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Abstract: In recent years, deep neural networks have become a fascinating
and influential research subject, and they play a critical role in video process-
ing and analytics. Since, video analytics are predominantly hardware centric,
exploration of implementing the deep neural networks in the hardware needs
its brighter light of research. However, the computational complexity and
resource constraints of deep neural networks are increasing exponentially by
time. Convolutional neural networks are one of the most popular deep learn-
ing architecture especially for image classification and video analytics. But
these algorithms need an efficient implement strategy for incorporating more
real time computations in terms of handling the videos in the hardware. Field
programmable Gate arrays (FPGA) is thought to be more advantageous in
implementing the convolutional neural networks when compared to Graphics
Processing Unit (GPU) in terms of energy efficient and low computational
complexity. But still, an intelligent architecture is required for implementing
the CNN in FPGA for processing the videos. This paper introduces a mod-
ern high-performance, energy-efficient Bat Pruned Ensembled Convolutional
networks (BPEC-CNN) for processing the video in the hardware. The system
integrates the Bat Evolutionary Pruned layers for CNN and implements the
new shared Distributed Filtering Structures (DFS) for handing the filter layers
in CNN with pipelined data-path in FPGA. In addition, the proposed system
adopts the hardware-software co-design methodology for an energy efficiency
and less computational complexity. The extensive experimentations are carried
out using CASIA video datasets with ARTIX-7 FPGA boards (number) and
various algorithms centric parameters such as accuracy, sensitivity, specificity
and architecture centric parameters such as the power, area and throughput
are analyzed. These results are then compared with the existing pruned CNN
architectures such as CNN-Prunner in which the proposed architecture has
been shown 25% better performance than the existing architectures.
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1 Introduction

Deep neural networks (DNN) in recent years has achieved the remarkable growth and con-
sidered to be the powerful candidate for a variety of applications such as Image processing, video
analytics and speech processing [1].

Currently, Convolutional Neural Networks (CNN) has gained its new lime light for handling
the video processing. Because of its hardware versatility and ability to provide high performance
per unit power, FPGA is becoming an integral part of implementing CNN accelerators [2].
The Graphics Processing Unit (GPU), on the other hand, provides us with more memory and
computing power [3]. Because of its hardware versatility and ability to provide high performance
per unit power, FPGA is becoming an integral part of implementing CNN accelerators [4]. Owing
to the small number of hardware resources, FPGA also has limitations.

Several Methods such as hard thresholds methods, Automatic Filtering Methods, Block Prun-
ing methods were assumed to reach the saturation in compression without sacrificing the model’s
accuracy to make it more suitable for the FPGA architectures [5]. Furthermore, the complex
interplay between the stages of filter pruning and model fine-tuning makes this process difficult
to control [6]. As a result, current pruned accelerators are unable to optimally balance the trade-
off between pruning efficiency and hardware resources [7]. Focused on the above challenges, the
paper proposes the new hybrid evolutionary Bat pruned deep hybrid convolutional neural network
models to establish the good tradeoff between the pruning efficiency, prediction accuracy and the
hardware usage. Since the pruning of the network may have adversely impact on the video frames,
the paper incorporates the effective selection of weights to be removed and boosted LSTM to
maintain the good accuracy in prediction. The contribution of the paper is as follows

1) The paper proposed new Evolutionary Pruned Hybrid Convolutional Neural Networks
for processing the input video sequences. The hybrid convolutional networks have been
formulated with the replacement of fully connected neural network layers with the boosted
Long short term memory layers for the better prediction. To select the accurate removal
of weights, Bat algorithm has been incorporated to maintain the good pruning efficiency
which may have less impact on video sequences.

2) Incorporation of the Distributed Filtering Structures for the implementing the proposed
architecture to manage the resources in FPGA to achieve the energy efficient and high
performance.

3) The introduction of Hardware -Software Codesign for an effective implementation of the
models with the more flexible in terms of user defined mechanism.

The manuscript is arranged as per: Section 2 describes the background and relevant works by
the different authors in pruning techniques and hybrid learning models for videos sequences. The
preliminary overview of convolutional neural network, Long short term memory, Bat Algorithms
has been presented in the Section-3. The proposed architecture’s working process and FPGA
implementation of the proposed model are discussed in Section 5, and the results are presented
in Section 6. Finally, section 7 brings the paper to a close.

2 Related Works

Xu et al. [8] proposed an idea to measure the visual quality based on supervised machine
learning model. For this, a synthetic dataset that contains low-light and various degrees of haze
are produced. A Multivariate Statistic Gaussian model (MVG) is then trained with a particular
mixture for each degree of exposure of the global content. The blurry and hazy images used
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to train the visibility estimation model are composite images of the ground truth data. The
enhancement model deployed can exhibit poor visual quality if the bin number decreases.

Chen et al. [9] developed a pipeline model for depth estimation in stereo applications. To
learn a differential binary descriptor, the hardware-friendly operation with binary neural network
(BNN) is used. The Stereo Engine is a standalone specification for a DNN-based stereo viewing
device that implements all processing procedures on the hardware platform. Stereo Engine provides
a high-level pipeline between accelerators and image sensors without an external processor or
GPU. Integration of optimization layer and repetitive convolution are performed to enhance the
hardware efficiency. The matching accuracy need to be improved for any hardware end-to-end
DNN-based stereo vision accelerator in FPGAs based stereo research real time.

Kim et al. [10] introduced an efficient multiscale SR hardware based on CNN that can
convert 4 K UHD amplifiers to 60 fps. The multi-scale SR tool uses a limited number of filter
parameters and does not use a frame buffer to store intermediate feature maps. To further
reduce the computational complexity and memory consumption, they used a simple and effective
quantization scheme for weights and activations. As a result, the SR HW is capable of reproducing
4 K UHD video at 60 frames per second while also handling multi-scale conditions of 2, 3,
and 4.

Yang et al. [11] developed an implementation for the evaluation in sports field to judge claims
of opponents using image verification. CNN and FPGA support have been involved in identifying
images of sports activities. The number of CNN layers and the purpose of the information loop
have been reduced to meet limited memory requirements. As a result, the unchanged image is
correctly classified as one of the amount of data involved, and FPGA acceleration reduces the
transfer time. But a subjective study of the model often leads to non-predictable errors due to the
environmental changes.

Cosmas et al. [12] proposed an energy-efficient and cost-effective on-board interfacing for
spacecraft pose estimation. The proposed scheme uses a FPGA and system on a chip (SoC) device
for CNN capture in these gesture estimation techniques. This study uses a Xilinx ZynqUltraScale
+ MPSoC device, which is provided as an efficient acquisition solution on board. This work needs
further improvement to ensure that the spacecraft is in FPGA-based domain from the start to
finish. This includes the interaction between the real-time camera and CPU-based algorithms for
real time deployment.

Han et al. [13] adopted CNN with hardware-friendly advanced gateways. Word performance
and network depth were further extended to improve model performance. Sigmoid functions were
replaced to make it more convenient for lossless hardware computing. The FPGA based event
detection accelerator has greatly reduced latency through its complete pipeline architecture. The
Xilinx XCKU115 FPGA is used to implement the accelerator. The model was found to have the
highest F1 score of 84.6 percent in the ACE kit. For real-time applications, the model fails to
connect event detection and event argument extraction.

Yu et al. [14] introduced a single FPGA chip-based eye tracking device. Our experimental
results showed an apparent recognition rate of 0.52 μs and an average detection rate of 92% at
a 100 MHz system clock. The use of DSP and memory chips is intentionally increased in the
hardware-based implementation, but the detection rate is lower than in software-based versions.

Zhang et al. [15] presented a VHDL/HLS description of an FPGA pipeline design that can
capture events from a DVS retina with an Incident Reference (AER) to generate a normalized
histogram that can be used by a dedicated CNN accelerator called NullHop. The measured
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acceleration rate of 67% is for CNN’s Roshambo real-time experiment running at a top speed of
160 frames per second

3 Preliminary Overview

This section discusses about the preliminary overview of the different models such as
convolutional neural networks, long short term memory and Bat algorithms.

3.1 Convolutional Neural Networks
Convolutional Neural Network is the popular model among other deep learning mod-

els, which finds its applications in image processing and video analytics. The structure of the
traditional CNN is shown in Fig. 1.

Figure 1: Block diagram for the traditional convolutional neural networks

The standard CNN model comprises of three significant operations such as product, filtering,
and pooling at the initial stage. The input layer is scrutinized by convolutional operation and feed-
forwarded into pooling layer for filtering process. These two steps are mandatory in CNN in order
to minimize the output complexities and over-fitting problem. A CNN’s fully linked (FC) or dense
layers link all neurons from previous layers, allowing for global correlation of complex features
derived from product layers. A number of kernels are present in each completely connected layer.
These kernels, on the other hand, are only added to the input map once in dense layers. Dense
layers, as a result, are not computationally efficient. Instead, the large number of weights to be
moved from external memory is the bottleneck of dense layers. Standard CNNs are those that
have these three types of layers. AlexNet and VGG16 are two examples of standard networks. In
their CNNs, some ideas consider other forms of layers, such as convolutional layer combinations.
Networks such as GoogleNet [5] and ResNet [6] are referred to as irregular networks because they
contain composite layers that differ from the three discussed above [16].

3.2 LSTM – Long Short Term Memory
A LSTM network is the type of reinforcement learning model, which is primarily used for

sequence prediction problems. Cell, input gate, output gate, and forget gate make up this network.
To recall values over time periods, cells are considered to be LSTM memories. The cell input state
is Ct, the cell output state is Gt, and its former state is Gt-1, and the three gates’ states are T0.
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Both Gt and ht are transmitted to the next neural network in RNN, according to the structure of
the LSTM cell. The output and forget gates are used to change the memory in the LSTM, which
combines the output of the previous unit with the current input state. To calculate Gt and ht, in
order to do so, we use the equations below. To begin, determine the states of the three gates as
well as the cell input state, input gate: The input gate is given as

jt = θ(Gi
l ·Ot+Gi

h · et−1+ si) (1)

The forget gate is given as

Tf = θ(Gf
l ·Ot+Gf

h · et−1 + sf ) (2)

Output gate is calculated as

To = θ(G0
l ·Ot+Go

h · et−1 + so) (3)

Cell Input is given as
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h are the weight matrices connecting the gate inputs to the concealed layers.

Also si, sf , so, sC are the bias vectors and tanh is considered hyperbolic function. Secondly, cell
output state is calculated and it is given as follows as

TC = kt∗ T̃C +Tf ∗Tt−1 (5)

Also concealed layer output is calculated which is then given as

et =To∗tanh(TC) (6)

3.3 Bat Algorithm
Fig. 2 depicts the Bat algorithm’s operational framework.

Microbats’ echolocation or bio-sonar attributes were used in the regular Bat calculation. In
light of the echo cancelation calculations, Yang [7] (2010) developed the bat calculation with the
help of three embellished guidelines.

1) All bats use echolocation to detect separation, and they likewise ‘know’ the distinction
between sustenance/prey and foundation obstructions in some mystical manner

2) Bats fly arbitrarily with speed vi at position xi with a recurrence fmin, fluctuating wave-
length and loudness A0 to look for prey. They can consequently modify the wavelength (or
recurrence) of their transmitted pulse and alter the rate of pulse emission r2 [0,1], based
on the nearness of their objective.

3) In spite of the fact that the loudness can fluctuate from numerous points of view, we expect
that the loudness shifts from an extensive (positive) A0 to a minimum constant value Amin.
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Figure 2: Flow chart depicted for the bat algorithm
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Each bat motion is associated with the velocity vit and initial distance xit with the ‘n’ number
of iterations in a dimensional space or search space. The best bat of all the bats must be chosen
based on the three rules mentioned above. The updated velocity vit and initial distance xit using
the three rules are given below

Fi= fmin+ (fmax− fmin) (7)

xit= xit− 1+ vit (8)

where β €(0, 1) fmin is the minimum frequency = 0 and fmax is the maximum frequency which
basically depends on the problem statement. The frequency between fmin and fmax is initially
assigned to each bat. As a result, bat calculation can be thought of as a frequency tuning
calculation to provide a fair mix of investigation and exploitation. The emission rates and loudness
give a mechanism to programmed control and auto-zooming into the district with promising
solutions.

To get good solution, it is fundamental for the variety of the loudness and the pulse emission.
Since the loudness normally decreases once a bat has identified its prey, while the rate of pulse
emission expands, the loudness can be picked as any estimation of accommodation, among Amin
and Amax, accepting Amin = 0 implies that a bat has quite recently discovered the prey and
briefly quit transmitting any stable.

4 Proposed Framework

4.1 System Overview
The proposed framework consists of four tier mechanism.

a) Modelling the New Bat evolutionary Pruned Convolutional Layers
b) Integrated with the Boosted LSTM Networks
c) Implementation of Hybrid Algorithms on the FPGA with the Distributed Filtering

Sections
d) Adopting the Hardware -Software Co-design for an effective integration of the complete

architecture. These frameworks

The CASIA video datasets are taken as the inputs to analysis of the proposed architecture.
Initially the videos are converted into frames in terms of fixed point numeric values and features
are extracted by the Bat pruned Convolutional Layers. These features are used to train the
proposed boosted LSTM networks for further classification. The proposed architecture is shown
in Fig. 3.
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Figure 3: Proposed architecture for the implementation of bpec-net frameworks

4.2 Bat Evolutionary Pruned Convolutional Networks
This section discusses about the details about each step involved in the proposed pruning

methodology incorporated in convolutional layers. Even though the convolutional layers consist
of three layers, pruning is incorporated in the filter layers of the proposed network. The proposed
work uses the Adaptive Bat evolutionary algorithm for the filter pruning. Its goal is to remove the
filters and to determine the impact of filter elimination on the loss function. The importance val-
ues that result can be used to prioritize the filters during the pruning process. The Bat algorithm
is used to remove the filters with adaptive threshold fitness function given as follows

FitnessPruning < (L(D, f (i)−L(D, f(j)) (9)

where L(D, f(i) )is the Loss function after pruning by the bat algorithms, L(D, f(j)) is the loss
function before the model perturbation. The input filter layers in accordance to the datasets are
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considered as the Bat populations and parameters used for pruning the filter layers are presented
in Tab. 1.

Table 1: Adaptive bat parameters used for pruning the filter layers in convolutions networks

Slno Parameters Specifications

01 No of Bat population 05
02 Initial Velocity 1 m/s
03 Initial Loudness 0.5
04 Initial Pulse rate and Initial Loss function 0.5 and 0.001
05 Minimum Frequency and Max frequency 0 KHz and 0.2 KHz

The complete working mechanism of the proposed pruning mechanism is depicted in Fig. 4
and the Pseudo code is given below.

Sl. no. Pseudo Code for the Proposed Pruning Algorithm
01 Inputs: No of Filter layers = F(i)

02 Outputs: Pruned Output Layers = F(o)

03 Initial Bats = F(i)

04 Initialize the Loundness = 0.9

05 Initialize the Velocity = 1 m/s

06 While t = 1 to max_iteration

07 Loop1: Pruned the Filter layers using adaptive thresholds

08 Calculate the Loss function

09 Calculate the Fitness function using the Equation (9)

10 If fitness_function< threshold (Again suing the Equation (9))

11 Fix the Pruned Filter layer

12 Else

13 Adjust the loudness, Velocity, Pulse rate and Frequency

14 Go to Loop1

15 End

16 End
The number of bats in the population, the maximum number of iterations, the upper bound,

the lower bound, the dimension, the loudness, the pulse rate, and the maximum and minimum
frequency range are all initialized as shown in Tab. 1. The number of filters and the number of
neurons in the hidden layers of the convolutional layers are the parameters in CNN that must be
pruned using the Bat algorithm.

From 1 to 50, the upper and lower bounds for the number of filters in the convolution layer
and the number of neurons in the hidden layer are chosen at random.
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Figure 4: Hardware software co-design architecture for the proposed framework

4.3 Filter Tuning
The model structure is slightly weakened after removing the unnecessary filter layers, and

its accuracy suffers as a result. To recover the accuracy, retraining the model is needed using
the input video datasets. Since the important filter layers are retained, training accuracy can be
retained in few epochs. But still, above methodology is not sufficient in handling the input video
sequences because of its larger dimensions. Hence the proposed network replaces the traditional
fully connected neural networks with the high performance boosted long short term memory for
the training which retains the higher accuracy of prediction with the less number of filter layers.
The training mechanism of the proposed LSTM is discussed as follows.

By combining LSTM networks and Ada-Boost Learning algorithms in this method, hybrid
ensemble learning algorithms are developed. Ada-Boost algorithm, which strengthens weak classi-
fiers. Normally, the Ada-boost algorithm improves the week classifiers by changing the classifier’s
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weights. Until a high level of classification/prediction accuracy is achieved, Since the pruning can
reduce the accuracy of training model, proposed Hybrid Models ensembles the Ada-Boost with
the LSTM to handle the video sequences effectively with an increased prediction accuracy.

After the obtaining the features from pruned layers, the LSTM network is trained using Dk(i)
which represents features obtained from the pruned filter layers of the convolutional networks
Initially, D(i) are set equally, D1(i) = 1/n where n is the training samples. Then the network
computes the weak LSTM predictor for the first iteration by using the mathematical Eq. (6). The
modified output cell is given by

TC = kt∗ T̃C +Tf ∗Tt−1 (10)

The mathematical expression identifies the threshold error function, which is used to find the
boosting outputs.

Uk= (Tactual−Tk) (11)

In addition, the network parameter has been calculated using the expression given by

αk= 0.5{ln(1− ek)/ek} (12)

When error is zero and the mathematical expression is given, ek is calculated for each iteration
and the final ensembled boosted output is calculated.

F(k) =
n∑

k=0

1/αk{αk.Uk} (13)

The complete pseudo code for the proposed ensemble boosted LSTM is given below

Pseudo Code for the Proposed Boosted LSTM Predictor
1 Inputs Samples Training Sets xi, yiwhere x=x1, x2, x3, x5. . . . . ..xn where

n=Number of input video samples and yi €(1, 2, 3) where yi is multi-class label

associate with x

2 Initialize D(k)=n // features obtained from the Pruned Layers

3 For k = 1, 2, 3,. . . . . . . . . . . . . . ..K

4 Train the LSTM classifier using the the distribution Dk

5 Get the hypothesis with error function with respective to Dk

6 Error function is calculated at each stage which is then weighted Dk

7 Choose αk = 0.5 ln(1- ek)/ek-network parameter calculation

8 Update the Dk+1 (i)// Ada Boost Mechanism

9 Calculate the error function and repeat the step 4

10 If error is less than ek

11 Then Ensemble all the outputs H(x) = H(x)= sign(
∑

αk Tk)/ αk

12 Else

13 Go to step 4



802 CMC, 2022, vol.71, no.1

14 End

15 End

By adopting the boosted LSTM with the pruned convolution layers, the high prediction
accuracy has been maintained.

5 Experimental Setup

This section details about the FPGA implementation of the proposed pruned learning models.
To overcome the computational overhead, the paper uses the hardware -software co-design which
employs the pruned convolutional layers on FPGA and the boosted learning in the general central
processing unit. Fig. 4 presents the complete cycle of implementing the proposed architecture.

For proposed Pruned Models, input videos are converted into matrix format using the matrix
convertors and then stored in DRAM (On-chip RAM) for further processing. The block signal
enabled distributed arithmetic architectures (BDA) are employed to implement the pruned weights
of the proposed learning model. The filter co-efficient and input frame matric are then multiplied
and accumulated by the BDA architecture followed by the memory read operations to other
locations. The usage of the BDA mechanism incorporates the usage of registers (LUT) instead of
the memories. Thus, proposed convolution layers eliminate the need for memory for storing filter
coefficients Since the multiplication output is dependent on the number of bits used to represent
data, this requires total B clock cycles for input of B bits.

All the computations using BDA architecture are conducted in the pipelined schemes for the
fast processing and employs the parallel adders with a depth of log2(N) where n is the number
of sample. Furthermore, array partitioning is done in the buffers’ corresponding dimensions to
maximize bandwidth. In addition, for latency storage, double buffering storage is used. The pruned
filter coefficients are then serially interfaced with the CPU, which operates the other layers, and
then the boosted LSTM training mechanism is used to further classify activities.

6 Results and Discussion

This section discusses Results and discussion for the different datasets used for the experi-
mentation, hardware specification, statistical analysis and resource utilizations with computational
analysis.

6.1 Data Set Description
CASIA -B Datasets

CASIA database (http://www.cbsr.ia.ac.cn) is a standard data used in vision-based applica-
tions. It comprises of four distinct datasetsA, B, C, and D datasets represented in Tab. 2.

Table 2: CASIA dataset description

Dataset Category Image Sequences Total Subjects

CASIA-A 12 with three angles (0, 45, 90) 20
CASIA-B 11 views 124
CASIA-C 4 styles of walking 153
CASIA –D Video and footprint sequences 88

http://www.cbsr.ia.ac.cn
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6.2 Hardware Specification
As discussed earlier, ARTIX-7 FPGA is used for the implementing the pruned layers of the

convolutional layers with the specification mentioned in Tab. 3 and the other learning Models
are implemented in I7 CPU, 16GB RAM, 2TB HDD. The models in the CPU are developed by
the Python 3.8 with Tensorflow API mechanism. The specification of Xilinx hardware is used for
experimentation is presented in Tab. 3.

Table 3: Hardware specifications used for the experimentation

SL.NO Description Specification used

01 Hardware Used Artix-7 EDGE FPGA Boards
02 Software Developed Python3.8
03 Hardware Description Language Verilog/VHDL
04 Interfacing protocols UART Protocols
05 Speed Used 240 MHZ
06 Hardware Family xc7a15tftg256-1 (active)
07 Partition Technique Used Xilinx VIVADO Tool

6.3 Results and Discussion
Statistical Analysis

Using the proposed architecture, in order to test and validate the proposed intrusion detection
method, we have calculated the different parameters such as Accuracy, Sensitivity, Selectivity,
Specificity and evaluate the performance with the model without pruning techniques such as
3DCNN, CNN+LSTM, CNN. For each datasets, 70% has been taken as the training data and
30% as the testing data. The performance metrics estimation formulas are given below

Accuracy= DR
TNI

× 100 (14)

Sensitivity= TP
TP+TN

× 100 (15)

Specificity= TN
TP+TN

× 100 (16)

where TP and TN Represents True Positive and True Negative values and DR & TNI Represents
Number of Detected Results and Total number of Iterations

Tab. 4 presents the relative results between the proposed algorithms with the unpruned
CNN+LSTM hybrid learning models using the different datasets. The table infers that compar-
ative analysis of the algorithms using the CASIA -A dataset for recognizing the human at 90
degrees and it is found the prediction accuracy of human recognition remains to be 97.5% for
the both unpruned and pruned algorithms. For CASIA -B datasets prediction accuracy of human
recognition remains to be 97.5% for the both unpruned and pruned algorithms. For CASIA-C
and CASIA-D datasets the proposed algorithm and unpruned algorithm has produced the same
prediction accuracy of 97.2% and 96.5% respectively. Hence, it is observed that the proposed
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hybrid model with the combination of boosted training model and pruned convolutional layers
has produced the good accuracies for all datasets as same as unpruned hybrid model which can
be suitable for the resource constraint hardware. To prove the efficiency of the proposed models,
we have calculated the remaining parameters such as sensitivity and specificity whose analysis are
depicted in Tab. 4.

Table 4: Comparative analysis between the proposed algorithm with the cnn+lstm (without prun-
ing) for casia datasets using 10 filter convolutional layers

Datasets Algorithms Accuracy values in %

CASIA -A
datasets

CNN+LSTM
(Without
Pruning)

98 97.5 97.6 97.6 98 98 98 98 98

Proposed
CNN+LSTM
(With pruning)

97.9 97.5 97.5 97.6 98 98 98 98 98

CASIA -B
datasets

CNN+LSTM
(Without
Pruning)

98 97.5 97.6 97.6 98 98 98 98 98

Proposed
CNN+LSTM
(With pruning)

97.9 97.5 97.5 97.6 98 98 98 98 98

CASIA -C
datasets

CNN+LSTM
(Without
Pruning)

96.6 96.7 96.9 97 97.2 97.2 97.2 97.2 97.2

Proposed
CNN+LSTM
(With pruning)

96.6 96.7 96.9 97 97.2 97.2 97.2 97.2 97.2

CASIA –D
datasets

CNN+LSTM
(Without
Pruning)

96.7 96.8 97 97 97 97 97 97 97

Proposed
CNN+LSTM
(With pruning)

96.6 96.8 97 97 97 97 97 97 97

Tab. 5 presents the sensitivity, specificity analysis between the proposed hybrid models with
the unpruned hybrid model. It is found that sensitivity and specificity for the both algorithms
are found to be 96.5%, 97.5% for CASIA-A and CASIA-B datasets, 97.0%, 96.5% for CASIA-
C datasets, 96.0%, 96%, 5% respectively. In this analysis, it is observed that integration of the
boosted training models along with the pruned layers constitutes the high accuracies as par with
the other hybrid model.
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Table 5: Sensitivity, specificity analysis of different hybrid models using different datasets

Data set details Proposed Algorithm Unpruned Hybrid Models

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

CASIA-B 96.5% 97.5% 96.5% 97.5%
CASIA-C 97.0% 96.5% 97.0% 96.5%
CASIA-D 96.0% 96.5% 96.0% 96.5%
NLPR DATASETS 96.5% 97.5% 96.5% 9%

6.4 Design Space Exploration
Resource utilization

Since the proposed framework incorporates the hardware -software code sign, we have calcu-
lated the resources only for the pruned convolutional filter layers. The model architecture obtained
for the proposed algorithms using different datasets are presented in the Tab. 6.

Table 6: Pruned model architecture for the proposed pruned hybrid models

Layers Convolutional Layers Pruned Filter Layers

First Layer 48 × 48 × 1 2 × 8, 2 × 7
Second Layer 24 × 24 × 1 2 × 4, 2 × 4‘
Third Layer 12 × 12 × 1 2 × 2, 2 × 3
Fourth Layer 6 × 6 × 1 1 × 2, 1 × 3
Fifth Layer 3 × 3 × 1 1 × 2, 1 × 3

Because of the limited resources on FPGA, the proposed blocked distributed arithmetic struc-
ture is required for FPGA computation, and the convolutional size parameters must be carefully
chosen for efficient resource utilization. When it comes to memory and computation, the most
important tools are BRAM (Block RAM) and DSP bricks. The ARTIX-7 FPGA architecture is
used for the testing and implementation. Tab. 7 represents the resource utilization of the proposed
pruned algorithm in ARTIX-7 FPGA

Table 7: Comparative analysis of area utilization between the unpruned and pruned hybrid models
for CASIA-A datasets

Resource Proposed Model (With Pruning) Proposed Model (Without Pruning)

Available Used Available Used

BRAM 365 124 365 213
DSP 740 310 740 502
LUT 13600 5460 13600 10600
FF 269200 55700 269200 189200
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The area utilization of the proposed model has been compared with the unpruned hybrid
models and analysis are presented in the Tabs. 7–10. It is found that the Block Distributed
Arithmetic architecture, which uses the principle of LUT storage instead of memory, has been
used for implementing the pruned model utilizes only 40%-45% areas for predicting the different
video datasets but the unpruned models consumed nearly 70% of its area in the FPGA. In
addition, the reduction of the nodes in the filter layers and an effective block DA architecture has
exhibited the effective memory utilization. Tab. 10 illustrates the efficiency of the proposed system
validation process with its comparison results.

Table 8: Comparison of area utilization between the unpruned and pruned hybrid models for
CASIA-B

Resource Proposed Model (With Pruning) Proposed Model (Without Pruning)

Available Used Available Used

BRAM 365 124 365 213
DSP 740 310 740 502
LUT 13600 5460 13600 10600
FF 269200 55700 269200 189200

Table 9: Comparison of area utilization between unpruned and pruned hybrid models for CASIA-
C

Resource Proposed Model (With Pruning) Proposed Model (Without Pruning)

Available Used Available Used

BRAM 365 123 365 223
DSP 740 320 740 515
LUT 13600 5400 13600 11000
FF 269200 54908 269200 187600

Table 10: Analysis of area utilization between unpruned and pruned hybrid models for CASIA-D

Resource Proposed Model (With Pruning) Proposed Model (Without Pruning)

Available Used Available Used

BRAM 365 115 365 220
DSP 740 298 740 543
LUT 13600 5430 13600 10785
FF 269200 55456 269200 191911
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Tab. 11 presents the comparative analysis between the different models used for the handling
the different videos. It is found proposed models consumes 50% power less than CNN -LSTM
model, 45% less than 3DCNN and 40% less than CNN Pruner models. The adoption of pruning
in the filter layers and incorporation of hardware software codesign in the proposed model has
considerably reduced the power consumption when associated with traditional models. Also the
proposed model consumes only 40% of the total area which is 50% less than CNN-LSTM, 30%
less than 3DCNN-pruned, 15% less than CNN –pruner models. The incorporation of LUT based
Block DA architecture along with the array partition has consumed the reduced area and incor-
poration of double buffering mechanism has made the proposed model with 60% less delay than
CNN-LSTM, 50% less than 3DCNN and 35% less than CNN-pruner models. From the above
investigations, it is found that the proposed model finds its best suitability for handling the video
sequences and established the good tradeoff between the prediction accuracy and computational
resources.

Table 11: Comparative analysis of different pruning models for handling the video datasets

SL.no Model Used Power (W) Methodology Incorporated Area Utilization Delay Throughputs GOPS

01 CNN-LSTM 19 Conventional 82% 100.45 67
02 3DCNN 15 Conventional 60% 76.56 68
03 CNN-Prunner 12.67 Conventional 50% 65.90 76
04 Proposed

Model
7.5 Hardware-

Software
Codesign

40% 35.89 96

7 Conclusion

In this work, evolutionary Bat is used for pruning filter layers of the convolutional neural
network. To establish the good tradeoff between the pruning efficiency and prediction accuracy,
the proposed model has incorporated the boosted LSTM along with the Bat pruned convolu-
tional layer. To reduce the computational overhead, the proposed methodology incorporates the
hardware-software codesign mechanism for the better implementation of the proposed models.
Moreover, pruned filter weights are implemented using the novel Block Distributed Arithmetic
(BDA) architectures in which the traditional memories are replaced with the LUTs, leads to the
reduction of area utilization. The extensive experimentations are carried out using CASIA datasets
and associated with traditional models. The prediction accuracy has been found to be 97% and
consumes 50% power less than other existing algorithms such as CNN-Prunner, CNN-LSTM and
3DCNN. Moreover, the algorithms utilize only 40% of the resources compared to the 80% of
the CNN-LSTM, 70% of 3DCNN and 65% of CNN prunner. From the above investigation,
it is clear that the proposed pruned models have established the good tradeoff between the
prediction accuracy and pruning efficiency. In future, more hybrid optimization algorithms can be
applied to prune the filter layers and these techniques be extended to the other layers of Hybrid
Convolutional Neural Networks.
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