B1, I1 ≤B1, Q1 ≤B1 and R1 ≤B1.
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Now, we calculate the expression (16) for n= 1, and obtain the following relations,

S2
[
1+φ (h)ξ

(
β

ξ

1 I1+β
ξ

2E1+μξ
)]

+E2

[
1+φ (h)ξ

(
qξ

1 + kξ +μξ +αξ
)]

+I2
[
1+φ (h)ξ

(
rξ +μξ + dξ

1

)]
+Q2

[
1+

(
qξ +μξ + dξ

2

)
φ (h)ξ

]
+R2

[
1+μξφ (h)ξ

]

≤ e1N1+
(

ξ + 1
Γ (1− ξ)

)
N0+φ (h)ξ

[
λ+

(
β

ξ

1 I1+β
ξ

2E1

)
S1+

(
αξ + qξ

1 + kξ
)
E1+ rξ I1 + qξQ1

]
=B2

=⇒ S2
[
1+φ (h)ξ

(
β

ξ

1 I1 +β
ξ

2E1+μξ
)]

≤B2

E2

[
1+φ (h)ξ

(
qξ

1 + kξ +μξ +αξ
)]

≤B2

I2
[
1+φ (h)ξ

(
rξ +μξ + dξ

1

)]
≤B2

Q2

[
1+

(
qξ +μξ + dξ

2

)
φ (h)ξ

]
≤B2

R2

[
1+μξφ (h)ξ

]
≤B2

The above inequalities help us to reach at

S2 ≤B2 as
[
1+φ (h)ξ

(
β

ξ

1 I1 +β
ξ

2E1+μξ
)]

≥ 1

E2 ≤B2 as
[
1+φ (h)ξ

(
qξ

1 + kξ +μξ +αξ
)]

≥ 1

I2 ≤B2 as
[
1+φ (h)ξ

(
rξ +μξ + dξ

1

)]
≥ 1

Q2 ≤B2 as
[
1+

(
qξ +μξ + dξ

2

)
φ (h)ξ

]
≥ 1

R2 ≤B2 as
[
1+μξφ (h)ξ

]
≥ 1

Now, let

Sm ≤Bm, Em ≤Bm, Im ≤Bm, Qm ≤Bm and Rm ≤Bm

For some m ∈Z
+.

where,

Bm= 5e1Bn−1+ 5e2Bn−2+ . . .+
(

ξ + 1
Γ (1− ξ)

)
N0 +φ (h)ξ

[
λ+

(
β

ξ

1 In−1+β
ξ

2En−1

)
Sn−1

+
(
αξ + qξ

1 + kξ
)
En−1+ rξ In−1+ qξQn−1

]
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Now for n ∈Z
+, we arrive at,

Sn+1

[
1+φ (h)ξ

(
β

ξ

1 In+β
ξ

2En+μξ
)]

+En+1

[
1++φ (h)ξ

(
qξ

1 + kξ +μξ +αξ
)]

+ In+1

[
1+φ (h)ξ

(
rξ +μξ + dξ

1

)]
+Qn+1

[
1+

(
qξ +μξ + dξ

2

)
φ (h)ξ

]
+Rn+1

[
1+μξφ (h)ξ

]
= e1 (Sn+En+ In+Qn+Rn)+ e2 (Sn−1+En−1 + In−1+Qn−1 +Rn−1)

+ e3 (Sn−2+En−2+ In−2 +Qn−2 +Rn−2)+ . . .+ en+1 (S0+E0 + I0+Q0 +R0)+ rn+1No

+φ (h)ξ [λξ +
(
β

ξ

1 In+β
ξ

2En
)
Sn+ (αξ + qξ

1 + kξ )En+ rξ In+ qξQn]

Sn+1

[
1+φ (h)ξ

(
β

ξ

1 In+β
ξ

2En+μξ
)]

+En+1

[
1+φ (h)ξ

(
qξ

1 + kξ +μξ +αξ
)]

+ In+1

[
1+φ (h)ξ

(
rξ +μξ + dξ

1

)]
+Qn+1

[
1+

(
qξ +μξ + dξ

2

)
φ (h)ξ

]
+Rn+1

[
1+μξφ (h)ξ

]

≤ e1 (5Bn+ 5Bn−1+ 5Bn−2+ . . .+ 5B1)+
(

ξ + 1

 (1− ξ)

)
N0+φ (h)ξ

[
λξ +

(
β

ξ

1 In+β
ξ

2En
)
Sn

+
(
αξ + qξ

1 + kξ
)
En+ rξ In+ qξQn

]
=Bn+1

In the same fashion a adopted before, we conclude that

Sn+1 ≤Bn+1, En+1 ≤Bn+1, In+1 ≤Bn+1, Qn+1 ≤Bn+1 and Rn+1 ≤Bn+1

So, the given expression is true for all positive values of n.

Hence, the solutions are bounded ∀n ∈Z
+.

2.5 Stability of the Model
In this portion, we will investigate the stability of the model at both the points of equilibria

i.e., at a corona free equilibrium point and a corona existing equilibrium point.

The corona free equilibrium state of the model is given as C1 =
(

λξ

μξ
, 0, 0, 0, 0

)
.

The corona virus existing equilibrium state is calculated as C2 =
(
S1 (t) , E1 (t) , I1 (t) , Q1 (t) ,R1 (t)

)
,

where, S1 (t) =
(
qξ

1 + kξ +μξ +αξ
)(

dξ

1 + rξ +μξ
)

β1
ξ αξ +β2

ξ
(
dξ

1 + rξ +μξ
) , E1 (t) =

(
λξ −μξS1 (t)

)(
dξ

1 + rξ +μξ
)

(
β1

ξαξ +β2
ξ
(
dξ

1 + rξ +μξ
))

S1 (t)
,

I1 (t)= αξE1 (t)

dξ

1 + rξ +μξ
, Q1 (t)= qξ

1E
1 (t)

dξ

2 + qξ +μξ
, R1 (t)= kξE1 (t)+ rξ I1 (t)+ qξQ1(t)

μξ
.

Theorem: The corona free equilibrium C1 = (So, Eo, Io, Qo, Ro) =
(

λξ

μξ
, 0, 0, 0, 0

)
of the

model is locally asymptotically stable if Ro < 1, otherwise unstable for Ro > 1.
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Proof: The corona-free equilibrium C1 = (So, Eo, Io, Qo, Ro) =
(

λξ

μξ
, 0, 0, 0, 0

)
is locally

asymptotically stable (LAS) if all the Eigenvalues λi < 0, i= 1, 2, 3, 4, 5 with condition |arg(λi)|>
απ

2
. For the Eigen values, the Jacobean matrix at C1 =

(
λξ

μξ
, 0, 0, 0, 0

)
is given as follows:

J (C1)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μξ
β

ξ

2λξ

μξ
−β

ξ

1λξ

μξ
0 0

0
β

ξ

2λξ

μξ
−
(
kξ +αξ +μξ + qξ

1

) β
ξ

1λξ

μξ
0 0

0 αξ −
(
rξ +μξ + dξ

1

)
0 0

0 qξ

1 0 −
(
qξ +μξ + dξ

2

)
0

0 kξ rξ qξ −μξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that the two Eigen values are repeated as λ1 =−μξ < 0,λ2 =−μξ < 0 and third Eigen
value is

λ3 =−
(
qξ +μξ + dξ

2

)
< 0.

|J(C1)−λI | =

∣∣∣∣∣∣∣∣∣

β
ξ

2λξ

μξ
−
(
kξ +αξ +μξ + qξ

1

)
−λ −β

ξ

1λξ

μξ

αξ −
(
rξ +μξ + dξ

1

)
−λ

∣∣∣∣∣∣∣∣∣
= 0.

λ2+λ
(
−β

ξ

2a1+ a2+ a3
)
+ (a3a2−β

ξ

2a1−αβ
ξ

1 a1)= 0,

where,
λξ

μξ
= a1,

(
kξ +αξ +μξ + qξ

1

)
= a2 and

(
rξ +μξ + dξ

1

)
= a3.

By using the Routh–Hurwitz Criterion of 2nd order polynomial as,

a3+ a2−β
ξ

2a1 > 0, if
(
kξ +αξ +μξ + qξ

1

)
+
(
rξ +μξ + dξ

1

)
− β

ξ

2λξ

μ
> 0,

R0 =
β

ξ

2λξ

μξ
(
kξ +αξ + 2μξ + qξ

1 + rξ + dξ

1

) < 1 and
(
a3a2−β

ξ

2a1−αξβ
ξ

1a1
)

> 0, when R0 < 1.

Hence, all Eigenvalues are negative and by Routh-Hurwitz criteria the given equilibrium point
C1 is locally asymptotically stable.

Theorem: The corona existence equilibrium C2 =
(
S1, E1, I1, Q1, R1) of the model is locally

asymptotically stable if Ro > 1, otherwise unstable for Ro < 1.

Proof: The corona existence equilibrium C2 = (
S1, E1, I1, Q1, R1) is locally asymptotically

stable (LAS) if all the Eigenvalues λi < 0, i= 1, 2, 3, 4, 5 with condition |arg(λi)|> απ

2
.
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For the eigen values, the Jacobean matrix at C2 =
(
S1, E1, I1, Q1, R1) is given as follows:

J (C2)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β
ξ

1 I
1−β

ξ

2E
1−μξ −β

ξ

2S
1 −β

ξ

1S
1 0 0

β
ξ

1 I
1+β

ξ

2E
1 β

ξ

2S
1−

(
kξ +αξ +μξ + qξ

1

)
β

ξ

1S
1 0 0

0 αξ −
(
rξ +μξ + dξ

1

)
0 0

0 qξ

1 0 −
(
qξ +μξ + dξ

2

)
0

0 kξ rξ qξ −μξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that, the Eigen values are λ1 =−μξ < 0 and λ2 =−(qξ +μξ + dξ

2 ) < 0

|J(C2)−λI | =

∣∣∣∣∣∣∣∣∣

−b1−μξ −λ −b2 −b4
b1 b2− b3 −λ b4

0 αξ −b5−λ

∣∣∣∣∣∣∣∣∣
= 0.

λ3 + (
b1− b2+ b3+ b5+μξ

)
λ2 +

(
b1b3+ b1b5− b2b5+ b3b5− b2μξ + b3μξ + b5μξ − b4αξ̂

)
λ +(

b1b3b5− b2b5μξ + b3b5μξ − b4αξμξ
)= 0.

where, b1 = β
ξ

1 I
1 + β

ξ

2E
1 +μξ , b2 =−β

ξ

2S
1, b3 = kξ + αξ +μξ + qξ

1, b4 = β
ξ

1S
1, b5 = rξ +μξ + dξ

1

and b5 = qξ +μξ + dξ

2 .

By using the Routh–Hurwitz Criterion of 3rd order polynomial, we get the following
expression:(
b1− b2+ b3 + b5+μξ

)
> 0,

(
b1b3b5− b2b5μξ + b3b5μξ − b4αξμξ

)
> 0, if R0 > 1,

and(
b1− b2+ b3 + b5+μξ

) (
b1b3+ b1b5− b2b5+ b3b5− b2μξ + b3μξ + b5μξ − b4αξ

)
>
(
b1b3b5− b2b5μξ + b3b5μξ − b4αξμξ

)
, if R0 > 1.

Thus, we have concluded that all Eigenvalues are negative and by Routh Hurwitz criteria,
the given equilibrium point C2 is locally asymptotically stable. Here, we will present a suitable
numerical example and graphical solutions of the state variables involved in the model. This whole
stuff is presented with the aid of computer simulations.

3 Numerical Example and Simulations

In this portion, an example of the fractional order COVID-19 model is provided. The
parametric values are mentioned in Tab. 1. Also, non-negative initial conditions are considered.

Computer aided graphs are submitted to support our assertions. These sketches support
the fact that proposed numerical device is a structure preserving tool for solving the nonlinear
fractional systems. The device encounters the positivity, stability and boundedness of the solutions.
All the graphs in Fig. 1 reveals that all the subpopulations converge at the virus free equilibrium

point (with different values of ξ ). E1 = ( λξ

μξ , 0, 0, 0, 0) i.e., S (t)→ λξ

μξ ,E (t)→ 0, I (t)→ 0,Q (t)→ 0
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and R (t)→ 0, when the population is infection free and the values of the parameters are chosen
suitably as listed in Tab. 1. The graphs in Fig. 1 part (a) illustrate that all the curved trajectories
representing the susceptible populace growing with time t approach towards the disease-free value

of the susceptible individuals S (t)= λξ

μξ which is one in this case. Each trajectory is drawn against

a certain value of ξ (the order of the fractional derivative) as mentioned in the figure. Moreover,
the rate of the convergence towards the VFE of each trajectory is different, depending upon the
value of ξ . Similarly, the other sketches in Fig. 1 part (b)–part (e) provide the strong evidence for
our declaration about the proposed numerical design. The Fig. 2 exhibits the simulation results of
our proposed scheme endemic equilibrium. The graphs (a), (b), (c), (d) and (e) in Fig. 2 provide
the graphical solutions to S,E, I ,Q and R for some selected values of ξ , where ξ is the fractional
order of the derivative. The trajectories in Fig. 2 part (a) converge at the virus restricted state
i.e., endemic state for different values of ξ , while the other parametric values are kept same as
mentioned in Tab. 1. Each curved line in the graph Fig. 2 part (a) attains the equilibrium state
of S1(t) which is represented as,

S1 (t)=
(
qξ

1 + kξ +μξ +αξ
)(

dξ

1 + rξ +μξ
)

β1
ξ αξ +β2

ξ
(
dξ

1 + rξ +μξ
) ,

with a certain rate of convergence according to the value of ξ . Similarly, the other curved
trajectories in Fig. 2 part (b)–part (e) depict that they attain the virus endemic equilibrium state
for various values of ξ . The endemic equilibrium is expressed as (S1(t),E1(t), I1(t),Q1(t),R1(t))
and the value of each state variable is stated earlier in the section of the stability of the model.
The Fig. 3 describes the quarantine approach to control the infection in the populace. The values
of the quarantine factor q considered in this figure are as q1 = 0.1,q2 = 0.3,q3 = 0.5 and q4 = 0.7
while the ξ = 0.9 is fixed. All the four curved representations in Fig. 3 unveil the key fact that by
increasing the quarantine or isolation approach, the flock of infected individuals can be minimized
to a certain level. In this area, we will submit the fruitful conclusion about the current study and
some future directions will be pointed out.

Table 1: Fitted and estimated parameters values for coronavirus model

Parameters Value Source

λξ 0.5 Estimated
qξ

1 0.001 Fitted1

Kξ 0.00398 Fitted1

αξ 0.0854302 Fitted1

μξ 0.5 Estimated
rξ 0.09871 Fitted1

dξ

1 0.0047876 Fitted1

dξ

2 0.000001231 Fitted1

qξ 0.1243 Fitted1

β
ξ

1 1.05 Fitted1

β
ξ

2 0.05 (CFE) 1.05 (CPE) Fitted1
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Figure 1: The simulations results for all the subpopulations using proposed method at disease free
equilibrium with the variation of fractional order ξ
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Figure 2: The simulations results for all the subpopulations using proposed method at endemic
free equilibrium with the variation of fractional order ξ
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Figure 3: The effect of quarantined strategy on infected population by increasing the values of q1
for ξ = 0.9

4 Conclusion

In this study, some biological and physical features of the novel corona virus-2019 are
described. A classical SIEQR model is converted to fractional order compartmental model with ξ

as order of the fractional derivatives. The GL-NSFD scheme is proposed to study the propagation
of the COVID-19 along with some leading properties of the system. Moreover, the numerical
study is made to ensure the pre-assumed results about the numerical design. The equilibrium
points of the system are also described to detect the local stability of the model. The decisive role
of R0 (reproductive number) in describing the stability of the system is also discussed. Positivity
and boundedness of the numerical design is also investigated to exhibit the productiveness of
the scheme. The computer-aided graphs are presented via computer simulations. These solutions
coincide with the exact equilibrium points for different values of ξ . As, the proposed scheme
preserves the structure of the system. So, it can be used successfully to solve many other non-
linear physical systems. Moreover, this tool may be used to solve delay models, advection and
diffusion reaction models in future.
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