
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.022290

Research paper

Fed-DFE: A Decentralized Function Encryption-Based Privacy-Preserving
Scheme for Federated Learning

Zhe Sun1, Jiyuan Feng1, Lihua Yin1,*, Zixu Zhang2, Ran Li1, Yu Hu1 and Chongning Na3

1Cyberspace Institute of Advanced Technology (CIAT), Guangzhou University, Guangzhou, China
2School of Electrical and Data Engineering, University of Technology Sydney, Sydney, Australia

3Zhejiang Lab, Hangzhou, China
*Corresponding Author: Lihua Yin. Email: yinlh@gzhu.edu.cn

Received: 02 August 2021; Accepted: 03 September 2021

Abstract: Federated learning is a distributed learning framework which trains
global models by passing model parameters instead of raw data. However, the
training mechanism for passing model parameters is still threatened by gradi-
ent inversion, inference attacks, etc. With a lightweight encryption overhead,
function encryption is a viable secure aggregation technique in federation
learning, which is often used in combination with differential privacy. The
function encryption in federal learning still has the following problems: a)
Traditional function encryption usually requires a trust third party (TTP) to
assign the keys. If a TTP colludes with a server, the security aggregationmech-
anism can be compromised. b)When using differential privacy in combination
with function encryption, the evaluation metrics of incentive mechanisms in
the traditional federal learning become invisible. In this paper, we propose
a hybrid privacy-preserving scheme for federated learning, called Fed-DFE.
Specifically, we present a decentralized multi-client function encryption algo-
rithm. It replaces the TTP in traditional function encryption with an inter-
active key generation algorithm, avoiding the problem of collusion. Then, an
embedded incentive mechanism is designed for function encryption. It models
the real parameters in federated learning and finds a balance between privacy
preservation and model accuracy. Subsequently, we implemented a prototype
of Fed-DFE and evaluated the performance of decentralized function encryp-
tion algorithm. The experimental results demonstrate the effectiveness and
efficiency of our scheme.

Keywords: Decentralized function encryption; incentive mechanism; differ-
ential privacy; federated learning

1 Introduction

As a result of the rapid development of deep neural networks, data-driven artificial intelli-
gence has been widely used in smart transportation [1,2], Internet of Things [3,4], smart grid [5,6]
and financial applications [7,8]. Accuracy in data analytics depends not only on the volume of
training data but also on the diversity of training data. However, the protection of data assets
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and user privacy makes it difficult for service providers to directly access data held by other data
owners. Federated learning is a good way to leverage data from different owners to improve the
accuracy of service models. Users use the same learning model structure as the server and only
provide model parameters during the cooperative training process [9]. Federated learning prevents
direct transmission of raw data, which is key privacy protection advance for cooperative training.
Nonetheless, subsequent research has shown that an attacker can still reverse training data from
gradients, infer users’ privacy attributes, or determine whether a member belongs to a certain
privacy grouping [10].

To prevent gradient leakage, users can rely on homomorphic encryption, function encryption,
and other cryptographic methods to encrypt local models, and service providers do not have
direct access to the plaintext of individual gradients. Zhang et al. [11] proposed a distributed
selective stochastic gradient descent algorithm combined with Paillier homomorphic encryption.
In this scheme, a trusted third party (TTP) assigns keys to users and the server, and the server
uses Paillier additive homomorphism to achieve secure gradient aggregation. To address the
efficiency problem of homomorphic encryption algorithms, Xu et al. [12] proposed a secure
aggregation scheme based on function encryption. Service providers can combine aggregation
and decryption missions using functional decryption keys to improve the efficiency of gradient
aggregation. Subsequently, Yin et al. [13] proposed a function-hiding function encryption method
for protecting weighting parameters in the gradient aggregation. This method prevents attackers
from performing inference attacks by combining the available weight parameters with background
knowledge. Unfortunately, these schemes usually require a TTP to manage, generate, and distribute
public and private keys. Driven by commercial interests, malicious service providers may conspire
with third parties to steal users’ gradients.

Researchers often incorporate differential privacy into cryptographic methods to defend
against inference attacks, such as attribute inference attacks and member inference attacks. Dif-
ferential privacy is a privacy-preserving technique proven by rigorous mathematics. It prevents
malicious attackers from inferring user privacy in the training data by adding carefully designed
noise to the model. But this also has led to a decline in the accuracy of global models. The
trade-off between privacy protection and model accuracy is key to the practical use of differential
privacy in federated learning. Incentive mechanisms are an effective way to regulate conflict by
rewarding users for submitting gradients with higher model accuracy. Common incentive mech-
anisms in federated learning include Stackelberg game-based methods [14,15] and auction-based
methods [16]. Zhan et al. [14] simulate a Stackelberg game model between servers and users
to optimize the global cost of servers while satisfying user benefits. Stackelberg game generally
requires that one party to be the leader, so it is not appropriate for a status parity scenario. Unlike
that, Zeng et al. [16] propose an incentive mechanism based on the auction model. They evaluate
and reward users based on their reputation and past behavior. Most of these game theory-based
mechanisms are oriented towards traditional unencrypted gradients, and the quantitative metrics
involved are so different from those of secure aggregation algorithms. In the function encryption
algorithm, the service provider can only decrypt the aggregated model, and thus cannot judge the
quality of the local model uploaded by individual users. Individual users may become more selfish
after the overall evaluation, unwilling to contribute high-quality models and parameters, or even
uploading untrained models published by the server. There is still a gap between game theory and
secure aggregation in federated learning.

In this paper, we propose a hybrid privacy-preserving framework for federated learning called
Fed-DFE. It combines function encryption with differential privacy to prevent gradient leakage
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and inference attacks. Specifically, the keys are generated through users’ interaction with the server,
removing the reliance on trusted third parties for traditional function encryption. Meanwhile, Fed-
DFE introduces an incentive mechanism to avoid the low accuracy problem caused by excessive
noise addition in differential privacy. Our main contributions include the following:

• We design a decentralized multi-client function encryption algorithm (DMCFE). It does not
require a TTP to manage, generate and assign keys, preventing collusion attacks by service
providers and TTP.
• We present an embedded incentive mechanism for function encryption. It models and
evaluates the real parameters in federated learning that affect the quality of model services,
and then uses the evaluation results as criteria for selecting participants.
• We implement a prototype system of our proposed Fed-DFE. We evaluate the performance
of DMCFE algorithm, and then analyze the impact of incentive mechanism parameters on
the accuracy of federated learning model.

The rest of the paper is organized as follows: In Section 2, we review the related work. Then,
we brief introduce the preliminaries of scheme and threat models in Section 3. In Section 4, we
present the design details of the proposed Fed-DFE scheme. We provide security and privacy
analyses in Section 5. The evaluations of experiments are described in Section 6. And we conclude
the paper in Section 7.

2 Related Work

Federated Learning is an effective collaborative training architecture that has become a
research hotspot for privacy preservation. In this section, we focus on the cryptography-based
secure aggregation algorithm and incentive mechanism for federated learning.

2.1 Cryptography-Based Secure Aggregation Algorithm in Federated Learning
Federated learning effectively avoids the privacy leakage problem associated with sending

raw data directly. However, recent studies indicate that malicious attackers can obtain privacy
information of training data. To prevent user privacy leakage caused by sending models directly,
researchers have proposed a variety of cryptography-based security aggregation schemes. Cur-
rently, the main cryptographic methods in federated learning include homomorphic encryption,
secure multiparty computation, and functional encryption.

The characteristic of homomorphic encryption is that the result calculated on the plaintext
is the equivalent to the decrypted result after calculated on the ciphertext. Therefore, it is widely
applied to parameter aggregation on servers. Zhang et al. [11] proposed PEFL, a distributed
machine learning privacy-preserving scheme based on homomorphic encryption. This scheme can
perform computation directly using ciphertext to achieve secure aggregation. The PEFL method
ensures that the server only gets the aggregated models and not the individual users’ models.
However, directly using the paillier algorithm to encrypt the model causes huge communication
and computation overhead.

Secure multiparty computation allows multiple users to jointly compute a convention result
without revealing their input information. Bonawitz et al. [17] proposed to use a lightweight
secret sharing technique to aggregate the user’s model. Secret sharing does not require complex
operations, so it has reduced computation overhead compared to homomorphic encryption. But
in the meanwhile, it reduces the security of model aggregation. Specifically, it requires secret
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parameters to be exchanged between two clients through a trusted channel. As user numbers
increase, this can cause a huge communication overhead between users.

Different from the above, function encryption is a lightweight secure aggregation algorithm
with acceptable security. Xu et al. [12] first applied function encryption to a horizontal feder-
ated learning scenario. They confirm through extensive experiments that function encryption can
effectively reduce the computational overhead. However, this scheme is only applicable when all
the user weights are equal. Contrarily, a malicious attacker can infer sensitive attributes from a
specific user’s weights. To solve the above problem, Yin et al. [13] proposed a multi-input function
encryption scheme that can hide the user weight information to protect the users’ model param-
eters. In this scheme, a TTP assigns keys to the user and the server, but each user individually
sends the aggregation weights to the TTP. As a result, the server is completely unaware of the
user’s weight information. This scheme can effectively avoid malicious servers from stealing users’
privacy through the weights. However, there is also a TTP in the above functional encryption
algorithm. Federated learning is difficult to satisfy this assumption during practical application.
Motivated by profits, service providers may collude with TTP to execute complicit attacks.

In this paper, we design a secure aggregation algorithm based on decentralized multi-client
function encryption, and try to solve the problem of collusion by removing the TTP.

2.2 Incentive Mechanism in Federated Learning
Cryptography-based secure aggregation can prevent malicious attackers from stealing individ-

ual parameters and private information. However, researchers demonstrated [18] that malicious
attackers can still execute inference attacks through published aggregated models or service
interfaces. Consequently, researchers commonly combine cryptographic methods and differential
privacy [19] to address the various privacy attacks. When applying differential privacy in federation
learning, we need to add noise to the model parameters. Excessive noise can significantly reduce
the global model accuracy or even cause it not to converge. As a result, some researchers
encourage users to contribute high-quality parameters through the incentive mechanism [14].

To find the optimal solution that can adjust user privacy and global model accuracy,
researchers have tried to design incentive mechanisms by using Game theory. Zhan et al. [14]
proposed a two-part game model based on Stackelberg game. The scheme goal is to reach the
Nash equilibrium of the model by maximizing each node’s reward, while minimizing the parameter
server’s total reward. Based on these system states in each iteration round, the server and nodes
will adjust their respective strategies in the game model to obtain the rewards. In addition, Khan
et al. [20] also constructed an incentive mechanism model for service providers and participants
in federated learning. This model incentivizes devices to participate in federated learning through
the Stackelberg game. To address the problem of reluctance to actively participate in federated
learning. Zeng et al. [16] proposed a federated learning incentives mechanism based on multidi-
mensional auctions. In this model, the server acts as a seller to send bid requests, and all users
participate in the bidding. Finally, all winning users will reach a Nash equilibrium to maximize
their respective benefits. However, the above scheme has only conducted numerical simulation
experiments, and there is a gap from the practical training process in federated learning.

The other researchers have made efforts to apply incentive mechanisms in a realistic scenario
in federated learning. They have concretely combined incentives with realistic scenarios by using
real indicators to measure users’ contributions. Kang et al. [21] proposed an incentive mechanism
that uses the mobile devices’ reputation as an indicator to measure contribution. The scheme
manages the reputation of mobile devices through alliance chain. The scheme offers higher
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rewards to users who provide high quality locally trained models in federated learning. Besides,
Weng et al. [22] proposed a blockchain-based incentive mechanism. Users will get rewards for
successfully creating a new block during the training process. Since the effective implementation
of incentive mechanism is closely related to realistic scenarios. Neither of the above schemes can
directly apply to security aggregation scenarios in federated learning. To build practical incentive
mechanisms for cryptographic methods, we need to tightly integrate user evaluation indicators and
cryptographic schemes.

In this paper, we design an embedded incentive mechanism which closely integrates with func-
tion encryption. With our incentive mechanism, the server can avoid excessive privacy-preserving
by adjusting the reward.

3 Preliminaries

In this section, we first briefly introduce definitions of decentralized function encryption
algorithms and differential privacy. And then we describe our threat models and motivations.

3.1 Decentralized Multi-Client Functional Encryption
Function encryption is a new encryption method that is different from traditional public key

encryption system. For the inner product function f , the ciphertext x is encrypted by the plaintext
c with an encryption key. Users can use the function decryption key dky to decrypt and calculate
f (x), but they cannot get any information about the plaintext c. In function encryption, there is
only one encryptor to encrypt its own plaintext vector, which cannot satisfy the needs of practical
application.

The multi-client function encryption scheme solves the problem. The scheme divides the high-
dimensional vector into n sub-vectors x1,x2, . . . ,xn. And each user holds one of the sub-vectors
and encrypts its own sub-vector xi separately to obtain its own ciphertext ci = Encrypt(xi). The
decryptor can only obtain the computation result of the function f (x1,x2, . . . ,xn) by decryption
key dky. However, the multi-client function encryption algorithm generally requires a trusted third
party to manage and generate the master secret key msk.

It is difficult to find a fully trusted third party to perform key management and distribution
tasks in practical applications. Trusted third party may also collude with the decryptor which will
cause the decryptor to obtain the client’s plaintext. Therefore, to prevent a trusted third party
from conspiring with the decryptor, we introduce decentralized multi-client function encryption
algorithm [23]. In this algorithm, each user generates a partial decryption key. All users send the
partial decryption key to the decryptor, and the decryptor combines all partial decryption keys to
generate the decryption key dky.

3.2 Differential Privacy
Differential privacy is a privacy-preserving mechanism that minimizes the recognition prob-

ability of data records by adding noise. ε is called the privacy budget or privacy loss, which
describes the privacy-preserving level of random algorithm M on adjacent datasets D and D′. The
higher the value of ε, the lower the privacy-preserving level.

Definition 1. Differential privacy. Given the N users, each user has its own dataset, given an
algorithm M for the dataset and its domain Dom (M) and range Ran(M). If the algorithm obtains
the same output result S∗(S∗ belongs to the range of Ran(M)) on adjacent datasets D and D′(D
and D′ belong to the domain Dom (M)) satisfies the following inequality, then the algorithm M
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satisfies (ε, δ)-differential privacy. δ represents the probability of plain ε-differential privacy.

Pr
[
M (D)= S∗]≤ eε ·Pr [

M
(
D′

)= S∗]+ δ (1)

Deep learning model accuracy substantially depends on the quality of the training data, and
adding perturbations directly to the training data may reduce the model quality greatly. Therefore,
Abadi et al. [24] proposed adding noise that conforms to differential privacy algorithms in deep
learning models to protect model privacy. The main noise mechanisms in differential privacy
include: Gaussian noise, Laplace mechanism, and Exponential mechanisms. Considering the prop-
erties of neural network models, researchers typically choose the Gaussian noise mechanism as
the typical noise addition mechanism. Definition 2 illustrates the Gaussian noise mechanism.

Definition 2. Gaussian noise mechanism. f : D→ R is a certain real-valued function, when f
satisfies the differential privacy mechanism by adding noise, Sf represent the f ′ sensitivity. The

definition of Sf is the maximum absolute distance
∣∣f (d)− f (d ′)∣∣, where d and d ′ are the adjacent

datasets. Finally, the Gaussian noise mechanism is defined as follows:

M (d) � f (d)+N(0,S2f ·σ 2) (2)

where N(0,S2f ·σ 2) is the Gaussian distribution with mean 0 and standard deviation Sf σ .

The most typical application of Gaussian noise mechanism differential privacy in deep learn-
ing is Differentially Private SGD Algorithm, which is based on the basic combination theorem
and composability of differential privacy. The algorithm can also track and accumulate privacy
loss during the execution of the combined mechanism.

To avoid relying on servers to add noise, researchers have proposed local differential privacy
(LDP). According to the LDP mechanism, the user will add noise to the local model instead
of the server. In our Fed-DFE, we use the LDP parameters as an important component of
the incentive mechanism. Our scheme can encourage users to provide high quality models while
preserving the local models’ privacy.

3.3 Motivation and Our Basic Ideas
The federated learning process suffers primarily from two privacy threats. One is the inversion

of the user’s training data by the transmitted gradients. Another is to infer whether privacy
attributes are contained in the training data or whether a certain sample is included in the training
dataset.

To prevent gradient inversion attacks, we introduce a function encryption algorithm to prevent
an individual user’s gradient from being obtained by the server. Each user encrypts its own model
and uploads it to the server. The server can only extract the plaintext of the aggregated results,
but not the plaintext of individual gradients or any intermediate results. Homomorphic encryption
algorithm first performs ciphertext computation to obtain the aggregated result, and then decrypts
the aggregated result. In contrast, function encryption obtains the plaintext of the aggregation
result by directly computing the decryption key and the ciphertext of individual gradients. It
reduces the number of intermediate steps and thus increases efficiency. However, most function
encryption algorithms in federation learning rely on TTP to assign keys [12]. If the TTP colludes
with a server, the server can obtain the key for each user and can thus decrypt the ciphertext of
any user’s gradient. In this paper, we utilize a decentralized multi-client encryption function via
user-server interaction, where users can generate their own keys based on the interaction’s content.



CMC, 2022, vol.71, no.1 1873

The user’s key is no longer available to any party except the user itself, thus solving the problem
of collusion.

Differential privacy makes it difficult for an attacker to infer users’ privacy attributes by
adding noise to the gradient. However, in practice, large amounts of excessive noise often cause
a sharp drop in the accuracy of the aggregation model. To prevent users from adding noise that
far exceeds their needs, researchers usually design incentive mechanisms to encourage users to
submit more contributing gradients. In this paper, we design an incentive mechanism that is deeply
integrated with function encryption. We use the auction model as an example to discuss how to
use the intermediate parameters in function encryption as evaluation indicators for incentives. We
also used experiments to evaluate the effectiveness of our chosen parameters in real-world federal
learning. We hope that these works can serve as a reference for different game theories applied in
federated learning, so as to find a balance between privacy protection and model accuracy.

4 Our Fed-DFE Scheme

In this section, we first overview our proposed Fed-DFE. Then we separately describe the
details of decentralized multi-client function encryption (DMCFE), local differential privacy, and
incentive mechanism involved in Fed-DFE.

4.1 System Architecture
Our Fed-DFE scheme includes both users and service provider. The users are responsible for

training the model on the local dataset and uploading the parameters; And the service provider
is responsible for aggregating the parameters and updating the global model. They collaborate to
train a global model without compromising user privacy.

We denote a series of users as P = {P1,P2, . . . ,Pn}, and the service provider as SP. The
workflow of Fed-DFE is shown in Fig. 1. (1) The SP first releases the initial model, master
public key, and testing dataset. (2) Each user can generate its own encryption key based on
master public key and its local information. It is impossible for anyone else to obtain a user’s
key, thus avoiding the problem of collusion. (3) The users select appropriate privacy budgets and
noise parameters according to their own privacy-preserving requirements. Individual users train
local models with local differential privacy (LDP) mechanism against inference attacks. (4) Before
uploading local models, users submit their testing accuracy to the SP. (5) SP selects participating
users through the embedded incentive mechanism. (6) All the selected users encrypt the local
models and upload them to SP. (7) They also generate and upload partial decryption keys that
contain the weights of the aggregation parameters. (8) All partial decryption keys are combined
into a function decryption key. (9) The SP executes secure aggregation of encrypted model through
function decryption key.

4.2 DMCFE for Fed-DFE
In our proposed Fed-DFE, we modify the DMCFE algorithm to be suitable for secure aggre-

gation in federated learning. The DMCFE algorithm includes Setup, Encrypt, DKeyGenShare,
DKeyComb, and Decrypt algorithms. The Setup algorithm generates their respective private key
ski, encryption key eki and master public key mpk for all users. Then, each user independently
executes the Encrypt and DKeyGenShare algorithms, which respectively encrypt the local model
and generate the partial decryption key dk�y,i. Finally, SP performs the DKeyComb and Decrypt
algorithm to generate the function decryption key dk�y, and uses dk�y to decrypt the global model
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through Decrypt algorithm. We then describe the steps of DMCFE algorithm in one iteration of
federated learning:

Figure 1: System architecture of Fed-DFE

Step 1. Initialize model and distribute mpk: Prior to iteration training, SP separately generates
the initial model, scoring rules, and master public key (mpk). Among them, the structure of the
initial model is the same as the user’s local model. We construct scoring rules based on the
corresponding model. Generally, we use the classification model accuracy as the scoring rule for
the incentive mechanism. In addition, SP also generates the master public key (mpk) according
random number λ. Finally, SP sends the initialized model, the mpk and the scoring rules to each
user.

Step 2. Execute Setup protocol: Each user generates own encryption key eki using the master
public key mpk, and all users interact with each other to generate Ti(

∑n
i Ti = 0). Then, each user

generates the respective private key ski by Ti and the encryption key eki.

Step 3. Encrypt model: After training the local model xi, each user encrypts the local model
xi to obtain the encrypted model [ci]1, using their respective encryption key eki and the Label
delivered by SP.

Step 4. Generate partial decryption key: Each user generates the partial decryption key dk�y,i
using the private key ski and the weights �y of the inner product function F�y

(�x) = 〈�x, �y〉. Then,
each user sends the partial decryption key dk�y,i and encrypted model [ci]1 to SP.

Step 5. Generate function decryption key: SP receives partial decryption key dk�y,i and encrypted
model [ci]1 from all users. Then SP combines all the partial decryption key dk�y,i to obtain the
function decryption key dk�y, and the function decryption key dk�y can aggregate model without
decrypting the user’s encrypted model [ci]1.

Step 6. Execute model secure aggregation: SP calculates the discrete logarithm to directly obtain
the aggregation result α, using the function decryption key dk�y, the encrypted model [ci]1, and
the Label.

We integrate the DMCFE algorithm into the training process of federated learning. Each user
encrypts the local model using the Encrypt algorithm in DMCFE. SP executes secure aggregation
directly through the Decrypt algorithm and function decryption key dk�y. Differing from traditional
function encryption, the DMCFE algorithm does not rely on TTP in the whole process. Thus, it
avoids the collusion problem of SP and TTP. In the following, Algorithm 1 further illustrates the
computational details of the DMCFE algorithm.
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Algorithm 1. Decentralized Multi-Client Functional Encryption

SetUp (λ) :
PG := (G1,G2,p,P1,P2, e)←PGGen

(
1λ

)
�si← Z2

p(i ∈ [n]), Ti←Z2×2
p (

∑
i∈[n]Ti = 0)

mpk← (PG,H1,H2), H1,H2 represents the hash function on G2
1,G

2
2.

Return (eki =�si, ski = (�si,Ti))
Encrypt (eki,xi, l) :

[�ul]1 :=H1(l) ∈G
2
1, �si = eki

[ci]1 =
[�uᵀ
l �si+xi

]
1 ∈G1

Return ([ci]1)

DkeyGenShare
(
ski, �y

)
:

F�y
(�x)= 〈�x, �y〉, [�v�y]2 :=H2(�y) ∈G2

2,[�di]
2
:= [

yi · �si+Ti�v�y
]
2

Return dk�y,i := (
[�di]

2
)

DkeyComb
((
dk�y,i

)
i∈[n] , �y

)
:(

dk�y,i = (
[�di]

2
)
)
i∈[n]

,
[�d]

2
=∑

i∈[n]
[�di]

2

dk�y :=
(
�y,

[�d]
2

)
Return dk�y

Decrypt
(
dk�y, l,

(
[ci]1

)
i∈[n]

)
:

dk�y =
[�d]

2

[α]T :=∑
i∈[n] e

(
[ci]1 , [yi]2

)− e(
[�ul]ᵀ1 ,

[�d]
2

)
Return α

4.3 Local Differential Privacy for Fed-DFE
In our proposed Fed-DFE, to allow local users to freely choose the appropriate level of

privacy preserving, we design a local differential privacy based on Gaussian noise mechanism.
according to the privacy preserving requirement, each user can independently determine noise
parameters and privacy budget in the Gaussian noise mechanism. Then, users also can use
moment accountant method [24] to track privacy loss of local model. Compared to the standard
combination theorem [25], this method considers the specific noise distribution in a specific
situation. It can more accurately calculate the privacy loss that occurs in the differential privacy.

Specifically, the privacy loss c(o;M,aux,d,d ′) at the outcome o ∈ R of mechanism M be

defined as c(o;M,aux,d,d ′) � log Pr[M(aux,d)=o]
Pr[M(aux,d′)=o] , where d and d ′ are the adjacent datasets, and

aux is the auxiliary input. To continuously apply the differential privacy mechanism in each
model update, we define λth moment αM(λ; aux,d,d ′) � logEo∼M(aux,d)[exp(λc(o;M, aux,d,d ′))] for
λ ≤ 32. To ensure that differential privacy guarantees of M, we take the maximum bound of
αM(λ; aux,d,d ′) as the moment bound αM (λ) �maxaux,d,d′ αM

(
λ; aux,d,d ′

)
.
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Theorem. Tail bound. For any ε > 0, the mechanism M satisfies the (ε, δ)-differential privacy
for

δ=min
λ

exp(αM (λ)−λε) (3)

Finally, according to Eq. (3), we use the standard Markov inequality to convert the moment
bound αM (λ) into tail bound that satisfies the (ε, δ)-local differential privacy and represents the
privacy loss. δ is a fixed threshold; if the privacy loss calculated by moments accountant method
reaches this threshold, it means that the probability of the user model leaking privacy becomes
too high and the training will stop.

LDP provides a flexible privacy-preserving mechanism for local users. Each user can decide
for itself the privacy-preserving budget and the noise parameter. Users often subjectively choose
to overestimate the privacy budget in practice, which reduces global model accuracy. Thus,
the researchers introduce incentive mechanisms in the LDP that can encourage users to select
appropriate privacy budgets.

4.4 Incentives Mechanism for Fed-DFE
It is easy to obtain public parameters for evaluating user contribution in incentive mechanism

of traditional federated learning. However, the data is no longer readable when Fed-DFE encrypts
the model parameters, making the implementation of the traditional incentive mechanism difficult.
Accordingly, we design an incentive mechanism for function encryption. It models and evaluates
the real parameters affecting the accuracy of the model. We define the utility functions of the
server and the user separately and perform a simple analysis of how the Nash equilibrium is
finally reached.

We assume that all users are rational in our incentive mechanism. They have a lower limit
of acceptable privacy protection pri. Before local model is uploaded to the server, users perform
LDP with the appropriate privacy budget budg and noise parameters nois to suit their privacy
protection requirements pri(budg,nosi)≥ pri. The user evaluates the model accuracy Acc of LDP
on the test dataset and uploads Acc to the server as a bid. The server selects the k users with the
highest accuracy to participate in federated learning and rewards the selected users. The specific
steps are shown in the Fig. 2.

(1) During the iteration of federated learning, the server issues an initial model to each user.
Meanwhile, the server publishes a public test dataset to assess the quality of local models.

(2) After receiving the initial model and the test dataset, each user selects its own privacy
budget budg and noise parameters nosi of LDP to protect the local model based on their data
quality, data distribution characteristics, and privacy protection requirements. The user adjusts
the privacy-preserving parameters so that the privacy-preserving local model gets the appropriate
accuracy Acc on the test dataset and sends it to the server for bidding. The user’s utility function
is

Utilityuseri =
{
reward(Acci)− risk(pri(buge, nosi)), useri is one of top− k users

0, elsewise
(4)

where reward(Acc) is the reward from the SP, and risk(pri(buge,nosi)) is the risk cost of user
privacy exposure.
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(3) After SP receives bids from all users and selects the k users with the highest accuracy rate
to participate in federated learning. SP assigns aggregation weights based on user accuracy and
distributes aggregation weights along with the list of selected users.

(4) The user interacts with other users to generate the partial decryption key. The partial
decryption key contains information about the weight of each user in model aggregation. The
user then sends the partial decryption secret key and the encrypted model to the server.

(5) SP combines all the partial decryption keys to generate a function decryption key. The
function decryption key is used to perform operations with the encrypted model to obtain the
plaintext of the aggregated model. SP then evaluates the aggregated model on a test dataset. If
the accuracy of aggregated model meets the requirements, SP will pay a reward to the users who
participated in the training. The utility function of the server is

UtilitySP = profit
(
Accglobal

)− k∑
i=1

rewardi (5)

where profit
(
Accglobal

)
is profits from global accuracy improvement, and rewardi is the reward of

useri.

(6) If the accuracy of the model is much lower than expected, it is possible that some users
are passing off a low-accuracy model as a high-accuracy model. SP will drop this training and
mark the users who participated. Malicious users accumulate more marks and a poorer reputation
over the long term. In later tasks, SPs can ban the participation of users with low reputation. In
addition, some researchers have used zero-knowledge proofs to bind the accuracy of encrypted
models [26]. These methods can also prevent the falsification problem of contributions. However,
since this is more distantly related to incentives, we will not describe it in detail in this paper.

To get more rewards, users improve the accuracy of their local models as much as they can
while satisfying their privacy protection lower limit. On the other hand, SPs reduce the total
expenses while the accuracy of the global model meets its target requirements, thus avoiding an
unrestricted thirst for data. Through multiple iterations, both the server and the user can find the
most appropriate policy for themselves and thus reach a Nash equilibrium.

Figure 2: The incentives mechanism for Fed-DFE
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5 Security and Privacy Analysis

In this section, we conduct security and privacy analysis on the proposed scheme.

5.1 Security Analysis of Fed-DFE
To prevent gradient inversion attacks, researchers typically utilize cryptographic methods to

encrypt their models in federated learning. Function encryption has attracted a wide attention for
its high-efficiency and security properties [12]. It only allows SP to obtain the aggregated gradient,
but not the individual gradient. However, traditional functional encryption methods, such as Inner
Product Function Encryption (IPFE), Multi Input Function Encryption (MIFE), and Function
Hiding Multi Input Encryption (FHMIE), require a TTP to generate, distribute and manage the
keys. Malicious SP may collude with TTP through a secret trade of benefits. Through the collusion
attack, the malicious SP can obtain key parameters that do not belong to it, or even obtain the
user’s key directly. With the keys, it is easy for the malicious SP to crack the user’s encrypted
gradient and reverse the user’s privacy.

To prevent collusion attacks, we utilize a decentralized multi-client function encryption algo-
rithm. In this algorithm, the SetUp protocol in Algorithm 1 is executed interactively by the
users to replace the TTP in traditional function encryption. Each user generates encryption keys
�si← Z2

p(i ∈ [n]) and parameters Ti← Z2×2
p (

∑
i∈[n]Ti = 0). Next, users utilize ski = (�si,Ti) as the

private key, and they compute the partial decryption key dk�y,i:= (
[�di]

2
) by using the weight yi

of the inner product function F�y
(�x) = 〈�x, �y〉. Then, SP combines all the partial decryption keys

dk�y,i:= (
[�di]

2
) to obtain dk�y:=

(
�y,∑i∈[n]

[�di]
2

)
. The DMCFE scheme decentralizes the authority

of generating keys to all users. Thus, the DMCFE ensures the security of the keys, and also
prevents malicious TTP and SP from executing collusion attacks.

Rather than simply allowing multiple users to generate keys, DMCFE requires adherence to
a parameter exchange protocol between users. The parameter exchange protocol is based on the
Decisional Diffie-Hellman assumption, the DDH assumption means that, in a prime-order group
G←GGen(1λ), for the following distributions{
([a] , [r] , [ar]) |a, r←Zp

}
and{([a] , [r] , [s])|a, r, s←Zp} (6)

there is no probabilistic polynomial-time (PPT) adversary can distinguish them with non-negligible
advantage [22]. Therefore, decentralized does not reduce the security of function encryption.

5.2 Privacy Analysis of Fed-DFE
Function encryption prevents the server or a third party from obtaining the plaintext of

individual gradients and effectively resists the gradient inversion attack. Nevertheless, the attacker
can still execute inference attacks on the aggregated model, combined with background knowledge.

After adding the noise of Gaussian distribution N
(
0,S2f ·σ 2

)
using differential privacy, we need

to calculate the probability that the privacy loss exceeds the privacy budget by the formula
δ = minλ exp(αM (λ)− λε), where ε denotes the privacy budget, αM (λ) denotes the privacy loss,
and δ denotes the threshold value. When the result of minλ exp(αM (λ)−λε) exceeds the threshold
δ, it means that the model with added noise can make the attacker unable to distinguish the
presence of privacy attributes. However, users often set more strict differential noise for subjective
reasons, resulting in unnecessary degradation of global model accuracy.
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In practice, researchers often use the incentives to encourage users to submit high-quality
model gradients, that is, appropriate reductions of differential privacy noise. In this process, we
provide each user with a utility function Utilityuseri = reward(Acci)−risk(pri(buge,nosi)). Users can
compare the reward SP provides with the cost of privacy leakage risk, and then decide whether
to reduce the privacy protection noise. It is worth noting that if the reward is increased infinitely,
will there be a problem of users not adding differential privacy noise? For this reason, we have
established the assumption that users are rational. They will set a differential privacy noise floor
for themselves pri, and will not participate in the federated learning when the noise is lower than
the actual privacy requirement pri(budg,nosi)< pri. In reality, these regulations can be prescribed
by laws and policies that enable SPs and users to optimize model accuracy within certain privacy-
preserving rules.

6 Experiment and Analysis

In this section, we discuss the experimental results and evaluate the performance of the
incentive mechanism.

6.1 System Setup
We implemented a prototype of federated learning. The prototype is developed based on

TensorFlow and its architecture is similar to [21]. We deploy SP on a server that includes
2×Hygon-C86-7159, 236G DDR, 5T SSD, and Linux Centos 7 OS. We conducted experiments
on the MNIST dataset, which consists of 60,000 training examples and 10,000 testing examples.
The size of each image is 28 ∗ 28. We separated the MNIST into 100 sub-datasets to simulate
the corresponding users. Under the setting of different users, we studied the influence of the
incentive mechanism on the performance of federated learning. We apply a CNN model with
6 neural network layers. Its structure includes: 2 Convolutional layers, 2 Maxpooling layers, 1
Dense layer, and 1 Logits layer. In the performance of DMCFE, our baseline is the classical inner
product function encryption scheme. In the performance of incentive mechanism, our baseline is
the federated learning based on local differential privacy without incentive mechanism.

6.2 Performance of the DMCFE
We implement the DMCFE algorithm in Fed-DFE and evaluate its performance in different

numbers of users. And then, we compared the overhead of other function encryption algorithms
with DMCFE algorithm in one time encryption and decryption process. Our comparison schemes
include Inner Product Function Encryption (IPFE), Multi Input Function Encryption (MIFE),
Function Hiding Multi Input Encryption (FHMIE), Function Hiding Inner Product Encryption
(FHIPE) and Decentralizing Inner-Product Functional Encryption (DIPFE). Tab. 1 shows the
overhead of various encryption algorithms under different size of users. The overhead of the
encryption algorithm includes overall encryption overhead (Enc) and decryption overhead (Dec).
Among all comparative cryptography algorithms, the decryption overhead of MIFE and FHIPE is
even 2 times higher than other algorithms. While the number of users reached 40, the decryption
overhead of MIFE and FHIPE algorithms reached 3.618s and 3.773s, respectively. In decentralized
schemes, the Dec of DIPFE and DMCFE is close, but the DMCFE maintains lower Enc. By
comparison, the decryption overhead of our DMCFE algorithm only takes up 0.699s.
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Table 1: The overhead of different encryption algorithms

Clients IPFE MIFE FHMIE FHIPE DIPFE DMCFE

Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

20 0.279 0.899 0.283 1.219 0.061 0.826 0.019 1.524 0.288 0.492 0.055 0.453
30 0.811 0.922 0.422 2.068 0.080 1.022 0.038 2.766 0.599 0.589 0.081 0.574
40 1.950 1.816 0.569 3.618 0.104 1.634 0.066 3.773 1.037 0.506 0.107 0.699

Fig. 3 visualizes the encryption and decryption overheads of different encryption algorithms.
Generally, model encryption process is performed independently by users in federated learning,
thus the overhead increases linearly as the number of users. Different from the encryption process,
the decryption process is generally performed by the SP, the growth trend of the decryption
overhead is more significant. Among all the algorithms, the FHIPE algorithm has the least
encryption overhead, but its decryption overhead is higher than others. Since the inner product
of the DMCFE is calculated by using pairings to solve the discrete logarithm problem. Our
DMCFE algorithm has a slightly higher encryption overhead than FHIPE, however, both its
decryption overhead is lower than all other algorithms. Thus, it still has a great advantage over
other algorithms in overall overhead.

Figure 3: The overhead of different encryption algorithms

6.3 Performance of Incentive Mechanism
To verify the effect of the incentive mechanism, we conduct experiments with different privacy

budgets (eps) and different noise parameters under the size of 20, 30, and 40 users, respectively.
We set each user to hold the same sample number, which can exclude the effect of additional
factors. The elements that impact our incentive mechanisms include local model accuracy, privacy
budget, noise parameter. Among these, local model accuracy is obtained by users training on the
test samples. Next, we observe the effect of privacy budget and noise parameters on incentive
mechanisms separately.
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6.3.1 The Impacts of Privacy Budget
The privacy budget is an important parameter in differential privacy, which is used to accu-

mulate the privacy loss incurred during iterative training. A smaller privacy budget means a
stricter privacy guarantee, and smaller privacy budget reduces global model accuracy. We adjust
the moment accountant method to LDP mechanism to accumulate the privacy loss of each user.
The impact of privacy budget on the model accuracy is shown in Tab. 2. We use Non-Fed-
DFE to indicate the baseline, which means without applying the incentive mechanism scheme. In
Non-Fed-DFE, with the privacy budget of 50 and the noise parameter of 1, the global model
accuracy can only reach 95.48% when 20 users. After we utilize the incentive mechanism in Fed-
DFE, we allow all users to randomly select own privacy budget from the privacy budget range
36–45. It means Fed-DFE uses a stricter privacy guarantee than Non-Fed-DFE. To ensure that
experimental results are only affected by the privacy budget, all users set the same noise parameter.
In the size of 20, 30, and 40 users, our experimental results are higher than the baseline Non-Fed-
DFE. For 20 users, the model accuracy is up to 97.86%. We also set the step size to 5 and stepwise
decrease the privacy budget range to 21–30. At different privacy budget ranges, we separately test
the model accuracy.

Table 2: The accuracy of model when varying privacy budget range

Users Non-Fed-DFE with eps = 50 Fed-DFE

eps = [36,45] eps = [31,40] eps = [26,35] eps = [21,30]

20 0.9548 0.9786 0.9777 0.9765 0.9681
30 0.9478 0.9704 0.9661 0.9621 0.9466
40 0.9389 0.9541 0.954 0.943 0.9245

Fig. 4 visualizes the trends of model accuracy across the different privacy budget ranges for
20, 30, and 40 users. In the case of 20 and 30 users, the model accuracy is consistently higher than
the Non-Fed-DFE, regardless of the privacy budget range. Since in differential privacy theory, a
smaller privacy budget means tighter privacy protection. As the number of clients increases and
the privacy budget decreases, the quality of the user’s model becomes worse. Therefore, for 40
users, the model accuracy is still higher than the baseline when the privacy budget range drops to
26–35. The experimental results indicate that our incentive mechanism is effective, and the selected
users provide high-quality models.

6.3.2 The Impacts of Noise Parameter
In differential privacy, we adjust the amount of noise added to the model by the noise

parameter σ . For a fixed number of users and privacy budget, the smaller the noise parameter,
the smaller the range of data perturbation caused by adding noise. To evaluate the impact of the
noise parameter σ on the model accuracy, we specify the same privacy budget for each user. It
means that model accuracy is only affected by the noise parameter in the incentive mechanism.
By stepwise decreasing the range of noise parameter σ , we observe the trend in model accuracy
change. In the case of 20 and 30 users, the experimental results are shown in Tab. 3. With 30
users and the privacy budget of 45, our Fed-DFE greatly improves the model accuracy up to
96.77%. Meanwhile, noise parameter σ is significantly being reduced by up to 10%.
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Figure 4: The accuracy of model when varying privacy budget range. (a) For 20 users. (b) For 30
users. (c) For 40 users

We first study the effect of the noise parameter when the number of users is 40. As shown
in Fig. 5a, we specify the privacy budget as 35, and observe the trend of model accuracy by
varying the range of noise parameters. By analyzing our utility function, users usually choose
smaller noise parameters to provide high-quality models in exchange for rewards. When the noise
parameter ranges were 0.9–0.99 and 0.86–0.95, the model accuracy with the incentive machine is
higher than the baseline. This means that our incentive mechanism encourages users to choose
smaller noise parameters. To verify the effect of the incentive mechanism on the noise parameters
under different privacy budgets. Figs. 5b and 5c show the trends for privacy budgets of 40 and
45, respectively. With the above two privacy budgets, the final model accuracy is still higher than
baseline. This proves that our incentive mechanism can effectively improve the model accuracy.
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Table 3: The accuracy of model when varying noise parameter

Nosie parameter σ Users = 30 Users = 40

Eps = 35 Eps = 40 Eps = 45 Eps = 35 Eps = 40 Eps = 45

Baseline σ=1 0.9442 0.9491 0.9485 0.9366 0.9403 0.9428
σ= [0.90,0.99] 0.9675 0.9694 0.9677 0.9473 0.9548 0.958
σ= [0.86,0.95] 0.9584 0.9606 0.9676 0.9474 0.9498 0.9547

Figure 5: The accuracy of model when varying noise parameter in 40 users. (a) with eps = 35.
(b) with eps = 40. (c) with eps = 45
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Then, we further verify the effectiveness of our incentive mechanism in the case of 30 users.
As show in Fig. 6, we only adjust the number of users to 30 and set the other parameters the
same as in Fig. 5. Regardless of the privacy budget, the final model accuracy with the incentive
mechanism is higher than the baseline. By conducting experiments with different numbers of user
and different privacy budgets, we indicate that our incentive mechanism is effective in encouraging
users to improve the model quality.

Figure 6: The accuracy of model when varying noise parameter in 30 users. (a) with eps = 35.
(b) with eps = 40. (c) with eps = 45

7 Conclusion

In this paper, we designed, implemented, and evaluated a privacy-preserving federated learning
scheme, termed Fed-DFE, which integrated function encryption, local differential privacy and
incentive mechanisms. It could help users prevent gradient leakage and improve the accuracy of
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the global model. Specifically, we generated keys through the interaction between the server and
users, which is an alternative to the method generated by TTP in traditional function encryption.
Each user’s secret key is managed on its own, avoiding the problem of collusion between TTP
and the server. Further, we designed an embedded incentive mechanism for function encryption
and local differential privacy, which could find a trade-off between privacy protection and model
accuracy. We conducted experiments to evaluate the performance of the decentralized function
encryption, and the impact of our chosen parameters on the incentive mechanism.
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