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Abstract:With the rapid development of wireless communication technology,
the spectrum resources are increasingly strained which needs optimal solu-
tions.Cognitive radio (CR) is one of the key technologies to solve this problem.
Spectrum sensing not only includes the precise detection of the communica-
tion signal of the primary user (PU), but also the precise identification of its
modulation type, which can then determine the a priori information such as
the PU’ service category, so as to use this information to make the cognitive
user (CU) aware to discover and use the idle spectrum more effectively, and
improve the spectrum utilization. Spectrum sensing is the primary feature
and core part of CR. Classical sensing algorithms includes energy detection,
cyclostationary feature detection, matched filter detection, and so on. The
energy detection algorithm has a simple structure and does not require prior
knowledge of the PU transmitter signal, but it is easily affected by noise and
the threshold is not easy to determine. The combination of multiple-input
multiple-output (MIMO) with CR improves the spectral efficiency and multi-
path fading utilization. To best utilize the PU spectrum while minimizing the
overall transmit power, an iterative technique based on semidefinite program-
ming (SDP) and minimum mean squared error (MMSE) is proposed. Also,
this article proposed a new method for max-min fairness beamforming.When
compared to existing algorithms, the simulation results show that the proposed
algorithms perform better in terms of total transmitted power and signal-to-
interference plus noise ratio (SINR). Furthermore, the proposed algorithm
effectively improved the system performance in terms of number of iterations,
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interference temperature threshold and balance SINR level which makes it
superior over the conventional schemes.

Keywords: Cognitive radio; spectrum utilization; bandwidth; primary user

1 Introduction

With the rapid growth in demand for wireless communication services, available spectrum
resources have become increasingly scarce, and basically all the available spectrum resources
have been licensed to specific user groups. However, the united states federal communications
commission (FCC) conducted a large number of actual measurements on the efficiency of wireless
spectrum usage and found that at any given moment, the spectrum resources used by consumers
only account for 2% to 6% of all available spectrum resources [1–6]. Therefore, the reason for the
“scarcity” of wireless spectrum resources is not the scarcity of the spectrum resources itself, but
that the spectrum utilization is too low. Therefore, wireless networks are facing serious problems
of relative “shortage” and “waste” of spectrum resources. The root cause of these problems lies in
the contradiction that the centralized static network is difficult to adapt to the dynamic changes
of the environment and avoiding or eliminating the interference to the primary user (PU), while
ensuring the normal communication of the secondary user (SU) [7–11]. An effective method is
to use the beamforming technology for interference control, which well solves the coexistence
problem of the PU and the cognitive user (CU) [2–4]. This is because the beamforming technology
is a spatial interference suppression technology [8–15], which can adaptively adjust the antenna
array pattern according to the changes in the environment, and align the main beam at the
desired signal with zero trapping or the low sidelobe is aligned with the interference signal, which
has the characteristics of suppressing interference, improving the signal transmission quality and
increasing the spectrum utilization. By selecting the optimal beamforming weight vector at the
transmitting and receiving end, the communication quality of the SU can be optimized while
suppressing the interference to the primary user, and the normal communication between the CU
and the PU can be ensured in the same frequency band [16]. One of the effective methods to
solve these problems is cognitive radio (CR) technology [17,18]. CR is a new intelligent wireless
communication technology. Its emergence has changed the way in which the spectrum resources
are used exclusively by PU, allowing unlicensed users (SU) with cognitive radio functions to use it.
The wireless communication environment performs interactive sensing and automatically changes
its own transmission and reception parameters, and dynamically reuses the authorized spectrum
resources without causing interference to the PU, thereby significantly improving the spectrum
utilization [19–25].

In recent years, with the continuous deepening of CR technology research, researches on
the beamforming algorithms under the cognitive environment continues to emerge. Literature
[26–29] studied the standard form and solution of the optimization problem of beamforming in
the downlink under different objective functions and constraints. These methods can basically be
summarized into two categories. The first one is the beamforming algorithm based on convex
optimization. The other is to obtain the optimal weight vector through an iterative algorithm.
Literature [30–33] studied the beamforming problem in the multi-cast transmission. This type
of problem can generally be transformed into a quadratic constrained quadratic programming
(QCQP) problem, which is non-convex. Through corresponding transformation of the QCQP
problem and relaxation of the constraint conditions, a positive semidefinite programming (SDP)
problem is formed using the interior point method to obtain the optimal solution. The scenarios
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studied in the literature [26–33] are configured with multiple antennas at the transmitting end and
a single antenna at the receiving end. If multiple antennas are configured at the transmitting and
receiving end at the same time, the system performance will inevitably be improved. Literature
[34–36] studied the beamforming problem in MIMO networks. It uses the dual characteristics of
the signal-to-interference and noise ratio (SINR) in the uplink-downlink to divide a non-convex
optimization problem into several convex optimization problems. But this method is only suitable
for the optimization problem of minimizing the transmission power.

This paper studies the beamforming algorithms under different optimization objectives in a
MIMO CR environment, and considers two types of optimization problems. 1) Under the condi-
tion that the communication quality requirements of the CUs are met and the interference to the
PU is less than the threshold value, the total transmission power is minimized. In this paper, using
positive SDP and MMSE criterion, a MIMO cognitive beamforming algorithm that minimizes the
transmission power is proposed. Compared with the existing algorithms, the transmission power
is reduced and the system performance is improved. 2) Maximize the minimum cognitive user
SINR under the condition that the interference to the PU is less than the threshold and the total
transmit power is limited. As we all know, in the MIMO cognitive network, there are multiple
CUs. To ensure that each user has a fair chance to communicate normally, the balance of the
cognitive network is also an important issue at this time. However, the author has consulted many
domestic and foreign literature, and the article on the issue of equalization in MIMO cognitive
networks has not been reported. Therefore, a beamforming algorithm of SINR equalization is
proposed to ensure that every user has a fair chance to perform normal operations. The scenario
studied in this paper is to configure multiple antennas at both the transmitting and receiving end,
and the corresponding weight vectors needs to be obtained at the same time. This is a bottleneck
problem to be solved. To this end, first fix the weight vector of the receiving end and assign
an initial value to it, so that the original problem is transformed into a downlink beamforming
optimization problem, and then the SDP and interior point method is used to obtain the weight
vector of the transmitting end. Then, fix the weight vector of the transmitting end, and use the
MMSE criterion to further obtain the weight vector of the receiving end. After continuous loop
iteration, until the objective function converges, the weight vector of the optimal beamforming is
finally obtained. The simulation results show that the proposed algorithm has better performance
and can effectively solve the MIMO cognitive wireless network beamforming issues.

In the text, bold uppercase, bold lowercase and normal lowercase letters represent matrix, row
vector and scalar respectively; (·)H means conjugate transpose of matrix or vector; E {·} means to
take expectation; rank (·) and Tr (·) respectively represent the rank of the matrix and the trace of
the matrix; ‖ · ‖ represents the Euclidian norm of the vector; εmax (A) represents the eigenvector
corresponding to the largest eigenvalue of matrix A; I represents the identity matrix.

2 System Model

Consider a multi-user cognitive MIMO communication system. The CU communicates with
the PU in the same frequency spectrum, and the CU adopts an underlay access method based
on interference temperature. Here, the concept of interference temperature [37] is similar to noise
temperature. It is defined in the receiving RF front end of a wireless device and is used to
measure the amount of interference received by the receiver in a certain geographical location and
frequency band. Its mathematical expression is Ti = I (fc,B) /kB. Among them I (fc,B) means that
the center frequency is fc, and the bandwidth is the average interference power received by the
receiver in the B band and k= 1.38× 10−23J/K is the Boltzmann constant.
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As shown in Fig. 1, the system includes a main network and a cognitive network. The
cognitive network includes a transmitting base station and K number of SUs. The base station is
configured with Ns antennas, and the k-th user is configured with Mk antennas. The main network
includes a transmitting base station with Np antennas and a PU with Mp antennas. The signal

xs ∈CK×1 sent from the cognitive base station is

xs =Tss (1)
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Figure 1: Proposed system model

Here, s = [s1 . . . sk . . . sK ], where sk
(
E

{|sk|2}= 1
)
represents the signal sent to the k-th SU,

Ts = [t1 . . . tk . . . tK ] means the k-th SU is in the weighting vector of the transmitter. Then, the
signal received by the k-th SU is

yk = rHk (Hkxk+ nk) (2)

Among them, rk ∈ CMk×1 is the normalized receiving end weight vector, that is, ‖ rk ‖2F= 1,

Hk ∈ C
Mk×Ns represents the channel between the cognitive transmitting base station and the k-

th SU, nk ∼ CN
(
0,σ 2

n I
)
represents the additive circular symmetric Gaussian white noise with a

variance of σ 2
n . In this paper, the interference of the PU to the CU is ignored [38]. Then the

SINR of the k-th SU is

SINRk =
E

{∣∣rHk Hktksk
∣∣2}

E
{∑K

j=1,j �=k
∣∣rHk Hktjsj

∣∣2 + ∣∣rHk nk∣∣2}
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=
∣∣rHk Hktk

∣∣2∑K
j=1,j �=k

∣∣rHk Hktj
∣∣2+ σ 2

k

(3)

At the same time, the signal sent from the cognitive base station to the SU will cause
interference to the PU, and the interference received by the PU is expressed as

INT =E

{
K∑
k=1

∣∣∣rHp Hptksk
∣∣∣2} =

K∑
k=1

∣∣∣rHp Hptk
∣∣∣2 (4)

Among them, Hp ∈CMp×Ns is the channel between the cognitive base station and the PU, and

rp ∈ CMp×1
(‖ rp ‖2F= 1

)
is the weight vector of the PU receiving end. Because the main network

rarely cooperates with the cognitive network, the PU reception weight vector is defined only by the
main network channel. In addition, it is assumed that the reception weight vector rp of the PU,
the channel Hp between the cognitive base station and the PU, and the interference temperature of
the PU are all known. Under this system model, two types of optimization problems are studied:
minimum transmit power and SINR equalization.

3 Minimum Transmit Power Optimization

The optimization goal of this section is to minimize the transmission power while ensuring
that the communication quality of the SU reaches the given standard, and the interference to the
PU is less than the given threshold. At this point, the problem can be described as

min
tk

K∑
k=1

‖ tk ‖2F

subject to:

K∑
k=1

∣∣∣rHPHptk
∣∣∣2 ≤ β, k= 1, . . . ,K

∣∣rHPHptk
∣∣2∑K

j=1,j �=k
∣∣rHk Hktj

∣∣2+ σ 2
k

≥ αk (5)

Among them, αk represents the minimum SINR that the k-th SU needs to meet, and β is the
maximum interference threshold that the PU can tolerate. The first constraint in Eq. (5) indicates
that the interference caused by the cognitive network to the PU must be less than β, and the
second constraint indicates that each SU must meet its minimum SINR requirement.

It can be seen from Eq. (5) that there are two sets of variables in the problem to be optimized,
and it is very difficult to solve them at the same time. This paper uses the method of distributed
solution [39–41] to fix one set of variables to obtain another set of unknown value of the
variable, and then find the value of the previous set of variables, and iterate alternately until the
optimal solution is obtained. Here, first fix the receiving end weight vector rk and assign a set
of initial values to it, so that the problem in Eq. (5) turns into a downlink MISO beamforming
optimization problem.
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According to aHb= Tr
(
baH

)
, aHbbHa= Tr

(
bbHaaH

)
and Tr (AB)= Tr (BA), Eq. (5) can be

transformed into

min
K∑
k=1

Tr (Tk)

subject to:

Tr (RkTk)−αk

∑
j �=k

Tr (RkTk)≥ αkσ
2
k

K∑
k=1

Tr
(
RpTk

) ≤ β

Tk � 0, rank (Tk)= 1, k= 1, . . . ,K (6)

Among them, Tk = tktHk , Rk = HH
k rkr

H
k Hk, Rp = HH

p rpr
H
p Hp, A � 0 means that matrix A

is a positive semi-definite matrix. In Eq. (6), except for the constraint condition rank (Tk), the
objective function and other constraint conditions are all linear expressions about Tk, and they are
all convex functions. Therefore, the constraint condition is relaxed, and the non-convex constraint
condition rank (Tk)= 1 is removed (also increasing the range of feasible solutions to the problem),
and the expression is

min
K∑
k=1

Tr (Tk)

subject to:

Tr (RkTk)−αk

∑
j �=k

Tr (RkTk)≥ αkσ
2
k

K∑
k=1

Tr
(
RpTk

) ≤ β

Tk � 0, k= 1, . . . ,K (7)

The above formula is a convex problem. More precisely, it is a positive SDP problem [42].
Using the MATLAB-based CVX (convex linear programming system) toolbox, this type of
optimization problem can be solved [43].

Conclusion 1: It can be seen from the above constraints conditions that, compared with
Eq. (6), the Eq. (7) only lacks the constraint condition of rank (Tk) = 1. If the rank of the
solution T̂k is 1, then the optimization problem of Eq. (7) has the same solution as Eq. (6). When

rank
(
T̂k

) = 1, then T̂k = t̂k t̂
H
k is the optimal solution in Eq. (5).
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Therefore, this article use CVX to solve Eq. (7) and verify the rank of its solution T̂k.

According to conclusion 1, when rank (Tk)= 1, then T̂k = t̂k t̂
H
k , t̂k is the optimized value of the

problem in Eq. (5).

When rank
(
T̂k

)
> 1, then T̂k is only the lower bound of the optimal solution in problem

in Eq. (6) and not the complete optimal solution. Therefore, using the random search method, a
feasible solution that satisfies the constraint condition of Eq. (5) can be generated from T̂k.

Assuming rank
(
T̂k

) = l, perform singular value decomposition on T̂k

T̂k =U
∑

UH (8)

Among them, the matrix U is a unitary matrix composed of eigenvectors of T̂k, Σ is a
diagonal matrix, the diagonal elements are the eigenvalues of T̂k, and the diagonal elements are
arranged in a monotonous decreasing order. When j > l,

∑
(j, j) = 0, the feasible solution of

Eq. (5) can be expressed as

t̂k =UΣ1/2vk, k= 1 . . .K (9)

Among them, vk is a complex Gaussian random vector with a mean value of 0 and a variance
of 1. However, the t̂k generated by Eq. (9) is not necessarily feasible, and may not satisfy a certain
constraint in Eq. (5), so t̂k needs to be scaled accordingly. In this article, first multiply t̂k by a
coefficient

√
α > 1, and the expression is

α = max
k=1,...,K

αk

(∑K
j=1,j �=k

∣∣rHk Hktj
∣∣2+ σ 2

k

)
∣∣rHk Hktk

∣∣2 > 1 (10)

In this way, a new weight vector t̂k =
√

α t̂k is generated, which can satisfy the SINR con-
straint condition in Eq. (5). It’s also worth notable whether the PU interference constraint is met
at this point. If the new weight vector violates the interference constraint, it will be discarded and
a new round of random search will be started. Finally, t̂k satisfies all the constraints of Eq. (5)
and has the smallest objective function value which is the optimal solution.

So far, by fixing the weight vector of the receiving end, a downlink MISO cognitive network
beamforming problem is formed. Using positive SDP and variable relaxation methods, the optimal
beamforming weight vector tk of the transmitting end is obtained. For the beamforming weight
vector at the receiving end, this article uses the MMSE criterion and then uses the previously
obtained tk, which can be expressed as

rk =
⎛⎝ K∑
j=1

HktjtHj H
H
k + σ 2

k I

⎞⎠Hktk (11)

According to this expression, the optimization problem in Eq. (5) can be solved optimally
through the following two steps: 1) Initialize rk, apply SDP to optimize the beamforming weight
vector tk at the transmitting end in the downlink; 2) According to Eq. (11), the weight vector rk
of the receiving end is obtained. Therefore, this paper designs an iterative algorithm. In the n-th

iteration, the value of r(n−1)
k remains unchanged, and the beamforming weight vector of problem
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in Eq. (5) is solved optimally under the premise of satisfying the corresponding constraints t(n)k .

Then keep t(n)k unchanged and use Eq. (11) to update the receiving end weight vector r(n)k . The
algorithm continues to iterate until the objective function converges. Based on the above analysis,
the proposed algorithm steps are summarized as follows.

Algorithm 1: Power optimization algorithm

1: Initialize r(0)k = εmax
(
HkHH

k

)
2: Obtain the optimized solution of the beamforming weight vector at the transmitting end
a) Use the CVX to solve the convex problem according to Eq. (7)
cvx_begin
minimize objective function
subject to

the constraints
cvx_end
b) Random search (if rank

(
T̂k

) = 1, then this step is skipped).
c) When rank

(
T̂k

)
> 1, , use T̂k to generate beamforming weight vector t̂k according to Eqs. (8)

and (9)
3: Check whether the weight vector t̂k satisfies all the constraint conditions, if not, multiply it by
an appropriate coefficient to make the constraint conditions satisfied
4: Perform multiple random searches and select an optimal weight vector t̂k.
5: Determine the optimal solution of beamforming weight vector at the receiving end using
Eq. (11)
6: Repeat steps 2 and 5 until the objective function converges.

4 SINR Balanced Beamforming Optimization

In a cognitive MIMO network, there are multiple CUs. To ensure that each user can com-
municate normally, the fairness of the cognitive network becomes more important at this time.
This section studies the SINR equalization problem of MIMO cognitive networks, which can be
expressed as

minimize min
k=1,...,K

∣∣rHk Hktk
∣∣2∑K

j=1,j �=k
∣∣rHk Hktj

∣∣2+ σ 2
k

subject to:

K∑
k=1

∣∣∣rHp Hptk
∣∣∣2 ≤ β, k= 1, . . . ,K

K∑
k=1

‖ tk ‖2F≤Pmax, ‖ tk ‖2F≥ 0 (12)
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Among them, β is the threshold of PU interference temperature, and Pmax is the maximum
transmit power. By adding a variable t, Eq. (12) can be equivalent to
max
k=1,...,Kt

Subject to:∣∣rHk Hktk
∣∣2∑K

j=1,j �=k
∣∣rHk Hktj

∣∣2+ σ 2
k

≥ t

K∑
k=1

∣∣∣rHp Hptk
∣∣∣2 ≤ β, k= 1, . . . ,K

K∑
k=1

‖ tk ‖2F≤Pmax, ‖ tk ‖2F≥ 0 (13)

Similarly, according to aHb = Tr
(
baH

)
, Tr (AB) = Tr (BA), aHbbHa = Tr

(
bbHaaH

)
and

relax the constraint conditions (remove the constraint condition rank (Tk) = 1, Eq. (13) can be
transformed into
max
k=1,...,Kt

Subject to:

Tr (RkTk)− t
∑
j �=k

Tr (RkTk)≥ tσ 2
k

K∑
k=1

Tr
(
RpTk

)≤ β

K∑
k=1

Tr (Tk)≤Pmax

Tk � 0, k= 1, . . . ,K (14)

It can be found that Eq. (14) is a convex-like problem. When t is given any value, Eq. (14)
is transformed into a convex problem. Therefore, for any given value, if

Find Tk

Subject to:

Tr (RkTk)− t
∑
j �=k

Tr (RkTk)≥ tσ 2
k

K∑
k=1

Tr
(
RpTk

)≤ β
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K∑
k=1

Tr (Tk)≤Pmax

Tk � 0, rank (Tk)= 1, k= 1, . . . ,K (15)

There is a feasible solution, that is, when t takes this value, the corresponding Tk can be
found to satisfy the constraint in the above formula.

Conclusion 2: Let tmax be the maximum value of t in the optimization problem of Eq. (14).
For any given value t, if there is a feasible solution to the optimization problem in Eq. (15),
then tmax ≥ t can be obtained. Conversely, if the optimization problem in Eq. (15) has no feasible
solution, that is, when t takes this value, the constraints in the optimization problem of Eq. (14)
cannot be satisfied, so tmax < t. According to conclusion 2, by assigning a value to t, it is judged
whether there is a feasible solution to the problem in Eq. (15), and the binary search algorithm is
used to determine the value range of tmax. Assuming that the problem in Eq. (13) has a feasible
solution, a value interval of [l,u] is selected in advance, and this interval contains the optimal
solution tmax of the problem. Let t = (l + u)/2, if the optimization problem in Eq. (15) has a
feasible solution, then update l= t. On the contrary, update u= t, and then update the value of t.
After multiple loop iterations, until the value interval of t is small enough, the optimal solution
tmax of the optimization problem in Eq. (13) can be obtained. The steps of the binary search
method are summarized below in Algorithm 2. In step 1, the threshold limits for the optimal
solution is defined. In step 2, the maximum value of time interval is determined. In step 3, the
feasible solution of Eq. (15) is obtained. In step 4, the optimal solution is determined by l and
u. Finally, step 5 stops the process if u− l < ε.

Algorithm 2: SINR optimization algorithm
1: Select l< tmax, u> tmax, threshold ε > 0
2: t := (l+ u)/2
3: Determine whether there is a feasible solution to the optimization problem in Eq. (15)
4: If Eq. (15) has a solution, then l := t, otherwise u := t
5: Stop when u− l< ε, otherwise go back to step 2

When the maximum value of t is obtained, it is substituted into Eq. (14). At this time, the
problem Eq. (14) is transformed into a convex problem, and the CVX toolbox is also used to
solve the optimal solution T̂k. If rank

(
T̂k

)
, a random search algorithm is required. Based on the

above analysis, the algorithm is summarized as follows.

Algorithm 3: Binary search scheme

1: Initialize r(0)k = εmax
(
HkHH

k

)
2: Determine the optimized solution of the beamforming weight vector at the transmitting end.
a) Solve the CVX convex problem using Eq. (15)

Do
t= (l+ u)/2

cvx_begin
(Continued)
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find T̂k
subject to

the constraints
cvx_end

if the SDP problem is optimized
l := t, otherwise, u := t

while(u− l < ε)
b) Random search (if rank

(
T̂k

)= 1, then this step is skipped).
c) When rank

(
T̂k

)
> 1, use T̂k to generate the beamforming weight vector t̂k according to Eqs. (8)

and (9)
d) Check whether the weight vector t̂k satisfies all the constraint conditions
e) if not, multiply it by an appropriate coefficient to make the constraint conditions satisfied
f) Perform multiple random searches and select an optimal weight vector t̂k.
3: Optimal solution of beamforming weight vector at the receiving end using Eq. (11)
4: Repeat steps 2 and 3 until the objective function converges.

5 Simulation Results

This section uses the Monte Carlo simulation to verify the proposed beamforming optimiza-
tion algorithm in the MIMO CR network. The system parameters in the main network and the
cognitive network are as follows. The number of antennas of the transmitting base station is 4,
the number of antennas of the receiving end is 2, the number of CUs in the system is 2 or 3,
and the number of PUs is 1. Different user channels are statistically independent of each other,
and each channel is an independent and identically distributed Rayleigh fading channel composed
of complex Gaussian random variables with zero mean and unit variance. In the simulation, the
proposed algorithm is compared with the algorithms proposed in [35] and [41]. All values are the
average of 1000 Monte Carlo experiments.

5.1 Transmit Power Optimization
Experiment 1 compared the minimum transmit power under different SNR requirements. In

order to fully study the influence of various factors on the transmit power in the simulation,
not only the two cases of interference temperature β = 1 dB and β = 2 dB are considered,
but also the number of different cognitive users K = 2 and K = 3 are selected. It can be seen
from Fig. 2 that, with the continuous increase in the demand for SINR, the transmission power
continues to increase. In other words, more power is needed to improve the performance of the
system. Under the same SINR requirement, the greater the number of users, the greater the
power required. When the user’s SINR demand increases, the transmission power grows rapidly,
showing an exponential growth trend. At the same time, it can be seen from Fig. 2 that, when the
interference temperature of the PU increases, the required transmit power decreases. This feature
is more obvious in Experiment 3.

Experiment 2 tested the performance of the algorithm when there are different numbers of
CUs. The performance comparison of the algorithms in the two scenarios of K = 3 and K = 2
is shown in Figs. 3 and 4. Analyze the example of K = 3 without losing generality. Three CUs
and one PU communicate in the system using the same frequency spectrum, and the primary
user’s interference temperature is β = 1 dB. It can be seen from Fig. 3, that the performance of
the proposed algorithm is much better than the other two algorithms. This advantage is more
pronounced when the user’s communication quality criteria are higher. For example, when the



708 CMC, 2022, vol.71, no.1

SINR requirement α = 10 dB, the transmission power of the proposed and references [35,41]
algorithms are 4 dBW, 6 dBW and 12 dBW. When α = 14 dB, the transmit power of the three
algorithms becomes 11, 16 and 33 dBW.

Figure 2: The impact of user SINR requirements on transmit power

Since the reference [35] algorithm considers a system model with multiple antennas at the
transmitter and single antenna at the receiving end, this article and reference [41] algorithm
also configure multiple antennas at the receiving end. Diversity and combination of signals can
significantly improve the system performance and reduce the transmit power.

Figure 3: Comparison of the minimum transmit power of the algorithms under K = 3 and
different SINR requirements

Therefore, the performance of the proposed algorithm and the reference [41] algorithm is
better than the reference [35] algorithm. For non-convex problems, SDR (semidefinite relaxation)
method is generally adopted to convert the non-convex problems into convex problems and
then solve them. From the analysis in Section 3, it can be seen that the solution obtained by
this method may only be a feasible solution to the original problem, not necessarily the global
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optimal solution. The reference [41] algorithm uses the dual characteristics of uplink-downlink
to convert the original problem into two SDR problems, and the solution obtained by iteration
is approximated twice. However, the algorithm proposed in this paper only needs to solve one
SDR problem, so the solution obtained is only approximated once. After many iterations, the
performance advantage of the proposed algorithm is reflected.

Figure 4: Comparison of the minimum transmit power of the algorithms under K = 2 and
different SINR requirements

Experiment 3 compares the transmit power of the algorithms at different interference tem-
peratures. In this paper, the SINR requirement is fixed at α = 12 dB. It can be observed from
Fig. 5 that, under the same SNR requirement, the higher the interference temperature of the
PU, the lower the transmit power. The smaller the number of users, the smaller the transmission
power. Under the same conditions, the transmission power of the proposed algorithm is less than
that of the other two algorithms. At the same time, it is also noticed that with the increase
of interference temperature β, the transmit power of the reference [35] algorithm changes very
obviously, while the transmit power of the proposed algorithm changes slightly, which shows that
the multi-antenna beamforming technology is used at the transmitting and receiving end at the
same time can well control the interference to the PU.

5.2 SINR Balanced Beamforming
Experiment 4 gives the SINR equalization level under different transmit powers. It can be

seen from Fig. 6 that the SINR equalization level increases with the increase of the transmission
power, and when the transmission power is small, the SINR increases significantly. At the same
time, the higher the interference temperature, the greater the SINR. The main factor that affects
the SINR is the number of users, because as the number of users increases, the interference in
the small area will continue to increase, thereby reducing the user’s SINR. It can be seen from
Fig. 6 that, when P= 10 dBW and β = 1 dB, the SINR of K = 2 has a performance gain of 3
dB compared with K = 3. When the interference temperature β = 3 dB, Fig. 7 demonstrates the
performance comparison between the proposed algorithm and the reference [35] algorithm. It has
been discovered that the proposed algorithm outperforms the existing algorithm.
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Figure 5: The influence of the PU interference temperature on the transmit power

Figure 6: The influence of transmit power on the balanced SINR level

Figure 7: Comparison of the balanced SINR level of the algorithms under different transmit
power

Experiment 5 further studied the relationship between the interference temperature β and
the equilibrium level of SINR under different conditions. It can be seen from Fig. 8 that as the
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interference temperature increases, the SINR equalization level ratio continues to increase, but
when β > 3, the improvement of the SINR becomes slow. It can also be seen from Fig. 8 that
the number of users will affect the performance of the system. The greater the number of users,
the worse the system performance.

Figure 8: The influence of the PU interference temperature on the balanced SINR level

5.3 Algorithm Complexity and Convergence Analysis
In addition to performance, it is also necessary to analyze the complexity of the algorithm.

This paper proposes corresponding algorithms to solve the two types of beamforming problems
of minimizing the transmit power and SINR equalization. The ideas of the two algorithms
are basically similar. The transmit power algorithm is analyzed as an example. The convex
optimization method is adopted for this paper. The reference [35] algorithm is aimed at the
beamforming problem of the MISO cognitive network. It only needs to optimize the beamforming
weight vector at the transmitting end and there is no iterative process. As a result, the problem’s
solution can be found by solving the SDR problem once. The proposed algorithm, like the
reference [41] algorithm, uses an iterative method to discover the best beamforming solution with
the least amount of transmit power. The SDP and MMSE algorithms must be executed once
in each iteration by the new algorithm. Compared with the SDP algorithm, the complexity of
the MMSE algorithm and random search is lower, so the computational complexity is mainly
reflected in the SDP algorithm. According to [44], the complexity of the SDP algorithm is
O (

n0.5SDP
(
mSDPn3SDP+m2

SDPn
2
SDP+m3

SDP

))
, where mSDP represents the number of constraint con-

ditions, and nSDP represents the semi-definite cone dimension. Specific to the Eqs. (7)–(11) in this
article, mSDP =K+1,nSDP=Ns+K+1. The reference [41] algorithm uses the dual characteristics
of the uplink-downlink to decompose the original problem into two convex problems. Therefore,
in each iteration, the reference [41] algorithm needs to run the SDP algorithm twice. In summary,
the calculation complexity of the above three algorithms is equivalent, and in each iteration, the
calculation amount of the reference [41] algorithm is higher than that of the proposed algorithm.

Experiment 6 compares the convergence performance of three different algorithms. Set the
system parameters as K = 3, α = 12 dB, β = 1 dB. In this paper, similar to [17], the initial value of

the weighting vector at the receiving end is selected as r(0)k = εmax
(
HkHH

k

)
, and the algorithm stops
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when the difference between the minimum transmit power obtained by two consecutive iterations
is less than the given threshold. By iteratively updating the weight vectors of the transmitting
and receiving ends, and pointing the antenna patterns to each other, it can be ensured that
the transmission power is reduced until the algorithm converges without degrading the system
performance. It can be seen from Fig. 9 that the proposed algorithm requires approximately
28 iterations to converge, the reference [41] algorithm requires 22 iterations, and reference [35]
algorithm does not require iteration. Since the calculation amount of the proposed algorithm in
each iteration is lower than that of the reference [35] algorithm, the running time of the entire
algorithm is shorter. The running time of the proposed algorithm, the reference [41] algorithm
and reference [35] algorithm were counted with the tic command in MATLAB and they were t=
7.0779s, t= 10.0587s and t= 0.1987s, respectively.

Figure 9: The influence of the number of iterations on the transmit power

6 Conclusion

This article analyzes the problem of joint transceiver beamforming in MIMO wireless
cognitive systems.

For the two types of beamforming problems of minimizing transmit power and SINR equal-
ization, corresponding beamforming algorithms are proposed. Numerical simulation results prove
that the proposed algorithm can effectively reduce the transmission power of the system while
avoiding excessive interference to the primary user, and greatly improve the balanced SINR level.
The next step is to study the feasibility and robustness of the proposed algorithm under imperfect
channel conditions. At the same time increase the number of users in the system, and further
study the impact of the number of users on system performance.
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