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Abstract: Developing successful software with no defects is one of the main
goals of software projects. In order to provide a software project with the
anticipated software quality, the prediction of software defects plays a vital
role. Machine learning, and particularly deep learning, have been advocated
for predicting software defects, however both suffer from inadequate accuracy,
overfitting, and complicated structure. In this paper, we aim to address such
issues in predicting software defects. We propose a novel structure of 1-
Dimensional Convolutional Neural Network (1D-CNN), a deep learning
architecture to extract useful knowledge, identifying and modelling the knowl-
edge in the data sequence, reduce overfitting, and finally, predict whether the
units of code are defects prone. We design large-scale empirical studies to
reveal the proposed model’s effectiveness by comparing four established tra-
ditional machine learning baseline models and four state-of-the-art baselines
in software defect prediction based on the NASA datasets. The experimental
results demonstrate that in terms of f-measure, an optimal and modest 1D-
CNN with a dropout layer outperforms baseline and state-of-the-art models
by 66.79% and 23.88%, respectively, in ways that minimize overfitting and
improving prediction performance for software defects. According to the
results, 1D-CNN seems to be successful in predicting software defects and may
be applied and adopted for a practical problem in software engineering. This,
in turn, could lead to saving software development resources and producing
more reliable software.

Keywords: Defects; software defect prediction; deep learning; convolutional
neural network; machine learning

http://dx.doi.org/10.32604/cmc.2022.022085
mailto:zmzain@pnu.edu.sa


1522 CMC, 2022, vol.71, no.1

1 Introduction

In recent years, software-run applications have become crucial in day-to-day human life. When
COVID-19 embarked on the world in 2020, our dependency on software accelerated more due to
the lockdown. Any slight disturbance or defect in any software could lead the working software to
failure [1]. One of the preventive measures of software failure is to predict the software defect. A
software defect is “an imperfection or deficiency in a work product where that work product does
not meet its requirements or specifications and needs to be either repaired or replaced” [2]. It prevents
the software from functioning as it plans and remains incompetent to the user’s needs [3]. On the other
hand, Software Defect Prediction (SDP) is a procedure to establish a model used in many projects to
detect software errors. It classifies the software error as fault-prone and non-fault-prone. Hence, it
helps the developer to find bugs in code. This procedure reduces the work in the maintenance phase
and improves the quality of the software when deployed [4–8].

SDP offers exceptional benefits (1) to discover problems or defects earlier based on previous
projects. Generally, these previous projects may have similarities with the new project. On top of that,
predicting the problems help to increase the new project or software reliability; (2) To discover several
independent variables used in a model. This helps the software developer appropriately manage the
software defects; (3) To manage the testing plan and prioritize the faulty classes. Nevertheless, the
software tester able to use the testing plan efficiently. Overall, SDP ensures that resources are effectively
used in software development, resulting in lower costs and shorter development times. As a result, it
increases software quality [9,10].

Realizing the importance of SDP, researchers have proposed a number of solutions to predict
defects in the software. One of the solutions is using a statistical model based on the regression or
function-approximation problem analysis [11]. Unfortunately, such methods fail to achieve proficient
performances. This is because, each software application has a unique architecture comprised of
distinct function combinations, development teams, and third-party components. This in turn causes
the software defect prediction produces an incorrect result. To address the complexity issue, machine
learning techniques have been advocated for SDP.

Several machine learning algorithms [7,12–17] such as naïve Bayes [18], logistic regression [19],
random forest [20], and support-vector machines [21] have been implemented for SDP. Nevertheless,
these traditional classifiers are still far from adequate because their predictive accuracies did not differ
significantly [22,23]. Besides, they also suffer from overfitting. Recently, because deep learning (DL)
has been successfully used to solve problems in other fields such as image processing [24] and speech
recognition [25], researchers have examined the utility of DL algorithms for defect prediction [26,27]
and suggested that this approach promises to advance SDP. The most popular DL algorithm used in
SDP is the convolutional neural network (CNN) [5,28–35].

Although CNN algorithms may be useful for SDP, however, they seem to be very complex and
have an insufficient accuracy level. This issue might be because of the 2D structure that was originally
constructed to work only with 2D data such as images and videos. Recently, [36] leveraged 2D CNNs
into 1D CNNs to work on patient-specific ECG data. The empirical results show that 1D CNNs
are beneficial and therefore superior to their 2D equivalents. It has also gained popularity due to
its superior performance in structural health monitoring and structural damage detection [37], high
power engine fault monitoring [38], and damage detection in bearings [39,40].

Yadav [41] introduced 1D CNN in SDP to extract important features in the model and used SVM
to classify software as defective or not defective. Although the model’s performance was excellent,
however, 1D CNN was not applied as a classifier which may cause the complexity of the model. In
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addition, the study did not consider a dropout layer in the 1D CNN structure which may cause it
suffers from overfitting.

Motivated by the success of 1D-CNN algorithms applied in the aforementioned studies, we
proposed a novel structure of 1D-CNN in predicting software defects with the aim to increase the
performance of SDP on nine NASA datasets. On top of that, another five CNN models with different
structures were also built to investigate the impact of different architecture on the performance of
CNN in SDP. This paper makes the following contributions:

• We propose a novel structure of 1D-CNN, a deep learning architecture to extract useful
knowledge, identify and model the knowledge in the data sequence, reduce overfitting, and
finally, predict whether the code units are defects prone.

• We investigate the impact of different architecture of 1D-CNN on SDP performance by
developing five CNN models with five different structures in terms of the dropout layer, kernel
size, filter size, and the inclusion of an additional convolutional layer, and type of convolutional
and max-pooling layers. The empirical results show that adding a dropout layer to a 1D-CNN
classifier can reduce overfitting and enhance the model’s performance in predicting software
defects. On the other hand, increasing the kernel size of the proposed 1D-CNN model, reduces
the filter size, adds an additional convolutional layer, and uses 2D convolutional and max
pooling layers do not have a great impact on the detection of software defects.

• We design large-scale empirical studies to present the effectiveness of the proposed model by
making a comparison with four established traditional machine learning baseline models and
four state-of-the-art baselines in SDP based on the NASA datasets [42]. Results show that the
proposed 1D-CNN software defect classification model achieved superior performance.

• Finally, we present the optimal 1D-CNN model by tuning three hyperparameters (the number
of epochs, learning rate, and dropout rate) of the proposed 1D-CNN model.

The following is the paper’s organization. Section 2 reviews related work. Section 3 provides the
materials and methods of the proposed model. Section 4 presents the results and discusses the stated
research questions. Section 5 gives the threats to validity from the construct, external, and internal
validity. Section 6 gives the conclusion, and summarizes the study and suggests possible future works.

2 Related Work

Deep learning has been utilized in a variety of fields since 2012, including software engineering.
Deep learning was first used in software defect prediction in 2015 [26], and since then, it has become
more popular. Several studies have looked at the use of deep learning in software fault prediction up
to now.

Yang et al. [26] developed a Deep Belief Networks (DBN) model that predicts defect-prone
changes. They classified data using machine learning algorithms. Experiments demonstrate that
their techniques can detect 32.22 percent more defects than the current state-of-the-art model [43].
Suggested using stacked denoising autoencoders (SDAE) to create valuable metrics from hand-crafted
metrics in the NASA dataset, and they utilized ensemble algorithms to detect defects. The findings
indicate that deep representations of current metrics are potentially beneficial for predicting software
faults.

Wang et al. [4] utilized DBN to create new important features and machine learning models to
classify defects in 2016. They demonstrated that their model surpassed state-of-the-art models in their
tests. Li et al. [5] presented a CNN-based defect classifier that used feature extraction through CNN
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and classification via logistic regression in 2017. Their findings exceeded those obtained using DBN
models [4]. In 2018, [44] predicted faults using a long-short term memory (LSTM) model. In the
sequel, [45] predicted faults using tree-based LSTM models. Their findings, however, fall short
of Li’s model [5]. Pan et al. [31] enhanced Li’s model in 2019 by increasing convolutional and
maximum pooling layers. Additionally, they included a dropout layer to avoid overfitting and tuned
hyperparameters to improve the proposed prediction model’s accuracy.

Currently, Zhu et al. [46] improved the Whale Optimization Algorithm feature selection method,
which uses metaheuristic search to pick less but closely related features. Additionally, they combined
CNN and kernel extreme learning machines (KELM) to create a hybrid defect classifier that integrates
the selected features into the abstract deep semantic features produced by CNN and boosts prediction
performance by fully exploiting KELM’s strong classification capability. Their findings established the
advantages of the hybrid approach.

However, these methods used deep learning to extract novel characteristics and other machine
learning techniques to classify software as defective or not defective. As a result, these methods
continue to suffer from a complicated structure and inadequate accuracy in predicting software defects,
which may be improved further. To address these problems, we propose a new deep learning model that
simplifies the structure, reduces overfitting and improves accuracy. To conduct this study, we utilized
a 1D-CNN method for predicting software defects. The next section details the whole procedure.

3 Materials and Method
3.1 Materials

The dataset used in this study was collected by the NASA Metrics Data Program. It can be
retrieved from [42]. This dataset has been cleaned by eliminating all redundant and inconsistent data.
Nine datasets which have similar dependent variable (defects: [TRUE, FALSE]) were selected. The
name, number of instances, and the number of features for each dataset are presented in Tab. 1. The
cleaned NASA datasets consist of features that associate with software quality which is known as
software metrics. The software metrics were categorized into four groups namely, line of codes (LOC),
Halstead, McCabe, and count metrics. The software metrics for each dataset are presented in Tab. 2.

Table 1: Instances and features for NASA datasets

Dataset Instances Features

cm1 498 21
kc1 2109 21
kc2 522 21
pc1 549 21
pc2 5589 36
pc3 1563 37
pc4 1458 37
mc1 9466 38
mc2 161 39
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Table 2: Software metrics for each dataset

Type of
metrics

Software
metrics

Dataset

Cm1 Kc1 Kc2 Pc1 Pc2 Pc3 Pc4 Mc1 Mc2

LOC metrics LOC code and
comments

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

LOC
comments

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

LOC
executable

↓ ↓ ↓ ↓ ↓

LOC blank ↓ ↓ ↓ ↓
LOC total ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Percent
comments

↓ ↓ ↓ ↓ ↓

Halstead
metrics

Content ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Difficulty ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Effort ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Length ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Level ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Prog time ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Volume ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Num operands ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Num
operators

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Num unique
operands

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Num unique
operators

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Total
operators +
operands

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

McCabe
metrics

Cyclomatic
complexity

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Cyclomatic
density

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Design
complexity

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Essential
complexity

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Decision
density

↓ ↓ ↓ ↓

Design density ↓ ↓ ↓ ↓ ↓
(Continued)
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Table 2: Continued
Type of
metrics

Software
metrics

Dataset

Cm1 Kc1 Kc2 Pc1 Pc2 Pc3 Pc4 Mc1 Mc2

Essential
density

↓ ↓ ↓ ↓ ↓

Global data
complexity

↓ ↓

Global data
density

↓ ↓

Line count ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Count Branch count ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Condition
count

↓ ↓ ↓ ↓ ↓

Decision count ↓ ↓ ↓ ↓ ↓
Edge count ↓ ↓ ↓ ↓ ↓
Parameter
count

↓ ↓ ↓ ↓ ↓

Modified
condition
count

↓ ↓ ↓ ↓ ↓

Multiple
condition
count

↓ ↓ ↓ ↓ ↓

Node count ↓ ↓ ↓ ↓ ↓
Call pairs ↓ ↓ ↓ ↓ ↓
Maintenance
severity

↓ ↓ ↓ ↓ ↓

Normalized
cyclomatic
complexity

↓ ↓ ↓ ↓ ↓

Total 21 21 21 21 36 37 37 38 39

3.2 Methods

Fig. 1 shows the process of designing and developing the predictive models for this study.

3.2.1 Data Preprocessing

Preprocessing of data is a crucial step to ensure that the data are of good quality. Normalization
was applied to avoid the very large difference in feature values. In this analysis, the software metrics
were scaled to an interval of [0, 1] using the Sklearn library MinMaxScaler function [47]. Since the
data are considered small, they were then split into training and testing sets in a 65:35 ratio [48].
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Figure 1: Method

3.2.2 Software Defect Prediction Model Construction

In this phase, a structure for a 1D-CNN model was proposed as a baseline. Then, to investigate the
impact of different structures on the performance of the proposed model, another five CNN models
with different structures in terms of dropout layer exclusion, kernel size, filter size, the inclusion of an
additional convolutional layer, and type of convolutional and max pooling layers were constructed.
After that, four machine learning models were developed to measure the efficiency of our proposed
model compared to the established machine learning models.

Proposed Model

A deep learning architecture called 1D-CNN was proposed to extract useful knowledge, identify-
ing and modelling the knowledge in the data sequence, and finally predict whether the unit of code is
defect prone. The 1D-CNN consists of 2 main layers, convolutional and pooling layers.

Convolutional and pooling layers [49] are specifically built data preprocessing layers that have the
task of filtering incoming data and extracting valuable information that will be utilized as an input on a
fully connected network layer. Convolutional layers perform convolution operations on raw input data
using convolution kernels to generate new feature values. Because this method was initially designed
to extract features from image datasets, the input data must be in the form of a structured matrix
[24]. The convolution kernel (filter) may be thought of as a small window (in comparison to the input
matrix) that includes coefficient values in the form of a matrix. This window “slides” over the input
matrix, performing convolution on each subregion (patch) that this defined window “meets”. These
procedures result in a convolved matrix representing a feature value given by the coefficient values
and dimension size of the applied filter. By applying alternative convolution kernels to the input data,
numerous convolved features may be created that are typically more valuable than the input data’s
original initial features, therefore improving the model’s performance.

The convolutional layers are normally preceded by a nonlinear activation function and then a
pooling layer. A pooling layer is a method for subsampling that extracts specific values from the
convolved features and provides a matrix with a reduced dimension. Like the convolutional layer, the
pooling layer employs a small sliding window that accepts the values of each patch of the convolved
features as input and outputs one new value that is described by an operation that the pooling layer
is defined to accomplish. Max pooling and average pooling, for example, compute the maximum and
average value of each patch’s values. Consequently, the pooling layer generates new matrices that can
be thought of as summarized versions of the convolved features generated by the convolutional layer.
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Because slight changes in the input do not affect the pooled output values, the pooling procedure can
assist the system to be more robust.

The structure of our proposed 1D-CNN is depicted in Fig. 2. A brief description for each layer is
presented in the following:

Figure 2: The architecture of the proposed 1D-CNN model

Input layer: Receive input of n number of features (software metrics). The value of n depends on the
number of features in each dataset. For example, for CM1 dataset, the input layer receives 21 software
metrics.

First Conv1D layer: The first convolutional layer reads across the input sequence and projects the
results onto 64 feature maps with kernel size 1 and ReLU activation function. This layer generates
convolved features which contain more knowledge and are more valuable than the original initial
features of the input data.

Second Conv1D layer: The second performs the same operation on the 64 feature maps with
kernel size 1 and ReLU activation function created by the first layer, attempting to amplify any salient
features.

Max pooling layer: The feature maps were simplified by the max pooling layer with pool size 1.
This layer extracts specific values from the convolved features and produces a matrix with a reduced
dimension.

Dropout layer: This layer was added to the network to prevent the model from overfitting. Because
the outputs of a dropout layer are randomly subsampled, the capacity or thinning of the network
during training is reduced. As a result, a larger network, i.e., more nodes, may be required when using
dropout.

Flatten layer: The distilled feature maps after the dropout layer were flattened into one long vector
that can be used as input to the decoding process.

Fully connected layer: The fully connected layer consists of 2 dense layers with the last layer with
sigmoid activation function was used to interpret each vector in the output sequence before the final
output layer. The network used Adam optimization and the categorical cross-entropy as loss function,
which is well known for learning a classification problem.
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Output layer: The unit of code was classified whether it is defect-prone or not.

The proposed model was named 1D-CNN1. We also built another five CNN models with different
structures (Tab. 3) to study the impact of different architecture on the performance of CNN and they
were named 1D-CNN2, 1D-CNN3, 1D-CNN4, 1D-CNN5, and 2D-CNN.

1D-CNN2: The structure is similar to 1D-CNN1 but without the dropout layer. This model
construction aimed to investigate the impact of applying the dropout layer in the 1D-CNN structure
on its performance.

1D-CNN3: The structure is similar to 1D-CNN1 except we change the kernel size for each
convolutional layer to a standard practice size 3. This model was built to investigate the impact of
kernel size on the performance of the 1D-CNN. We conducted additional experiments on the kernel
size from 1 to 5.

1D-CNN4: The structure is similar to 1D-CNN1 except we change the filter size for each
convolutional layer to a standard practice combination of 32 and 15, respectively. This model was
constructed to explore the impact of using a smaller filter size on the performance of the proposed
1D-CNN model.

1D-CNN5: This model has an additional convolutional with a filter size of 64 for each layer.
This model was developed to study the impact of adding an additional convolutional layer to the
performance of the proposed 1D-CNN model.

2D-CNN: This model has a similar structure as 1D-CNN1 but in 2D convolutional and max
pooling layers. This model was built to examine the impact of using 2D convolutional and max pooling
layers on the performance of the proposed 1D-CNN model.

Table 3: CNN models with different structures

1D-CNN1 ID-CNN2 ID-CNN3 1D-CNN4 1D-CNN5 2D-CNN
#Convolutional
layer

2 2 2 2 3 2

#Pooling layer 1 1 1 1 1 1
Size of
max-pooling

1 1 1 1 1 (1, 1)

#Dense layers 2 2 2 2 3 2
Activation
function

ReLU +
sigmoid (last
dense layer)

ReLU +
sigmoid (last
dense layer)

ReLU +
sigmoid (last
dense layer)

ReLU +
sigmoid (last
dense layer)

ReLU +
sigmoid (last
dense layer)

ReLU +
sigmoid (last
dense layer)

Filter 64, 64 64, 64 64, 64 32, 15 64, 64, 64 64, 64
Kernel 1, 1 1, 1 3, 3 1, 1 1, 1 1, 1
Training and
Optimizer

Adam + binary
cross-entropy

Adam + binary
cross-entropy

Adam + binary
cross-entropy

Adam + binary
cross-entropy

Adam + binary
cross-entropy

Adam + binary
cross-entropy

#Epoch 32 32 32 32 32 32
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Dropout rate 0.3 Without

dropout
0.3 0.3 0.3 0.3
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Traditional Machine Learning Models

Four popular machine learning models were also constructed to evaluate how good is our
proposed model compared to these established models. A brief description of each machine learning
technique was presented in the following.

Support Vector Machine (SVM): SVMs are statistical and machine-learning approaches that are
used to predict outcomes. They are comparable to Gaussian, logistic, and multinomial regression in
that they can be adopted to continuous, binary, and categorical outcomes. The details of the SVM
algorithm can be found in the literature [50].

Random Forests (RF): RF are an extension of bagged decision trees. Samples are taken with the
replacement of the training dataset, but the trees are designed in a way that decreases the association
between individual classifiers. Specifically, for each split, instead of greedily selecting the best split
point in the tree construction, only a random subset of features is considered. The details of the random
forests algorithm can be found in the literature [20].

Decision Tree (DT): The DT methodology is a frequently used data mining technique for
constructing classification systems based on various covariates or predictive algorithms for a target
variable. This classification technique divides a population into branch-like segments that form an
inverted tree with a root node, internal nodes, and leaf nodes. The technique is non-parametric,
which enables it to efficiently handle huge, complex datasets without imposing a complex parametric
framework. The details of the random forests algorithm can be found in the literature [51].

Naïve Bayes (NB): NB is among the purest subtypes of Bayesian type. This algorithm is based on
the value of the conditional independence and all the independent attributes assigned to it. The naive
bayes algorithm constructs its learning model using the collection of conditional independences and
the dataset’s frequency. NB is known for its simplicity and outstanding classification processes. The
details of the random forest’s algorithm can be found in the literature [52].

3.2.3 Performance Evaluation

In this phase, the proposed model and the other 4 CNN models were implemented based on
the structure and parameters described in subsection 3.2.2 using Keras from the TensorFlow library.
The baseline models were implemented by setting their parameters to their default values using
sklearn library. The experiment was conducted 5 times for each dataset, taking into consideration
the occurrence of randomness. The performance of each model on each dataset was then measured in
terms of accuracy, f-measure, training, and testing time. The average for each performance metric was
computed and compared to find out which model has the highest performance in detecting software
defects. According to the confusion matrix, which is presented in Tab. 4, the metrics are defined as
follows.

TP = True positive: If a defect subject is correctly classified as a defect

TN = True negative: If a nondefect subject is correctly classified as a nondefect

FP = False positive: If a nondefect subject is misclassified as a defect

FN = False negative: If a defect subject is misclassified as a nondefect

Acc = TP + TN
TP + FP + TN + FN

× 100
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Precision = TP
TP + FP

× 100

Recall = TP
TP + FN

× 100

F − measure = 2 × Recall × Precision
Recall + Precision

× 100

Training time = total time that is to build the training model

Testing time = total time that is taken to find the results based on the test data.

Table 4: Confusion matrix

Predicted

Actual Nondefect Defect

Nondefect TN FP
Defect FN TP

3.2.4 Performance Improvement

In this phase, the accuracy of the proposed model was improved by tuning three hyperparameters:
the number of epochs, learning rate, and dropout rate. The number of epochs was tuned from 32–500,
the learning rate was tuned from 0.001–0.1, and the dropout rate was tuned from 0.1–0.5. The trial was
performed 50 times. The hyperparameter tuning was conducted using the Optuna framework from
the Python library. This hyperparameter tuning was run 9 times since we used 9 different datasets.
The performance of the proposed model using the optimal parameters on each dataset was then
measured in terms of accuracy, f-measure, training, and testing time. The average for each performance
metric was computed then compared with the performance of the proposed model before tuning the
hyperparameters to see its impact.

To guide us in evaluating the proposed model, the following research questions were constructed:

RQ1: How effective is the proposed model compared with the baseline models?

RQ2: How effective is the proposed model compared with the state-of-the-art models?

RQ3: What is the impact of using different structures on 1D-CNN performance?

RQ4: Does tuning the 1D-CNN hyperparameter increase the performance?

4 Results and Discussion

The answers for RQ1 – RQ4 are discussed separately in the following subsections.
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4.1 RQ1: The Effectiveness of the Proposed Model Compared with the Baseline Models

Tabs. 5–8 present the comparison of the performance values between the proposed 1D-CNN
model and 4 baseline classification models: SVM, RF, DT, and NB on each dataset. The best average
performance value is highlighted in bold.

In terms of accuracy (Tab. 5), the proposed 1D-CNN model shows superiority compared to
the four baseline models with 99.60%. In term of f-measure (Tab. 6), the proposed model again
outperformed the baseline models with 98.69%. However, in terms of the training time (Tab. 7),
the proposed model could not beat the baseline models. This is due to the deep network structure.
Nevertheless, the training time of 15.7526 s is still considerable. Surprisingly, in terms of testing time
(Tab. 8), the proposed model outperformed SVM and RF models but still cannot beat DT and NB. On
average, the proposed model improved the accuracy and f-measure of the traditional machine learning
models used in this study by 33% and 66%, respectively.

Table 5: Performance comparison based on the accuracy (%)

Dataset 1D-CNN1 SVM RF DT NB

cm1 99.43 59.71 64.00 60.00 62.29
kc1 99.89 74.74 68.57 63.98 64.92
kc2 100.00 65.89 74.95 74.42 66.58
mc1 99.96 88.30 90.30 80.35 83.47
mc2 97.54 52.08 58.95 60.36 60.54
pc1 100.00 56.87 72.86 68.96 52.90
pc2 100.00 90.22 62.49 63.68 55.93
pc3 99.78 56.99 74.77 58.85 46.93
pc4 99.76 58.54 85.16 67.00 62.02
Ave 99.60 67.04 72.45 66.40 61.73

Table 6: Performance comparison based on the f-measure (%)

Dataset 1D-CNN1 SVM RF DT NB

cm1 97.56 26.18 33.33 29.63 32.26
kc1 99.68 44.81 42.93 38.93 41.35
kc2 100.00 46.78 59.81 60.00 49.32
mc1 97.18 7.18 13.77 28.04 10.43
mc2 95.60 42.50 41.03 40.00 38.46
pc1 100.00 24.39 48.42 46.15 27.84
pc2 100.00 3.11 4.49 11.11 3.23
pc3 99.00 22.08 42.79 25.41 18.42
pc4 99.16 27.40 58.97 42.17 35.56
Average 98.69 27.16 38.39 35.72 28.54
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4.2 RQ2: The Performance of the Proposed Model Compared to the State-of-the-Art

To answer the second research question, we compare the performance of the proposed model with
four state-of-the-art deep learning models: Defect Prediction with Deep Forest (DPDF) [53], Genetic
Algorithm-Deep Neural Network (GA-DNN) [54], Deep Belief Network Prediction Model (DBNPM)
[55], and Stack Denoising Auto-Encoder (SDAE) [56] and present the results in Tabs. 9 and 10. These
studies were selected for using some similar datasets and performance measures. By comparison, our
proposed model demonstrates greater performance in terms of classification accuracy and f-measure.
The proposed 1D-CNN approach will have great potential in detecting software defects based on 9
NASA datasets.

Table 7: Efficiency based on the training time (s)

Dataset 1D-CNN1 SVM RF DT NB

cm1 3.6777 0.0097 0.7450 0.0065 0.0043
kc1 11.3616 0.0585 1.0395 0.0165 0.0031
kc2 3.8472 0.0089 0.6492 0.0048 0.0027
mc1 59.741 1.3434 2.2399 0.0695 0.0086
mc2 2.8329 0.0030 0.5630 0.0041 0.0033
pc1 4.0972 0.0060 0.6909 0.0054 0.0035
pc2 34.9918 0.7153 1.8789 0.0583 0.0048
pc3 10.9125 0.0496 0.9957 0.0197 0.0032
pc4 10.3116 0.0501 0.9190 0.0167 0.0045
Average 15.7526 0.2494 1.0801 0.0224 0.0042

Table 8: Efficiency based on the testing time (s)

Dataset 1D-CNN1 SVM RF DT NB

cm1 0.1032 0.0170 0.8367 0.0101 0.0075
kc1 0.1119 0.1085 1.1712 0.0209 0.0074
kc2 0.0878 0.0153 0.7364 0.0091 0.0058
mc1 0.2819 2.2170 2.5247 0.0743 0.0167
mc2 0.0866 0.0066 0.6492 0.0069 0.0087
pc1 0.0883 0.0120 0.7830 0.0089 0.0082
pc2 0.1761 1.1731 2.0909 0.0628 0.0109
pc3 0.1076 0.0951 1.1161 0.0242 0.0082
pc4 0.1077 0.0916 1.0293 0.0227 0.0088
Average 0.1279 0.4151 1.2153 0.0267 0.0091

4.3 RQ3: The Impact of Using Different Structures on 1D-CNN Performance

The effect of applying different structures on the performance of 1D-CNN algorithm in detecting
software defects is discussed in this section.
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Tabs. 11–14 presents the performance of 5 different CNN models compared to the proposed 1D-
CNN model in terms of accuracy, f-measure, training, and testing time, respectively. It can be clearly
seen that different structure gives a different value of performance to the CNN classifier on 9 different
datasets.

Compared to 1D-CNN2 which was omitted using the dropout layer, 1D-CNN1 shows a better
performance in terms of accuracy and f-measure, and more efficient in terms of testing time. We can
relate this result with the benefit of adding a dropout layer which can reduce overfitting in a classifier
[57]. To visualize the impact of adding a dropout layer to the performance of the 1D-CNN classifier, we
plotted the model training and testing error rate without (1D-CNN2) and with (1D-CNN1) dropout
layer on each dataset in two separate graphs. Figs. 3–11 present the comparison on model loss without
and with dropout layer on 9 datasets. For each figure, the graph on the left side is without a dropout
layer while the one on the right side is with a dropout layer. A model that is underfitted will have a high
training error but a low testing error, whereas a model that is overfitted will have a very low training
error but a high testing error.

Table 9: The accuracy of the proposed model compared to the state-of-the-art

Dataset 1D-CNN DPDF [53] GA-DNN [54] DBNPM [55] SDAE [56]

cm1 99.43 � 97.59 � �
kc1 99.89 � 97.82 � �
kc2 100.00 � � � �
mc1 99.96 98.30 � 85.17 87.00
mc2 97.54 74.60 � � �
pc1 100.00 91.30 � � �
pc2 100.00 98.20 � � �
pc3 99.78 90.00 97.96 � �
pc4 99.76 88.90 98.00 � �
Average 99.60 90.22 97.84 85.17 87.00
Note: � indicates that the study did not test their proposed approach on the specified dataset.

Figs. 3–11 show that a dropout layer can help in reducing the testing error and can make the model
more fit. We can conclude that adding a dropout layer to a 1D-CNN classifier can reduce overfitting,
hence improve the performance of the model in predicting software defects.

Compared to 1D-CNN3, which used a larger kernel size (kernel size = 3), 1D-CNN1 still shows
better performance and more efficient. To illustrate the impact of different kernel sizes on the
performance of the CNN classifier, we run the experiment using kernel size from 1 to 5 on 9 datasets.
The average for each performance metric was computed and visualized on bar graphs (Figs. 12–14).
Fig. 12 shows that increasing kernel size does not improve the accuracy and f-measure value of the
1D-CNN classifier in software defect prediction. Figs. 13 and 14 illustrate that increasing the kernel
size does not improve the efficiency of the 1D-CNN classifier in predicting software defects.

Compared to 1D-CNN4, which used a smaller filter size for each convolutional layer, 32 and 15,
respectively, 1D-CNN1 has a better performance in terms of accuracy and f-measure. However, the
1D-CNN4 is more efficient in terms of training and testing time. One can argue that using a smaller
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filter size may increase the efficiency of a 1D-CNN classifier but do not improve its performance in
predicting software defects.

Table 10: The f-measure of the proposed model compared to the state-of-the-art

Dataset 1D-CNN DPDF [53] GA-DNN [54] DBNPM [55] SDAE [56]

cm1 97.56 � 91.48 � �
kc1 99.68 � 95.89 � �
kc2 100.00 � � � �
mc1 97.18 4.00 � 88.89 87.00
mc2 95.60 48.00 � � �
pc1 100.00 17.00 � � �
pc2 100.00 83.00 � � �
pc3 99.00 11.00 94.50 � �
pc4 99.16 33.00 93.50 � �
Average 98.69 32.67 93.84 88.89 87.00
Note: � indicates that the study did not test their proposed approach on the specified dataset.

Table 11: The accuracy of the proposed model compared to 3 CNN models with different structures

Dataset 1D-CNN1 1D-CNN2 1D-CNN3 1D-CNN4 1D-CNN5 2D-CNN

cm1 99.43 98.95 99.43 99.43 99.43 99.08
kc1 99.89 100.00 100.00 99.92 100.00 100.00
kc2 100.00 100.00 100.00 100.00 100.00 100.00
mc1 99.96 98.57 99.96 99.98 99.96 99.96
mc2 97.54 98.58 96.49 96.49 96.49 96.49
pc1 100.00 100.00 100.00 100.00 100.00 100.00
pc2 100.00 100.00 100.00 100.00 100.00 100.00
pc3 99.78 99.08 99.42 99.82 99.34 99.31
pc4 99.76 99.93 99.96 99.76 99.77 99.84
Average 99.60 99.46 99.47 99.49 99.44 99.41

Compared to 1D-CNN5, which used an additional convolutional layer, 1D-CNN1 shows better
performance and more efficient. We can say that adding one convolutional layer could not improve
the performance and efficiency of a 1D-CNN classifier in predicting software defects.

Compared to 2D-CNN, which used 2D convolutional and max pooling layers, 1D-CNN1 again
shows a higher performance and more efficient in terms of testing time. In terms of accuracy and f-
measure, all 1D-CNN models performed better that 2D-CNN model built in this study. One might
argue that using 2D structure could not improve the performance of 1D structure in predicting
software defect.
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Table 12: The f-measure of the proposed model compared to 3 CNN models with different structures

Dataset 1D-CNN1 1D-CNN2 1D-CNN3 1D-CNN4 1D-CNN5 2D-CNN

cm1 97.56 97.56 97.54 97.56 97.56 96.14
kc1 99.68 100.00 100.00 99.76 100.00 100.00
kc2 100.00 100.00 100.00 100.00 100.00 100.00
mc1 97.18 96.70 97.18 98.14 96.70 96.68
mc2 95.60 93.75 93.75 93.75 93.75 93.75
pc1 100.00 100.00 100.00 100.00 100.00 100.00
pc2 100.00 100.00 100.00 100.00 100.00 100.00
pc3 99.00 97.26 97.26 99.17 96.94 96.77
pc4 99.16 99.67 99.86 99.15 99.15 99.44
Average 98.69 98.33 98.40 98.61 98.23 98.09

Table 13: The training time of the proposed model compared to 3 CNN models with different
structures

Dataset 1D-CNN1 1D-CNN2 1D-CNN3 1D-CNN4 1D-CNN5 2D-CNN

cm1 3.6777 3.3454 4.01334 2.9134 4.1091 3.8062
kc1 11.3616 9.2173 12.2861 7.5528 11.5590 11.3047
kc2 3.8472 3.4947 4.1768 2.9579 4.17148 3.9124
mc1 59.741 45.3412 77.2742 34.4239 61.3285 58.9859
mc2 2.8329 2.4175 2.9715 2.18492 2.8496 2.6905
pc1 4.0972 3.5554 4.2921 3.23928 4.3503 4.0192
pc2 34.9918 26.7452 44.8375 21.3692 35.9971 34.2816
pc3 10.9125 8.7982 13.6067 7.34014 11.5780 11.0636
pc4 10.3116 8.2415 13.0168 6.6651 10.9259 10.1461
Average 15.7526 12.3507 19.6083 9.8496 16.3188 15.5789

4.4 RQ4: The Impact of Tuning 1D-CNN Hyperparameters

The effect of applying hyperparameter tuning to the performance of 1D-CNN algorithm in
detecting software defects is discussed in this section.

The optimal parameters and performance of 1D-CNN after conducting the hyperparameter tun-
ing are shown in Tab. 15. It can be found that the set of optimal parameter values are different for each
dataset. On average, the hyperparameter tuning increases the accuracy and f-measure of the proposed
1D-CNN model by 0.33% and 0.79%, respectively. However, as expected, the hyperparameter tuning
does not improve the efficiency of the proposed model since the optimal number of epochs is larger
than the number of epochs used in the proposed 1D-CNN model.
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5 Threats to Validity
5.1 Threats to Construct Validity

The performance metrics used in our analysis relate to threats to construct validity. In this study,
4 evaluation metrics were selected: accuracy, f-measure, training, and testing time. Other measures,
such as the kappa statistic, AUC, and MCC, can be used to evaluate binary classifiers. However, the 4
metrics selected in this study are widely used measures to evaluate the detection of software defects.

5.2 Threats to Internal Validity

The risks are primarily concerned with the unregulated internal variables that may affect the
results of the experiment. The key internal threat is the possible faults during the implementation
of our experiments. To reduce this hazard, we built six CNN classifiers obtained from Keras library
and four baseline classifiers from sci-kit-learn libraries. We obtained the information on how to build
1D and 2D CNN models from Keras and TensorFlow documentation. The parameter setup for the
proposed model is based on previous works that yield the best result. The default values obtained from
the official sci-kit-learn documentation for the parameters for detecting software defects were adopted
by four baseline classifiers.

Table 14: The testing time of the proposed model compared to 3 CNN models with different structures

Dataset 1D-CNN1 1D-CNN2 1D-CNN3 1D-CNN4 1D-CNN5 2D-CNN

cm1 0.1032 0.0920 0.1274 0.0979 0.1120 0.0927
kc1 0.1119 0.1118 0.1327 0.0983 0.1533 0.1143
kc2 0.0878 0.0884 0.0929 0.0854 0.1075 0.0974
mc1 0.2819 0.2411 0.3033 0.1704 0.2259 0.2408
mc2 0.0866 0.0782 0.0911 0.0829 0.0944 0.0878
pc1 0.0883 0.0935 0.0941 0.0947 0.1036 0.0931
pc2 0.1761 0.2059 0.2369 0.1813 0.1642 0.2189
pc3 0.1076 0.1109 0.1187 0.0958 0.1191 0.1132
pc4 0.1077 0.1499 0.1701 0.0948 0.1076 0.1106
Average 0.1279 0.1302 0.1519 0.1113 0.1320 0.1299

Figure 3: Comparison on model loss without and with dropout layer on CM1 dataset. a) 1D-CNN2,
b) 1D-CNN1
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Figure 4: Comparison on model loss without and with dropout layer on KC1 dataset. a) 1D-CNN2,
b) 1D-CNN1

Figure 5: Comparison on model loss without and with dropout layer on KC2 dataset. a) 1D-CNN2,
b) 1D-CNN1

Figure 6: Comparison on model loss without and with dropout layer on MC1 dataset. a) 1D-CNN2,
b) 1D-CNN1
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Figure 7: Comparison on model loss without and with dropout layer on MC2 dataset. a) 1D-CNN2,
b) 1D-CNN1

Figure 8: Comparison on model loss without and with dropout layer on PC1 dataset. a) 1D-CNN2,
b) 1D-CNN1

5.3 Threats to External Validity

Threats to external validity relate to the possibility of generalizing our results. The experiments
conducted in this study used nine NASA datasets. There are several datasets available such as
PROMISE, Code4Bench, AEEEM, Relink, and CodeChef. Therefore, the experimental results might
not be generalizable to other datasets, which might produce better or worse results for each software
defect prediction model used in this study. However, the dataset we opted for is often used in previous
software defect detection [53–56]. Different results can be generated by using different sets of software
metrics.
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Figure 9: Comparison on model loss without and with dropout layer on PC2 dataset. a) 1D-CNN2,
b) 1D-CNN1

Figure 10: Comparison on model loss without and with dropout layer on PC3 dataset. a) 1D-CNN2,
b) 1D-CNN1

Figure 11: Comparison on model loss without and with dropout layer on PC4 dataset. a) 1D-CNN2,
b) 1D-CNN1
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Figure 12: 1D-CNN model performance based on kernel size

Figure 13: 1D-CNN model training time (s) based on kernel size

Figure 14: 1D-CNN model testing time (s) based on kernel size
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Table 15: Best parameter and performance after tuning 1D-CNN hyperparameters

Dataset Best parameter Performance metrics

Epochs
(32–500)

Learning
rate
(0.0001-0.1)

Dropout
rate
(0.1-0.5)

Acc F1 Training
Time

Testing
Time

cm1 343 0.0005 0.2 100.00 100.00 38.0487 0.1172
kc1 245 0.004 0.3 100.00 100.00 95.8636 0.1394
kc2 298 0.02 0.2 100.00 100.00 33.7125 0.0910
mc1 165 0.004 0.4 99.97 97.67 383.7442 0.2910
mc2 203 0.002 0.1 100.00 100.00 14.6395 0.0947
pc1 464 0.005 0.4 100.00 100.00 56.5624 0.1082
pc2 497 0.003 0.1 100.00 100.00 639.8141 0.2055
pc3 436 0.001 0.1 99.63 98.33 171.7405 0.1280
pc4 488 0.01 0.2 99.80 99.29 175.4491 0.1248
Average 99.93 99.48 178.8416 0.1444

6 Conclusion and Future Work

In this study, a research method was designed to investigate the impact of different structures of
the 1D-CNN classifier for the detection of software defects. The main process of the research method
is to build the CNN models with different structures. First, we proposed a structure for a 1D-CNN
model as a baseline. Second, we built another five CNN models with different structures in terms of
dropout layer exclusion, kernel size, filter size, the inclusion of an additional convolutional layer, and
type of convolutional and max pooling layers. Third, we developed four machine learning models to
investigate how good is our proposed model compared to the established machine learning models.
We evaluated the built models based on accuracy, f-measure, training, and testing time. The result
was analysed and compared. Finally, we tuned three selected hyperparameters (the number of epochs,
learning rate, and dropout rate) of the proposed 1D-CNN model to improve its performance.

The main result of this study reveals that compared to other CNN and traditional machine
learning models, the proposed 1D-CNN software defect classification model achieved superior
performance with 99.60% accuracy and 98.69% f-measure. This study also shows that adding a
dropout layer to the proposed 1D-CNN structure improves its performance by reducing overfitting.
It has a great impact on the discrimination between defect and nondefect software. On the contrary,
increasing the kernel size of the proposed 1D-CNN model, reducing the filter size, adding an additional
convolutional layer, and using 2D convolutional and max pooling layers do not have a great impact
on the detection of software defects.

In addition, this study provides optimal values for the three selected hyperparameters for each
dataset. We can conclude that conducting hyperparameter tuning improved the performance of the
proposed 1D-CNN model in software defect prediction. According to these results, 1D-CNN appears
to be effective for software defect prediction and can be applied for a practical challenge in the software
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engineering context. This in turn could lead to saving software development resources and producing
more reliable software.

There are several ways to expand on this work. First, thorough experiments can be performed to
investigate the impact of adding a number of convolutional layers in the model’s overall performance.
Second, some empirical studies can be conducted on different datasets or different levels of software
defects. Third, other hyperparameters should be considered to be tuned to enhance the performance of
the 1D-CNN model. Fourth, feature selection and imbalance issues in SDP should also be considered,
which, in theory, might improve the performance of software defect prediction. Finally, experiments
can be carried out to understand the success factors of 1D-CNN in different granularity levels of
software defect such as change-level and file-level. This is particularly useful for practitioners, as it
identifies situations in which 1D-CNN should be favored over alternative techniques.
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