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Abstract: With the incorporation of distributed energy systems in the electric
grid, transactive energy market (TEM) has become popular in balancing
the demand as well as supply adaptively over the grid. The classical grid
can be updated to the smart grid by the integration of Information and
Communication Technology (ICT) over the grids. The TEM allows the Peer-
to-Peer (P2P) energy trading in the grid that effectually connects the consumer
and prosumer to trade energy among them. At the same time, there is a need
to predict the load for effectual P2P energy trading and can be accomplished
by the use of machine learning (DML) models. Though some of the short
term load prediction techniques have existed in the literature, there is still
essential to consider the intrinsic features, parameter optimization, etc. into
account. In this aspect, this study devises new deep learning enabled short
term load forecasting model for P2P energy trading (DLSTLF-P2P) in TEM.
The proposed model involves the design of oppositional coyote optimization
algorithm (OCOA) based feature selection technique in which the OCOA
is derived by the integration of oppositional based learning (OBL) concept
with COA for improved convergence rate. Moreover, deep belief networks
(DBN) are employed for the prediction of load in the P2P energy trading
systems. In order to additional improve the predictive performance of the
DBN model, a hyperparameter optimizer is introduced using chicken swarm
optimization (CSO) algorithm is applied for the optimal choice of DBN
parameters to improve the predictive outcome. The simulation analysis of
the proposed DLSTLF-P2P is validated using the UK Smart Meter dataset
and the obtained outcomes demonstrate the superiority of the DLSTLF-P2P
technique with the maximum training, testing, and validation accuracy of
90.17%, 87.39%, and 87.86%.
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1 Introduction

The overview of distributed energy resource (DER) in conventional power system provides a
way of creating energy. It carries several benefits, like decreasing environment pollution, lower the
power cost of DERs holders, minimize cost, etc. [1]. Furthermore, DERs owners could transform
from consumer to prosumer by trading their excess energy production to other users and grids. For
effective energy managing and incentivizing the DERs owner appropriately, a novel market structure
named Transactive Energy Market (TEM) was developed [2]. TEM inspires small-scale consumers
as well as generators for joining in traditional power market to buy, produce and sell energies. The
traditional grid, in which electricity is produced mainly in large central producers, transported to
the distribution centres, and later shared to the end user, is updating to a smart grid via combining
Information and Communication Technology (ICT) through the grid. TEM allows Peer-to-Peer (P2P)
electricity trading in the grid [3] that creates a link among prosumers and consumers to trade energy
with one another. In the P2P electricity trading, energy from smaller scale DER in factories, offices,
dwellings, and so on, is traded amongst neighboring consumers and prosumers. The advantages of
P2P electricity trading are twofold as the prosumer gets financial benefits via trading their surplus
renewable production, and consumers purchase electrical energy at a lower level from their peer rather
than the grid.

Furthermore, executing TEM in the smart grid allows flexible systems in which consumers or
prosumers could adapt utilization/generation patterns of DERs according to the request of distinct
entities like network service providers and retailers in cases of urgency [4]. Also, TEM assists grid
operators to address the grids increasing complexities and coordinate energy utilization and generation
depend on electricity price signal. But, TEM execution in electrical grid has various problems because
of the irregular energy production of DER as present electrical energy markets could not respond in
real-time to the arbitrary production from DER. Moreover, electricity price in the markets is frequently
established on a national level that doesn’t deliberate surplus of supply/local energy shortage.

Based on the idea of transactive energy, a new suggestion to engage prosumers in electricity market
is P2P trading method. It denotes the direct electricity trading amongst prosumers and consumers in
distribution network, i.e., evolved on the basis of P2P economy idea. Various frameworks could be
executed for P2P energy trading, like full P2P, hybrid structure, and community based. Market design
to trade among performers within a community was extensively deliberated in the survey utilizing
microgrid (MG) as a standard for community dependent trading [5]. The electricity distribution
method among peers is projected by a dynamic internal price. A collective electricity dispatch approach
for interactions amongst MGs. Nested transactive concepts are proposed for modelling a distribution
grid with various virtual MGs, in which every MG could act as a market. Direct electricity trading’s
amongst many MGs is developed as a widespread Nash bargaining problem for maximizing social
welfare [6]. Currently, novel designs for complete P2P electricity trading were projected to allow
prosumers for engaging directly in bilateral energy trading. A novel market design on the basis
of two-sided contract networks for trading electricity in advance and realtime markets, in which a
distributed price alteration is utilized for clearing markets. A P2P electricity trading’s among electric
vehicles (EVs) are presented for reducing the impacts of EV charging on peak power. A complete
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P2P market framework for bilateral electricity trading amongst market performers according to their
preference [7].

This study devises new deep learning enabled short term load forecasting model for P2P energy
trading (DLSTLF-P2P) in TEM. The proposed model involves the design of oppositional coyote
optimization algorithm (OCOA) based feature selection approach in which the OCOA is a derivative
by the integration of oppositional based learning (OBL) concept with COA for improved convergence
rate. Followed by, deep belief networks (DBN) is employed for the prediction of load in the P2P energy
trading systems. To raise the predictive outcome of the DBN model, a hyperparameter optimizer is
presented using chicken swarm optimization (CSO) technique. The integration of the OCOA based
feature selection and CSO based hyperparameter optimization shows the novelty of the study. A
widespread experimental analysis is executed on the UK Smart Meter dataset and inspect the outcomes
under various aspects.

The rest of the paper is organized as follows. Section 2 offers the brief literature review and
Section 3 introduces the proposed model. Then, Section 4 provides the result analysis and Section
5 draws the conclusion.

2 Literature Review

Mohamed et al. [8] emphases on the online detection False Data Injection Attack (FDIA) that
attempts to interrupt the trends of optimum P2P energy trading in the stochastic scenario. Chen et al.
[9] incorporate Deep Reinforcement Learning (DRL) method and realistic P2P energy trading method
for addressing decision making problems for MGs in the local energy markets. Firstly, an hour in
advance P2P energy trading method with a group of critical physical constraints is made. Later, the
decision making procedure of energy trading is constructed as a Markov decision procedure. Besides,
an adapted deep Q-network (DQN) method assists the MG in using their assets and create improved
strategy. Lastly, they select several real time electricity datasets for performing the simulation.

Qiu et al. [10] categorizes the contributing prosumer to many clusters regarding their collection of
DER and analyzing their trading decision in a simulative P2P trading environment. The later applies
the mid-market rate (MMR) local pricing method for enabling energy trading between penalizes and
prosumers the participation to the scheme demand peak of all prosumers. They develop the P2P
trading issue as a multiagent coordination issue and proposed a new multi-agent DRL (MADRL)
technique for addressing it. The presented technique is allows to speed up the training speed by
learned policies and sharing experiences amongst each agent in all clusters, however, it also sustains
the policy diversity among multiple clusters. Jamil et al. [11] proposed a block chain based prediction
energy trading environment for day in advance controlling, generation scheduling of distributed energy
resource, and providing real world support. The projected blockchain based environment contains 2
components; block chain based energy trading and smart contract enabled prediction analytic models.
The smart contracts based prediction analytic model’s aim is to construct a predictive method on the
basis of past energy consuming data for predicting short term consumption of energy.

Khorasany et al. [12] proposed a hybrid energy trading system for P2P energy trading in
transactive energy market. Market performers could take part in various markets, involving traditional
trading with the grid, trading with neighborhood areas, and local markets. Depending upon the
heterogeneous preference of performers of every community, every local market contains distinct
prices, i.e., unlike trading with the grid and market price for neighbourhood trading. A distributed
market clearing method is proposed, which integrates coordination between various markets. Ullah
et al. [13] presented a privacy-preserving distributed dynamic pricing approach for P2P TEM in the
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smart grids with Fast Alternating Direction Method of Multipliers (F-ADMM) approach. The results
show that the approach converged rapidly and simplifies easier execution. Furthermore, a closed form
solution for a P2P transactive energy scheme was proposed, that speeds up the entire computational
time.

Yan et al. [14] proposed a 2 levels network constrained P2P TEM for MGs, that permits MG for
trading energy with one another. At low level, P2P transactive energy is applied to MGs for trading
energy with one another. Zheng et al. [15] proposed an equilibrium method of a P2P transactive energy
market. Each contributor seeks the maximal own interests, with the option of providing energy from
or to another peer through distinct buses of the distribution network. These criteria are attained by
integrating the Karush Kuhn Tucker condition of each problem of separate participants.

Kim et al. [16] proposed a novel trading calculation condition which considers this factor by
determining gain as the amount of the profits from 4 modules: trading, electricity bill, virtual loss, and
electric energy stored in the energy storage system. For the projected automated P2P energy trading
method, they adapt a long-term delayed reward technique which calculates the delayed reward appears
monthly by creating the end point.

In Wongthongtham et al. [17], blockchain technique for P2P energy trading and its implication
is examined, particularly considering the ‘trilemma’: decentralization, scalability, and security. P2P
energy trading is the emphasis of this work that eventually suggests a blockchain scalability solution.
These solutions are empirically modeled with data gathered in experimental analysis. Ferrag et al.
[18] devised a DL and blockchain enabled energy architecture called DeepCoin. The DeepCoin
architecture using 2 systems, a block chain based system, and a DL based system. For preventing
smart grids attack, the presented method creates the generation of blocks through hash functions and
short signatures.

3 The Proposed Model

In this study, a novel DLSTLF-P2P technique is developed to derive effectual load forecasting
model for P2P energy trading in TEM. The DLSTLF-P2P technique encompasses several processes
namely preprocessing, OCOA based feature selection, DBN based classification, and CSO based
hyperparameter optimization. The working of these processes is elaborated in the succeeding sections.

3.1 Feature Selection Using OCOA Technique

The OCOA technique examines the data and chooses an optimal selection of feature subsets.
COA is a recently developed metaheuristic technique which is based on the adaptable characteristics
of the coyotes and also, they face interchange action. It has a fascinating approach to balancing among
exploration and exploitation. It begins with NP population size and Nc coyote count as the candidate
solution. The COA defines the social nature of the coyotes as the cost function and can be defined in
Eq. (1):

SOCp,t
c = x = [x1, x2, . . . , xD] (1)

where c defines the number and p labels the group and t denote the simulation time for the designing
parameters. Firstly, few arbitrary coyotes are produced as the solution candidates that exist in the
searching area, as given below.

SOCp,t
c,j = LBj + η × (Urj − Lrj) (2)



CMC, 2022, vol.71, no.1 1477

where η ∈ [0, 1] indicates an arbitrary value and Lrj and Urj denotes the minimum and maximum
boundary of the jth parameter in the searching area. The cost function of the coyotes can be defined
as follows.

objp,t
c = f

(
SOCp,t

c,j

)
(3)

The COA upgrades the location of the groups in a random way. In addition, the candidate can
upgrade the location once it is left from the group, and the leaving process is formulated based on the
probability as given below [19].

P1 = 0.05 × N2
c (4)

where c ≤ √
200, P1 > 1. The coyote count in a group should be restricted to 14 in order to improve the

algorithmic diversity, i.e., cultural interaction between coyotes. The optimal solution of the iterations
are treated as the alpha coyotes, as provided in Eq. (5):

αp,t = socp,t
c for min objp,t

c (5)

The general features of the coyotes for the culture transformation is defined below:

culp,t
j =

⎧⎨
⎩

Rp,t
NC+1

2 ,j
, Nc is odd number

1
2

(
Rp,t

NC
2 ,j

+ Rp,t
NC

2 +1,j

)
0.W .

(6)

where, Rp,t computes the coyote, social condition grade for group number p at time t for the
parameter j.

The COA treats the coyote lifecycle that is an integration of environment factors and social
characteristics of the parent coyote. The coyote’s lifecycle can be represented using Eq. (7):

Blep,f
j =

⎧⎪⎨
⎪⎩

socp,t
r1, j, rj < prs or j = j1

socp,t
r2 j, rj ≥ prs + pra or j = j2

σj, O.W .
(7)

where rj ∈ [0, 1] denotes arbitrary values and r2 indicates an arbitrary coyote in the group p, σj defines
an arbitrary value in the design variable limits, j1 and j2 are arbitrary design variables, and pra and
prs signify the association and scatter probability which declares the coyote cultural diversity from the
group. The pra and prs can be mathematically defined here’s:

prs = 1
d

(8)

Pra = 1
2

(1 − pr) (9)

where d denotes the variable dimensions. The pseudocode of the balancing procedure of coyote’s
lifecycle is provided here.

Compute i and ω

if i = 1

Ble survives and coyote in ω deceases

else if i > 1

Ble survives and eldest coyote in ω expires
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else

Ble deceases

End if

where i denotes the coyote count in the group, ω computes the worse outcome of the coyote, and the
probability of decreasing for Ble is found to be 10%. The cultural conversion amongst the groups can
be represented using δ1 and δ2 as given below:

δ1 = αp,t − socp,t
cr1 (10)

δ2 = culp,t − socp,t
cr2 (11)

where, δ1 signifies the cultural variations among the leader (alpha) and chosen coyote (cr1) and δ2

defines the culture variance among group culture trending and chosen coyote (cr2). To update the
social characteristics depending upon the leader and the group impact, Eq. (12) is used.

nsocp,t
c = socp,t

c + r1 × δ1 + r2 × δ2 (12)

where r1 and r2 represents arbitrary numbers. With the update conditions, the new cost is attained using
Eq. (14):

nobjp,t
c = f

(
nsocp,t

c

)
(13)

socp,t+1
c =

{
nsocp,t

c , nobjp,t
c < objp,t

c

socp,t
c , O.W .

(14)

A vital characteristic of these approaches is the capability to escape from the local optima.

The OCOA technique is derived by the use of OBL concept into the COA technique for raising the
convergence rate. For improving the efficiency of COA technique, Opposition Based Learning (OBL)
was comprised of SSO technique to increase the convergence rate. It works by exploring both ways
in exploring areas like original and opposite solutions. The opposite number x is expressed as real
number in the interval x ∈ [lb, ub]. The opposite number of x is demonstrated as x̃:

x̃ = lb + ub − x (15)

In order to generalize, every searching agent and opposite solution is determined utilizing Eqs. (16)
and (17):

x = [x1, x2, x3, . . . xD] (16)

x̃ = [x̃1, x̃2, x̃3, . . . , x̃D] (17)

The values of all elements in x̃ is referred to as (18):

x̃j = lbj + ubj − xj where j = 1, 2, 3, . . . , D (18)

If the fitness value f
(
x̃
)

of opposite solution is optimum than f (x) of their actual solutions x,
afterward x = x̃; else x = x.

The existence of repetitive features can affect learning performance. The FS process ensures the
relativeness of the features which comprise a dataset and eradicating the features which do not helps
to achieve effective outcomes. The features chosen by the FS model can be defined as a N sized vector
where N denotes the feature count in the dataset in which each place of the vector considers two
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values (0 or 1). The value of 0 denotes the feature is unselected and 1 indicates that the feature is
chosen. The transfer function (TF) represents the possibility of modifying a location vector component
from 0–1 and vice versa. The TF affects the outcome of the FS model at the time of searching the
optimal features. It avoids the local optimum problem and balances exploration and exploitation [20].
In OCOA, the social state of the coyotes corresponds to binary values by the use of v-shaped TF as
given below:

V
(
new−socp,t

c

) =
∣∣∣∣∣ new−S0C

p,t
c√

1 + (new−socp,t
c )2

∣∣∣∣∣ , (19)

where new−socp,t
c resembles the upgraded social stage vector with the consideration of the continuous

values. The OCOA technique makes use of the s-shaped TF:

V (x) =
∣∣∣∣ 1√

1 + e−a(x−c)

∣∣∣∣ , (20)

where x signifies the location vector of the upgraded individual with the consideration of the
continuous values.

3.2 Load Prediction Using DBN Model

The feature subsets from the OCOA technique are fed into the DBN model for appropriate
prediction of load. DBN is a probabilistic generative model which contains a stacking of multiple
layers of Restricted Boltzmann Machines (RBM) in which everyone includes a layer of visible and
hidden layers. The DBN model undergoes extraction of a deep hierarchical representation of the
input data by the use of greedy layer wise procedure. Once the layers of the RBM have undergone
training, the representation of the earlier hidden layer is fed as input to the succeeding hidden layer.
The structure of DBN is depicted in Fig. 1. The DBN model with l hidden layers includes l weight
matrix: W (1), . . . , W (l). It additionally includes l + 1 bias vectors: b(0), . . . , b(l) with b(0) offering the bias
for the visible layer. The probability distribution of the DBN model can be defined as follows.

P
(
h(l), h(l−1)

) ∝ exp
(

b(l)T h(l) + b(l−1)T h(l−1) + h(l−1)T W (l)h(l)
)

, (21)

P(h(k)

i = 1|h(k+1)) = σ(b(k)

i + W (k+1)T

: ,i h(k+1))∀i, ∀k ∈ 1, . . . , l − 2, (22)

A 2-layer DBN stacked through 2 RBMs holds a set of visible layers and 2 layers of hidden layers.
If h(1) and h(2) denotes the state vectors of the hidden layer, v represents state vector of the visible layer,
W (1) and W (2) indicates the matrix of the symmetrical weight, b(1) and b(2) signifies bias vectors of the
hidden layers, and b(0) is the bias vectors of the visible layer.

P
(
νi = 1|h(1)

) = σ
(

b(0)

i + W (1)T

i h(1)

)
∀i. (23)

When the real valued visible layers have existed, then apply v with β diagonal for
manageability [21].

v ∼ N
(

b(0) + W (1)T h(1), β−1
)

, (24)

σ(x) = 1/(1 + exp(−x)).

h(1) = σ
(
b(1) + vTW (1)

)
, (25)
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h(l) = σ
(

b(l)
i + h(l−1)T W (l)

)
, ∀l ∈ 2, . . . , m (26)

The weight from the trained DBN can be optimally tuned to enhance the efficiency of the entire
network.

Figure 1: Framework of DBN

3.3 Hyperparameter Optimization Using CSO Algorithm

The CSO algorithm is employed as a hyperparameter optimization to effectually tune the
parameters involved in the DBN model. The CSO algorithm considers the optimization issue as the
procedure of searching food by chickens. The entire CS (CS) is partitioned into various flocks of
chicken including a cock, hens, and chicks. There is a rivalry amongst every CS and the optimal cluster
individual is stained by the competition. This process can be simplified as given below.

1. Every CS includes several sub-CSs everyone includes a cock, hens, and chicks.
2. The CS partitions different sub-CSs and compute the FV of the individual. The ones with

optimum fitness value (FV) is chosen as cock and it becomes the leader of the CS. The chicken
with least FV becomes chick and the remining ones become hens. The hen generally follows a
cock arbitrarily and the relativity among the hens as well as chicks are arbitrarily created.

3. The dominance connection, hierarchy, and mother child bond in the CS remains same; chickens
regroups and updates role for each G generation.

4. The sub-CS searches food with the cock and the chick looks for food over the hens, and it has
the ability to identify the food. The cock, hen, and chick in the CS carry out the optimization
processes distinctly.

The individuals in the CS moves based on their rules till optimal location is identified. In the CSO
algorithm, the individual count in the flocks is kept as N, and the location of each CS individual can
be defined as xi,j(t), and it represents that the location attained in the t − th round of the i − th flock
individuals in the j − th dimension. So, there are different locations for the 3 distinct kinds of chickens
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in the CS optimization. The cock attains the optimal FV in all sub-groups and it finds food effectively
[22]. The location of the cock can be upgraded using the following equation.

xi,j (t + 1) = xi,j (t) ∗ (
1 + Rann

(
0, σ 2

))
,

σ 2 =
⎧⎨
⎩

1, fi ≤ fk,

exp
(

fk − fi

|fi| + ε

)
fi > fk,

(27)

where Ran n(0, σ 2) offers an average of 0 and Gaussian distribution arbitrary number with standard
deviation σ , ε is tool small, fi and fk indicates the FV of individuals i and k. The location of the hen
can be upgraded using Eq. (28):

xi,j(t + 1) = xi,j(t) + c1 ∗ ran ∗ (xr1,j(t) − xi,j(t)) + c2 ∗ ran ∗ (xr2,j(t) − xi,j(t)),

c1 = exp
(

(fi − fr1)

abs (f1) + ε

)
, (28)

c1 = exp(fr2 − fi),

where ran denotes the arbitrary number in the range of 0–1. The location equivalent to the chick can
be upgraded using Eq. (29):

xi,j (t + 1) = xi,j (t) + F ∗ (
xm,j (t) − xi,j (t)

)
, (29)

where m defines the hen equivalent to the ith chick and F is the follow up coefficient. Fig. 2
demonstrates the flowchart of CSO algorithm.

4 Performance Validation

The performance of the DLSTLF-P2P technique is examined using the UK Smart Meter dataset
[23]. The applied dataset has different attributes such as Household id, Plans used (standard or
dynamic time of use), Date and Time, Meter readings (Kwh), and Acorn groups. A comprehensive
MAPE analysis of the DLSTLF-P2P technique with other techniques is performed in Fig. 3. The
figure reported that the ARIMA technique has offered a worse performance with the training, testing,
and validation MAPE of 39.57, 42.65, and 52.09. Also, the AdaBoost technique has demonstrated
somewhat decreased training, testing, and validation MAPE of 38.24, 40.43, and 40.23. Then, the
gradient boosting model has gained even reduced training, testing, and validation MAPE of 34.46,
31.46, and 36.67. Additionally, the LDA, ANN, SVR, and ARIMA-NN techniques have led to
reasonable training, testing, and validation MAPE values. However, the proposed DLSTLF-P2P
technique has outpaced the other techniques with the lower training, testing, and validation MAPE
of 11.32, 13.89, and 14.99.

A brief MSE analysis of the DLSTLF-P2P approach with other methods is performed in Fig. 4.
The figure described that the ARIMA manner has obtainable the least performance with the training,
testing, and validation MSE of 0.38, 0.29, and 0.52. Also, the SVR algorithm has outperformed slightly
reduced training, testing, and validation MSE of 0.38, 0.26, and 0.49. Afterward, the ANN algorithm
has increased even reduced training, testing, and validation MSE of 0.37, 0.24, and 0.44. Moreover,
the AdaBoost, gradient boosting, ARIMA-NN, and LDA manners have led to reasonable training,
testing, and validation of MSE values. But, the projected DLSTLF-P2P methodology has outpaced
the other algorithms with the minimal training, testing, and validation MSE of 0.12, 0.15, and 0.13.
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Figure 2: Flowchart of CSO
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Figure 3: Result analysis of DLSTLF-P2P model interms of MAPE

Detailed accuracy analysis of the DLSTLF-P2P technique with other techniques take place in
Tab. 1. The simulation outcomes portrayed that the LDA technique has resulted in poor outcomes
with the training, testing, and validation accuracy of 30.38%, 40.57%, and 37.39%. In addition, the
ARIMA technique has tried to showcase slightly enhanced training, testing, and validation accuracy
of 30.51%, 20.33%, and 18.07%. Followed by, the gradient boosting model has accomplished even
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increased training, testing, and validation accuracy of 35.65%, 40.87%, and 32.78%. Moreover, the
AdaBoost, ANN, SVR, and ARIMA-NN techniques have resulted in moderate training, testing, and
validation accuracy values. However, the proposed DLSTLF-P2P technique has outperformed the
other techniques with the maximum training, testing, and validation accuracy of 90.17%, 87.39%, and
87.86%.
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Figure 4: Result analysis of DLSTLF-P2P model interms of MSE

Table 1: Accuracy analysis of the DLSTLF-P2P technique

Methods Train. data (Acc.) Test. data (Acc.) Valid. data (Acc.)

DLSTLF-P2P 90.17 87.39 87.86
ARIMA-NN 43.82 47.88 44.84
ARIMA 30.51 20.33 18.07
Gradient Boosting 35.65 40.87 32.78
AdaBoost 35.86 34.62 36.50
LDA 30.38 40.57 37.39
ANN 39.49 41.76 41.10
SVR 43.48 46.52 43.93

Fig. 5 investigates the difference in MAPE values of the proposed with exiting techniques. On
the applied validation data, it is noticed that the ARIMA and RPART techniques have exhibited
higher differences in MAPE with the values of 37.10% and 25.24% respectively. In the meantime,
the KNN and RF techniques have showcased slightly reduced differences in MAPE with the values
of 21.68% and 19.13% respectively. Along with that, the NNET and SVR techniques have resulted
in certainly lower MAPE values of 18.88% and 15.94%. Moreover, the ARIMA-NN technique has
depicted minimal difference in MAPE values with the proposed DLSTLF-P2P technique.
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Figure 5: MAPE analysis of DLSTLF-P2P method with existing techniques

Fig. 6 examines the difference in MSE values of the projected with recent algorithms. On the
applied validation data, it can be stated that the ARIMA and SVR algorithms have shown superior
differences in MSE with the values of 0.39% and 0.36% correspondingly. Meanwhile, the RPART
and NNET approaches have outperformed somewhat minimal differences and similar MSE with the
values of 0.32% and 0.31% correspondingly. Also, the KNN and RF methods have resulted in the
certainly same MSE values of 0.29%. Additionally, the ARIMA-NN methodology has showcased
lesser difference in MSE values with the presented DLSTLF-P2P method.
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Figure 6: MSE analysis of DLSTLF-P2P method with existing techniques

Finally, Fig. 7 assesses the difference in accuracy values of the DLSTLF-P2P with existing
techniques. The figure demonstrated that the ARIMA and NN techniques have showcased extreme
differences in accuracy values. Followed by, the KNN and RPART techniques have gained somewhat
decreased differences in accuracy values. In line with, a moderate difference in accuracy value is
exhibited by the NNET technique whereas the ARIMA-NN and SVR techniques have accomplished
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lower differences in accuracy values with the proposed model. From the detailed simulation analysis,
it is apparent that the DLSTLF-P2P technique has showcased effectual outcomes over the other
techniques.
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Figure 7: Accuracy analysis of DLSTLF-P2P method with existing techniques

5 Conclusion

This paper has introduced an efficient DLSTLF-P2P technique to trade energy in TEM. The
DLSTLF-P2P technique is intended to derive effectual load forecasting model for P2P energy trading
in TEM. The DLSTLF-P2P technique encompasses several processes namely pre-processing, OCOA
based feature selection, DBN based classification, and CSO based hyperparameter optimization.
The utilization of OCAO and CSO techniques for feature selection and parameter optimization
helps to considerably enhance the predictive outcomes. A widespread experimental analysis is carried
out on the benchmark UK Smart Meter dataset and inspect the results under various aspects.
The experimental outcomes highlighted the promising predictive performance of the DLSTLF-P2P
technique over the existing load prediction techniques. In future, the predictive outcome can be further
improvised by the design of clustering and outlier detection approaches.
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