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Abstract: The world is experiencing the unprecedented time of a pandemic
caused by the coronavirus disease (i.e., COVID-19). As a countermeasure,
contact tracing and social distancing are essential to prevent the transmission
of the virus, which can be achieved using indoor location analytics. Based on
the indoor location analytics, the human mobility on a site can be monitored
and planned to minimize human’s contact and enforce social distancing to
contain the transmission of COVID-19. Given the indoor location data, the
clustering can be applied to cluster spatial data, spatio-temporal data and
movement behavior features for proximity detection or contact tracing appli-
cations. More specifically, we propose the Coherent Moving Cluster (CMC)
algorithm for contact tracing, the density-based clustering (DBScan) algo-
rithm for identification of hotspots and the trajectory clustering (TRACLUS)
algorithm for clustering indoor trajectories. The feature extractionmechanism
is then developed to extract useful and valuable features that can assist the
proposed system to construct the network of users based on the similarity of
themovement behaviors of the users. The network of users is used tomodel an
optimization problem to manage the human mobility on a site. The objective
function is formulated to minimize the probability of contact between the
users and the optimization problem is solved using the proposed effective
scheduling solution based on OR-Tools. The simulation results show that the
proposed indoor location analytics system outperforms the existing clustering
methods by about 30% in terms of accuracy of clustering trajectories. By
adopting this system for human mobility management, the count of close
contacts among the users within a confined area can be reduced by 80% in the
scenario where all users are allowed to access the site.
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1 Introduction

For over a year now, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus
has been the main concern of humanity as an infectious agent for the notorious coronavirus
disease (COVID-19). The disease was first identified and recorded in December 2019 and has since
spread to all over the world mainly through person-to-person transmission. This unprecedented
situation of the pandemic has forcefully changed the lifestyles of the human race, exemplified by
activities such as sanitization, contact tracing, social distancing and wearing masks. It is possible
that the disease can spread by airborne transmission, especially in enclosed spaces with poor
ventilation [1]. Recognizing this and the fact that most people spend most of their time indoors,
precautions in indoor spaces should be taken more seriously.

Over the past year, many researchers and indoor positioning service providers have the same
interest in the application of indoor positioning to combat COVID-19. As a consequence of this
rising concern, contact tracing applications [2,3] or exposure notification systems [4] have become
a popular solution to, if not prevention, containment of the virus. However, one major issue is
the accuracy and efficiency of contact tracing [5], which renders public indifference or distrust.
The accuracy and efficiency issue has been the main research limitation in [5] in which numerous
solutions have been proposed to overcome this issue.

Indoor location analytics has been adopted in various domains, and has had many beneficial
uses, such as for navigation, location-based services and understanding of customer’s behaviors.
These applications allow retailers, advertisers or service providers to target and engage customers
more effectively. This paper aims to develop an indoor location analytical system by bridging the
gap between contact tracing and indoor location analytics. Many works concentrate on techniques
and system architectures of a contact tracing application without utilizing the indoor positioning
data, while this paper studies and experiments the application of indoor location analytics to
aid in contact tracing with respect to the pandemic. Further analytics are performed to generate
suggestions so as to improve the practice of social distancing and effective sanitization.

In this paper, we propose an analytical system that clusters spatial data, spatio-temporal data
and movement behavior features for the application of contact tracing to enforce effective social
distancing and optimize human mobility, which have not been researched and studied before to
combat the transmission of the COVID-19 virus. For contact tracing application, a proximity
detection algorithm termed the Coherent Moving Cluster (CMC) algorithm [6] is utilized. Instead
of implementing the CMC algorithm in an offline mode, the algorithm is modified to be an
online proximity detection to improve the detection accuracy. The conventional CMC algorithm
suffers from high inaccuracy due to the fluctuation and variation of wireless signals (in this
work, the signals refer to Wi-Fi signal strengths) and limitations to freedom in movements in
an indoor environment. The analytics of the indoor positioning data is conducted by using the
clustering algorithms to identify the hotspots. In order to achieve accurate hotspot identification,
the location points are clustered using the proposed modified density-based spatial clustering
(DBScan) algorithm [7] in the spatial dimensions and the trajectories of the movement are
clustered using the proposed amended trajectory clustering (TRACLUS) algorithm [8] algorithm
in the spatio-temporal dimensions. Both the original DBScan and TRACLUS algorithms have the
same limitations in proximity detection because they were not designed to function based on the
Wi-Fi signals and both the algorithms cannot adapt well with the freedom of movement, leading
to inaccurate detection. Therefore, in this work, the DBScan is modified to cluster the location
data points with more stringent conditions to overcome the aforementioned issues. Besides, to
model the analyze the location data in spatio-temporal dimensions, trajectories are extracted from
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raw location points so that successive location points to interpolate the trajectories of movement.
With limited freedom of movement in an indoor environment, the original TRACLUS algorithm
produces invalid partitioned trajectories. In this work, the TRACLUS algorithm is modified by
introducing a new controlling parameters, named as the restriction of movement to increase the
stringency of the condition to tackle the problem.

Once the clustering is done, the features of movement are extracted effectively and the features
are converted into term frequency-inverse document frequency (TF-IDF) features. Based on the
similarity between the movement behaviors resulted from the features, a network of users is
created which can be used for better planning of subsets of users to be allowed on the site on
different days. Based on the network, an optimization problem can be formulated by minimizing
the probability of contact between the users and the minimization can be solved using the
proposed scheduling algorithm. In short, the main contributions of this paper can be summarized
as follows:

(1) A novel indoor analytical system is proposed to analyze the collected location data points.
The system is able to clusters spatial data, spatio-temporal data and movement behavior
features for proximity detection or contact tracing application.

(2) With the location data points, a new DBScan algorithm is proposed to cluster the data
points in a spatial domain whereas another novel TRACLUS algorithm is proposed to
cluster the trajectories of movement in a spatio-temporal domain, so as to produce accurate
and precise hotspot identification.

(3) The feature extraction mechanism is developed to extract useful and valuable features that
can assist the system to construct the network of users based on the similarity of the
movement behaviors of the users.

(4) The network of users is used to formulate an optimization problem to manage the human
mobility on a site. The objective function is proposed to minimize the probability of
contact between the users and the optimization problem is solved using the proposed
effective scheduling solution based on OR-Tools.

With the proposed system, an effective contact tracing method can be facilitated which can
help to identify the hotspots and assist to optimize human mobility on a site to combat the
COVID-19.

The remaining sections of the paper are organized as follows. The related works pertinent to
the contact tracing, indoor location analytics, clustering, social distancing and human mobility are
discussed in Section 2. The proposed indoor location analytics system is discussed in Section 3
where the novel method incorporating the CMC, DBScan and TRACLUS algorithm is developed.
Next, Section 4 shows all the important simulation results together with in-depth analytical
discussions. Last but not least, the paper ends with some insightful concluding remarks and
navigate the readers to some possible future research direction related to this work in Section 5.

2 Related Work

2.1 Contact Tracing
The nature of contact tracing is somewhat similar to that of proximity sensing, which is to

identify devices that have come in contact with each other. Conventional methods for contact
tracing that rely on human memory and manpower although produces incomplete lists of contacts,
but has proven to be effective. As digital technology comes into picture, methods used for contact
tracing are such as magnetic field [9], ultrasound [10], ultra-wideband (UWB) [11], Wi-Fi [12,13],
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with Bluetooth Low Energy (BLE) [14,15] more acclaimed than the others. Magnetic field, ultra-
sound and UWB used for contact tracing require to set up expensive systems, even though they
can ensure high localization accuracy. Wi-Fi becomes a popular alternative as it is ubiquitous,
which does not necessitate a separate infrastructure. Recently, BLE-based architecture was pre-
ferred due to its availability in smartphones, ubiquity of smartphones and privacy-preserving
nature [16].

All contact tracing applications thus far summarized specifically for COVID-19 uses the
decentralized architecture because of privacy and security concerns [1,2]. Decentralized imple-
mentation leads to several limitations such as low computational power, lack of comprehensive
indoor data, susceptibility to noise and low robustness. This paper on the other hand, reports the
methodology to analyze positions of individuals, which is based upon a centralized indoor posi-
tioning system. We see the promising variability in analytics and assessments that could be done
other than contact tracing in such location-based systems. They also overcome the limitations in
computing power of devices to conduct comprehensive analysis of data. These advantages could
be more evident in a setting where a corporate or a building have an indoor positioning system
in place.

2.2 Indoor Location Analytics
The application of indoor location analytics is continuously expanding and becoming more

pertinent, especially in large buildings like airports and shopping malls. In particular, businesses
have found location aware systems (LAS) and location-based services (LBS) valuable in different
spaces and contexts such as targeted advertising [17,18], navigation [19], object tracking [20], and
less popularly for entertainment [21]. Moving into the current state of emergency, indoor location
analytics can play an important role in contact tracing [22] and also for contact tracing and social
distancing purposes to combat infectious diseases.

Central to location analytics is to address the modelling of geospatial data. A geographic
information system (GIS) has been adopted by researchers in various domains, to deal with
geospatial data and yield information out of these data. A non-exhaustive list of such domains
includes site selection [23], traffic control [24] and medical field [25]. GIS was used extensively in
macro-scale outdoor environments. In recent years, researchers have presented the application of
GIS in micro-scale indoor environments [26,27] and even a conglomerate of indoor and outdoor
spaces [28]. Recently, due to the advancement of indoor localization techniques, large volume
of indoor location datasets is available for indoor analytics. In this paper, indoor location data
is analyzed through clustering algorithms to predict the “hotspots” and trajectories of human
movement to implement contact tracing.

2.3 Clustering
Clustering in the spatial dimension is straightforward and is usually similar to standard

clustering methods. Generally, DBScan [7] has been used for location data that contains regions
with scarce data as it can handle noise well. The algorithm was adopted to find high dense regions
using aggregated data, to reveal places which are more likely to be visited [29–31]. In contrast,
clustering in the spatio-temporal dimension is more complex and data are typically expressed in
different forms, such as geo-referenced variables, moving objects and trajectories [32]. This paper
focuses on moving objects that provide snapshots of data at certain points of time, and trajectories
that provide collections of locations that were visited by an identifiable object following a timeline.
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Clustering moving objects provides the ability to effectively detect in real-time, users who are
too close to each other. Although several algorithms have been proposed long since the emergence
of Global Positioning System (GPS), they are still relevant in indoor location analytics as it is a
smaller scale of outdoor location analytics. Many works proposed algorithms to split and merge
clusters, taking into consideration attributes such as positions, velocities, directions of movement
and movement patterns [6,33–35]. Because of the focus on proximity detection for contact tracing,
it was expected that the CMC algorithm [6], which is largely based on DBScan, would be the
most suitable option among all other algorithms studied. In the studies, it has been validated that
the CMC and DBScan can provide a high accuracy for proximity detection with minimal false
alarms.

Clustering trajectories are often used to monitor traffic and to understand movement behav-
iors. A central aspect of clustering trajectories is the definition of similarity measure, wherein
most similarity measures for textual data appear to be well-suited, including Edit Distance on
Real Sequence (EDR), Euclidean distance, Dynamic Time Warping (DTW), Longest Common
Subsequences (LCSS), Hausdorff distance and HU distance [36–38]. The applications focused by
prior surveys differ and thus, their evaluation results disagree with each other. For instance, Morris
et al. [37] found that LCSS performed better on full un-sampled trajectories due to its ability
to ignore outliers, yet Principal Components Analysis (PCA) combined with Euclidean distance
performed better in outdoor surveillance scenes [36]. However, most of these measures require
similar-length trajectories, while others are sensitive to the source and destination of trajectories.
As far as these problems are concerned, the TRACLUS algorithm, which is based on a partition-
and-group framework, is a good measure, as its main objective is to extract segments of full
trajectories that match with other sub-trajectories. This paper explores the usage of EDR [39],
LCSS and TRACLUS as similarity measures to cluster trajectories.

Another aspect in which the location data can be clustered is by extracting mobility fea-
tures [40,41] and cluster users based on their mobility or movement behaviors. High-levels location
features, such as the duration of visits, the number of locations or rooms visited, the number of
floors visited, can be extracted from raw location coordinates data; low-levels location features,
such as the probability of visiting a room, can be extracted to provide more detailed behavior.
This kind of feature extraction techniques provide a more sensible movement behavior, not just
purely looking at the trajectories of movements but also taking into account the rational human
mobility behavior.

2.4 Social Distancing and Human Mobility Management
To combat the COVID-19 effectively, one of the mechanism is to enforce social distancing

among human in an enclosed area. It is already proven that social distancing [42] is effec-
tive to combat the spread of the COVID-19 virus, particularly in an enclosed area. There are
comprehensive research and study that have been conducted to ensure efficient social distance
between humans. In [43], social distancing and self-isolation management has been implemented
using the machine-to-machine technology. In this work, the authors propose a smart wristband
incorporated with Bluetooth beacon technology to enable contact tracing. However, the main
limitation of the proposed implementation is the accuracy of proximity detection. In [44], a
deep-convolutional neural network (CNN) crowd counting model is developed to enforce social
distancing and manage the crowd. This paper proposes a novel method for crowd counting in
highly and lowly crowded places under various scene conditions without any prior knowledge. The
method is developed based on CNN which can accept arbitrary image sizes and scales to produce
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accurate crowd counting results. With this, the density map can be generated and social distancing
can be enforced. Nevertheless, the adoption of CNN requires a huge dataset for training phase
in order to produce efficient contact tracing. The time-consuming training process not only incurs
higher costs for data collection, but also has a high complexity during the detection phase. Unlike
the prior work on contact tracing and social distancing which utilize the instantaneous indoor
location data, this paper suggests an indoor location analytics which clusters the indoor location
data to get insightful information about the movement behaviors of human. To the best of our
knowledge, there is no prior research work on using indoor location analytics to enable contact
tracing for social distancing application.

3 The Proposed Indoor Location Analytical System

In this section, a novel indoor location data analytics system is presented for effective contact
tracing and social distancing within a building. Section 3.1 describes the implementation of
an offline CMC algorithm, as well as the modification of the offline algorithm into an online
proximity detection algorithm. Then in Section 3.2, the analytical process of the location data
in the spatial and the spatio-temporal dimensions is presented, particularly by clustering. The
clustering results lead to the identification of areas of interest (or “hotspots”). Subsequently, in
Section 3.3, the techniques used for feature extraction and to distinguish the movement patterns
between users are discussed. Our motivation for extracting movement behaviors of users is to
schedule users’ access to the site for effective social distancing and manage human mobility within
the site, by formulating a scheduling optimization problem, in Section 3.4.

The UjiIndoorLoc dataset [45] is especially chosen for the demonstration of the proposed
analytical system because it contains movement data of 19 users in multi-floor buildings. Most
other indoor location datasets are collected for fingerprinting purposes, including the UjiIndoor-
Loc dataset, but the users in the UjiIndoorLoc dataset moved in a way such that they form
trajectories which is true to the building structure.

3.1 An Online Coherent Moving Cluster Algorithm for Proximity Detection
In 2009, Jeung et al. [6] proposed the CMC algorithm which is based on DBScan. The CMC

algorithm takes a snapshot of the location of moving objects at certain points of time, then
finds convoys, which are clusters of moving objects in proximity, by using the DBScan algorithm.
Although the algorithm could be directly used for the contact tracing application, doing so would
yield inaccurate results due to the volatility of wireless signals and limitations to freedom in
movements in an indoor environment. Thus, some additional steps are proposed, and stricter
conditions are used for the definition of a convoy in an indoor environment.

At each iteration of the CMC algorithm, along with the active convoys detected at the
previous timestamp, V , a copy of the snapshot of locations of moving objects at the previous
timestamp, Ot-1 is kept to retrieve the last detected location of lost moving objects, lost_users,
allowing a time buffer for lost signals or unstable signal strengths. Apart from the distance
threshold as proposed in the CMC algorithm, objects should also be in the same room or space to
be clustered in the same convoy. Specifically, the geodesic distance is used as a similarity measure.
In addition, the distance threshold e is added to the distance if two locations are located in
different rooms so that they will not be clustered into the same group using the DBScan algorithm

d (o1,o2)=
{
geodesic(o1,o2), r1 = r2
geodesic (o1,o2)+ e, r1 �= r2

(1)
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where o1 and o2 are location points of two objects while r1 and r2 are the associated rooms of
each location point.

Algorithm 1 presents the newly proposed online CMC algorithm, where the object count
threshold m and the distance threshold e are parameters to be passed to the DBScan algorithm
embedded in the CMC algorithm, while the minimum lifetime k is the minimum duration of the
lifetime of a cluster to be considered a convoy. The minimum lifetime k is also the minimum
amount of time for objects to be in proximity before they are being alerted in our implementation,
but an extra parameter could be added to differentiate the two definitions. At initialization, Ot-1
and V are created as empty sets. Considering the application of the proximity detection algorithm
for enforcing social distancing, the definition of close contact according to the Centers of Disease
Control and Prevention (CDC) of the United States [46] is referred. They define close contact
as “any individual within 6 feet of an infected person for a total of 15 min or more over a
24-h period”. Thus, the value of m is set to 2, k to 10 min and e to 1.5 m to achieve the
aforementioned conditions of close contact.

Algorithm 1: Online CMC Algorithm
Input: Set of detected objects at the previous timestamp Ot−1, Set of detected objects at the
current timestamp Ot, set of active convoys V , object count threshold m, minimum lifetime k,
distance threshold e
Vnext =∅

Oalert =∅

lost_users=Ot−1 −Ot
Ocombined =Ot ∪ lost_users
if |Ocombined |<m then

C=∅

else
C= DBScan(Ocombined ,m, e)

end if
for each convoy candidate v in V

v.assigned = false
for each snapshot cluster c in C

if |c∩ v| ≥m:
v.assigned = true
v= c∩ v
v.end_time = t
Vnext =Vnext ∪ {c}
c.assigned = true
c.end_time = t

(Continued)
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if v.lifetime ≥ k then
Oalert =Oalert ∪ c

end if
end if

end for
if v.assigned = false and v.lifetime ≥ k

Vresult=Vresult∪ {v}
end if

end for
for each snapshot cluster c in C

if c.assigned = false then
c.start_time = t− 1
c.end_time = t
Vnext=Vnext ∪ {c}

end if
if c.lifetime ≥ k then

Oalert =Oalert ∪ c
end if

end for
Output: Set of objects violating distance threshold Oalert, set of ended convoys Vresult, set of
active convoys Vnext

To use the online CMC algorithm, the snapshots of objects could be provided at every fixed
time interval. Multiple locations of the same object may be recorded during the time interval, and
one record is extracted by either using the last detected location, which requires less computation
time, or using the (weighted) average of all detected locations within the interval, which would
have a smoothing effect on fluctuating signal strength values. The outputs of the online CMC
algorithm include the set of objects within the distance threshold to other objects, O_alert. As
the name suggests, objects or users in this set could be alerted or warned in real-time. The set of
ended convoys V_result could be stored for further analysis.

For the purpose of contact tracing, an undirected network consisting of users as nodes can
be created, where two users are connected with an edge if they are found in a common convoy.
The edges are weighted by the total duration of the two users being found in the same convoy. If
a user is diagnosed with the disease, then this network is useful to identify the primary, secondary
or even higher level of contacts of the user and notify them of such occasions. Further, Section
3.4 describes an example of an optimization problem that makes use of this network to attempt
to prevent the transmission of virus between the detected convoys of users.

3.2 Clustering Location Data for Identification of Hotspots
Hotspots is defined as a location point or a stretch of location points with high traffic

throughout a period of time. The identification of hotspots is through extracting clustering centers
of location points and representative trajectories generated for clusters. In practice, this clustering
process could be performed on a daily basis, weekly basis, or monthly basis, which could reveal
different levels of temporal patterns. Some precautions that could be done more frequently in
these identified hotspots are such as: 1) frequent sanitation; 2) placement of sanitation materials
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and signs to remind people to follow social distancing rules; 3) alerting users about locations of
these crowded areas, so they can attempt to avoid these places if possible.

Clustering of location data finds hotspots by grouping location points and producing a
representative location point for each cluster found. The similarity measure used for clustering
location points is similar to Eq. (1), where location points in different rooms will not be in the
same cluster. Furthermore, the associated users are also compared so that a cluster consists of
location points belonging to different users:

d (p1,p2)=
{
geodesic(p1,p2), r1 = r2 and u1 = u2
geodesic (p1,p2)+ e, r1 �= r2 or u1 �= u2

(2)

where p1 and p2 are location points of users u1 and u2 respectively, and r1 and r2 are the
associated rooms of each location point.

Before proposing the new DBScan algorithm for indoor data clustering to identify hotspots,
let’s formulate the density definition. In this context, ε-neighborhood is defined as the objects
within a radius of ε from an object such that Nε (p) : {q|d (p,q)≤ ε} where ε is the distance
threshold that specifies the neighborhoods. A high-density neighborhood is when ε-neighborhood
of an object contains at least min_pts of objects where min_pts is the minimum number of data
points to define a cluster.

Performing DBScan directly on all location points will produce clusters that are predominated
by location points belonging to one user, which occurs when numerous location points of a
user are recorded within a density-reachable area. This is extremely typical in real life situations
as a person tends to stay immobile at the same location to perform some tasks. However, this
clustering result does not represent meaningful clusters as it is not aligned with the initial aim of
finding areas of interest, wherein there should be a number of distinct users detected. Therefore,
to improve the clustering results, the location points of each user are first clustered separately.
This process might disclose important behavior of each user, and more importantly, it filters out
location points where users do not stay for long. Subsequently, the cluster centers from the first
clustering process are used as input to a second clustering process. This whole process asserts that
clusters from the second clustering process contain more than one object.

Fig. 1 illustrates the two-layer clustering process based on the DBScan algorithm. This process
feeds the raw N-user indoor location data into different DBScan algorithm with ε = 5 and
min_pts = 20 to find the cluster centers for all users. Subsequently, the cluster centers are used as
the inputs for the second DBScan clustering process where the min_pts is reduced to find more
concentrated cluster centers which could be labelled as hotspots. The selection of parameters to
DBScan is influenced by the characteristics of the UjiIndoorLoc dataset which contains far-away
location points and few users. These parameters should be fine-tuned and adapted to work well
with other applications or datasets.

Other than the proposed DBScan algorithm which only cluster data in spatial dimension, the
TRACLUS algorithm is also proposed and modified to cluster trajectories, which consist of time-
ordered location points associated with one object. Trajectories were extracted from raw location
points so that successive location points in a trajectory are at least 0.1 m away from each other
but less than 30 s apart. This is to remove repeated location points in the trajectories while main-
taining the shape of trajectories true to the real trajectories. The original TRACLUS proposed
breaks trajectories by removing any intermediary points in a trajectory. While this is acceptable
in an unrestricted outdoor environment, this may produce invalid partitioned trajectories in an
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indoor environment with limited freedom of movement. In this work, a new parameter that is
called the restriction of movement, α, is introduced to increase the stringency of the condition
under which intermediary points are removed. The modified TRACLUS algorithm is laid below:

Figure 1: Flow chart of the two-layer clustering process of location points using DBScan

Algorithm 2: Modified TRACLUS Algorithm
Input: A trajectory TRi = p1p2p3 . . .pleni , restriction of movement α

Add p1 into an empty set CPi
startIndex= 1
length= 1
while startIndex+ length≤ leni do

currIndex= startIndex+ length
costpar=MDLpar(pstartIndex,pcurrIndex)
costnopar=MDLnopar(pstartIndex,pcurrIndex)
if length> 1 and costpar+α > costnopar then

Add pcurrIndex−1 into the set CPi
startIndex= currIndex− 1
length= 1

else
length= length+ 1

Output: A set of CPi of characteristic points

Due to the limited size of the dataset, another parameter, MinPTR, was introduced for use
while clustering the sub-trajectories. It defines the minimum number of participating (original)
trajectories in a cluster. Note the difference of MinPTR with MinLns that defines the minimum
number of partitioned sub-trajectories in a cluster.
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3.3 Feature Extraction Based on Movement Behaviors of Users
To be able to distinguish between movement behaviors, some properties of their behaviors or

movement patterns were extracted, to be used as inputs for the optimization problem in Section
3.4. Features that have been extracted using the UjiIndoorLoc dataset are as follows:

(1) The number of unique days of visit to the site.
(2) The average duration of visit to the site.
(3) The average duration spent in a building on different days.
(4) The median time of day when a user visits the site.
(5) The number of times a user visits the site on each day of the week (Monday to Sunday).

There are 7 features extracted, one for each day of the week.
(6) The cluster centers and the hotspots found in Section 3.2.

Since there are various types of features extracted, it is very important to define the similarity
measure of these features. Features 1–5 can be considered as continuous numerical data; therefore,
their similarities are suitable to be found using the Euclidean distance. For feature 6, the cluster
centers are first translated into text. For each cluster center, one term in the form of building
ID, floor number and space ID appended together is created. Then, these terms are perceived as
words and the cosine similarity can be used as the similarity measure. In our implementation, the
terms belonging to different users are converted to a matrix of term frequency-inverse document
frequency (TF-IDF) features, where one user owns a document with the terms created as words.
The output is then normalized, and Euclidean distance is used to measure the similarity between
vectors.

The values of features are normalized for training, to prevent excessive effect of features with
smaller variance to the clustering results. Normalization is used instead of standardization as
normalization does not make any assumptions about the distribution of the features to estimate
the mean and standard deviation of the population. After extracting the features, the similarity
between the movement behaviors were used to create a network of users. First, one node is created
for each user. Each pair of nodes is connected with an edge and the weights of the edges encode
the values of similarity between the movement behaviors of the corresponding pairs of users.

3.4 Human Mobility Management
The networks found in Section 3.1 and Section 3.3 can be used to assist better planning of

subsets of users to be allowed to be on the site on different days. Since the network from Section
3.1 informs about the close contact of users, we can minimize the probability of contact between
those who have yet to be in close contact with each other. This is to minimize the transmission
of the virus to other users in the network, and to keep the size of connected components in the
contact network to be small. On the other hand, we should divide those with similar movement
behaviors to have access to the site on different days. This is to lessen the traffic and to even out
the distribution of users across all locations.

This problem can be formalized into a scheduling optimization problem. The objective
function of the problem can be expressed as follows:

(1) Maximize the number of pairs of users who already have close contact with each other to
have access to the site on the same days. The award added to the objective function is the
normalized value of the duration of time the pair of users are in close contact, provided
that these users are allocated on the same day (edge weight of network from Section 3.1).
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(2) Minimize the number of pairs of users who have the same movement behavior to have
access to the site on the same days. The penalty imposed on the objective function is the
normalized value of the similarity between the movement behaviors of the pair of users
(edge weight of network from Section 3.3).

Along with other conditions such as the maximum allowed users on the site and the number
of days a user is allowed to enter the site, we could solve this optimization problem using integer
programming. OR-Tools by Google was used to solver the optimization problem formalized above.

4 Numerical Results and Discussions

In this section, we will demonstrate the clustering quality of proposed indoor location data
analytics system in terms of varying values of MinLns and ε-neighborhood. As suggested in [8],
a quality measure (Q-Measure) for a ballpark analysis can be used to quantify the performance
of the proposed clustering methods. The sum squared error (SSE) is used in the Q-Measure to
represent the sum of all the squared distance between the locations of any two users belonging
to the same cluster. The noise penalty is considered in the Q-Measure to penalize incorrectly
classified noises. Hence, the Q-Measure can be represented as the summation of the total SSE
and the noise penalty, which can be denoted as

Q−Measure=
Nc∑
i=1

⎛
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∑
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2

⎞
⎠+ 1

2 |N |
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where N is the set of all noise line segments while Nc represents the number of clusters formed.
From (3), it is interpreted that the smaller Q-Measure value indicates better clustering quality.

In Fig. 2, the Q-Measure is plotted against ε-neighborhood for different α = 0, 1, 3, 5, 7 for the
proposed TRACLUS algorithm for clustering indoor location data to identify “hotspots”. It is
observed that TRACLUS with α = 3 can achieve the best Q-Measure performance when ε = 4 as
compared to other α values. As anticipated, TRACLUS with movement restriction outperforms
the one without restriction (α = 0) as TRACLUS was initially developed for outdoor trajectories,
which may produce invalid partitioned trajectories in an indoor site with limited freedom of
movement. On the other hand, by having a more stricter restriction of movement (high α), the Q-
Measure shows that clustering quality of TRACLUS deteriorates because the restrictions imposed
may greatly reduce the freedom of movement, creating unrealistic indoor movement behaviors.
Therefore, α and ε-neighborhood must be optimally selected for the proposed TRACLUS method
to achieve the best clustering quality to identify “hotspots”.

Next, trajectories extracted from the UjiIndoorLoc dataset is fed into the proposed TRA-
CLUS scheme where the weightages for each of perpendicular distance, parallel distance and angle
distance are set to 1, as suggested in [8]. The Q-Measure of proposed TRACLUS algorithm is
compared with those of DBScan with LCSS and DBScan with EDR to demonstrate the superior
performance in terms of clustering indoor location data for different MinLns and ε values. It
is observed in Fig. 3a that the best Q-Measure (Q-Measure score of 5) can be achieved by
TRACLUS when MinLns = 5 and ε = 4. However, in Figs. 3b and 3c, DBScan with LCSS
and EDR can only achieve the best Q-Measure scores of 9 and 11, respectively. The poorer
performance of DBScan with LCSS is mainly due to ignoring of non-matching points and the
shape of trajectories. In such as scenarios, two trajectories will be grouped together as long as
they pass through some similar location points in the same order, which may result in noises.
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For DBScan with ERD, two trajectories may be considered different if they do not start and
end at similar locations. This is especially evident in cases where one shorter trajectory overlaps
with a small segment of a longer trajectory and these trajectories are wrongly labeled as noise
due to additional edit distance imposed to add points to the shorter trajectory. The problem
faced by DBScan with LCSS and EDR can be avoided using the TRACLUS algorithm since it
partitions trajectories prior to clustering, with a similarity metric that measures the difference in
shapes between the partitioned sub-trajectories. The proposed TRACLUS algorithm has the added
advantages of being able to ignore the difference in opposing directions and is able to generate
representative trajectories for clusters to be labelled as hotspots, which could be used for further
inspection and visualization.

Figure 2: The Q-measure performance for the TRACLUS algorithm for different values of α

and ε

The performance of the proposed indoor location data analytics system is evaluated in Fig. 4.
The number of close contacts is counted when two users encounter each other on the enclosed
site. The percentage of the population is ranged from 10% to 100% for 19 users (rounded to
integers). First, the upper-bound performance (the worst-case scenario) is shown in Fig. 4 where
the number of close contacts is the highest when there is no scheduling and no feature extraction
at all. This is an anticipated result displayed in an exponential curve as the more congested
area certainly increases close contacts tremendously as the space of the area is limited. The
scheduling of users to the site using the OR-Tools is investigated first with features 1–5 listed in
Section 3.3, excluding feature 6 on hotspot identification. Using the OR-Tools scheduling with
some important features, it is observed that features 1–5 are essential factors as this scheduling
can reduce the number of close contacts by approximately 40–60%. The important information
extracted from indoor data can assist the system to understand the behaviors of the users visiting
the site and the scheduling can be effectively done by minimizing the probability of close contacts
among the users. To further improve the social distancing among the users, the clustering using
DBScan provides the spatial analytics which identify the hotspots where the users may have high
chance to come into close contact in some fixed locations (hotspots). Using this extra hotspot
feature, the scheduling optimization can take this into account by separating this group of users
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into different access channels to the site. It is evident in Fig. 4 that the implementation of
the DBScan algorithm can further decrease the average number of close contacts by 25% as
compared to the Or-Tool scheduling without hotspot feature. Furthermore, the trajectories of
movement of the users on the site are also captured using the TRACLUS algorithm. This spatio-
temporal feature is identified and included and the average number of close contacts can be
further reduced by another 37% as compared to that of the DBScan. This result is expected as
the TRACLUS algorithm has provided extra temporal analytics to the optimization other than
the spatial analytics. The temporal information is critical as the number of close contact is highly
dependent on the movement of the users because it is not optimal to just plan the scheduling
based on the fixed positions of the users. In short, other than the features 1–5 that provides
the users’ access information, the spatial and spatio-temporal information is also essential for
user access planning. It is also proven that the proposed DBScan and TRACLUS algorithms are
efficient to reduce the close contacts among users within an enclosed site.

(a) (b) (c)

Figure 3: The comparison of Q-measure performance among the (a) TRACLUS, (b) LCSS +
DBScan and (c) EDR + DBScan for different MinLns and ε values
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Figure 4: The average number of close contacts counted per allowed population to the site

5 Conclusion

The proposed indoor data analytics system based on the modified DBScan and TRACLUS
algorithms has manifested the feasibility and viability for the application of contact tracing to
enforce social distancing and optimize human mobility in the event of preventing transmission of
the COVID-19 virus. The proposed two-layer DBScan algorithm clusters the location points solely
based on spatial analytics and it has been proven more accurate compared to the conventional
DBScan algorithm. Besides, the proposal to include a parameter to restrict the movement of users
in TRACLUS algorithm makes TRACLUS feasible to function indoor. Apparently, TRACLUS
is more superior than DBScan as the former explores the data in spatio-temporal dimension,
which shows that the user movement behaviors can be captured more accurately if the behaviors
are observed for some time. By optimally selecting the parameters for DBScan and TRACLUS
algorithms, both schemes can outperform the existing clustering techniques in identifying the
hotspots within an enclosed area. The hotspot feature is then used to assist in scheduling the
users’ access to a particular enclosed site. The scheduling is optimized based on different features
to understand the users’ site access characteristic together with their movement behaviors on
the site. It is empirically proven that the proposed human mobility management based on the
features extracted can potentially minimize the close contacts among users by 70% if all users
are allowed to access the site at the same period of time. Due to the limitation of space, some
of the potential enhancement or extension of the current work such as proposing parameter-less
algorithms, incorporation of self-regularization algorithms and clustering indoor data based on
features extracted, can be pursued in future.
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