Computers, Materials & Continua K Tech Science Press

DOI:10.32604/cmc.2022.018708
Article

Development of PCCNN-Based Network Intrusion Detection System for EDGE
Computing

Mohd Anul Haq, Mohd Abdul Rahim Khan" and Talal AL-Harbi

Department of Computer Science, College of Computer and Information Sciences, Majmaah University,
Al-Majmaah 11952, Saudi Arabia
*Corresponding Author: Mohd Abdul Rahim Khan. Email: m.khan@mu.edu.sa
Received: 18 March 2021; Accepted: 04 May 2021

Abstract: Intrusion Detection System (IDS) plays a crucial role in detecting
and identifying the DoS and DDoS type of attacks on IoT devices. However,
anomaly-based techniques do not provide acceptable accuracy for efficacious
intrusion detection. Also, we found many difficulty levels when applying IDS
to IoT devices for identifying attempted attacks. Given this background,
we designed a solution to detect intrusions using the Convolutional Neural
Network (CNN) for Enhanced Data rates for GSM Evolution (EDGE) Com-
puting. We created two separate categories to handle the attack and non-attack
events in the system. The findings of this study indicate that this approach
was significantly effective. We attempted both multiclass and binary classifi-
cation. In the case of binary, we clustered all malicious traffic data in a single
class. Also, we developed 13 layers of Sequential 1-D CNN for IDS detection
and assessed them on the public dataset NSL-KDD. Principal Component
Analysis (PCA) was implemented to decrease the size of the feature vector
based on feature extraction and engineering. The approach proposed in the
current investigation obtained accuracies of 99.34% and 99.13% for binary
and multiclass classification, respectively, for the NSL-KDD dataset. The
experimental outcomes showed that the proposed Principal Component-based
Convolution Neural Network (PCCNN) approach achieved greater precision
based on deep learning and has potential use in modern intrusion detection
for IoT systems.

Keywords: IDS; edge computing; machine learning; NSL-KDD; IoT

1 Introduction

In the past decade, the world has witnessed a rapid growth in smart devices, with a rising
focus on the Internet of Things (IoT). All small and big devices such as computers, mobile
phones, palmtops, smartwatches, and health bands are connected with the internet. They com-
municate with each other and form bridges to share information amongst them to perform a
task. IoT helps resolve various issues for the users, aiding the development and communication
of different kinds of digital devices. They ensure smoother and significantly improved lives with

This work 1is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.018708

1770 CMC, 2022, vol.71, no.1

work, learning and entertainment. However, most IoT devices have restricted resources sufficient
only for transferring data via the internet on the cloud for processing and storage. In this case,
the application IoT devices deal with is cloud computing. Importantly, processing and storage
in IoT applications produces massive amounts of data, causing congestion between cloud and
IoT devices. Near the IoT devices, [I]] EDGE computing ensures temporary data storage and
processing, which reduces the volume of information to be delivered on the cloud.

Due to real-time processing, it is vital to obtain a faster response from the system. Industry
4.0, an essential IoT area, reduces the operating system cost and enhances industry usability
and reliability. IoT Industrial (IIoT) [2] has machines, actuators, sensors, and digital devices in
manufacturing and productions to track the automated units of entire chain industries. In IoT,
various information types are captured, processed and transmitted by the internet to produce
dispersed solutions. Such information is very private and confidential—an essential element to
ensure ethical and reliable activities. Here, one faces a high level of difficulty parallel to the system
and requires advanced application security. Considering that the system works together, it increases
the number of services.

There is a chance that vulnerabilities also get enhanced. The most common attacks include the
capture of information and the engagement of services. For example, Dyn in 2016 [3] described an
attack that brought down various services such as GitHub, Netflix, Twitter, and Reddit for many
hours. In an IoT environment, safety is essential and crucial. The diversity of attacks requires the
security of IoT environments as an essential intellectual investment. IoT faces many threats. In
this proposed model, there are two critically important types of attacks related to the application
and routing of IoT device packets.

The main concern of this paper is the application-related threat, and our aim is to detect the
same. The most common attack is Denial of Services (DoS) [4], which renders the target system
unavailable. The primary purpose of attacks is to engage the target and create a flood of traffic,
thereby reducing memory resources. In IoT devices, the sensor node is targeted by Distributed
Denial of Services (DDoS).

Various types of attacks can occur in this scenario, crippling the main target of the system
to gain privileged access [5]. [oT devices suffer from vulnerabilities such as attacks targeting the
computing devices, modification, interception, polling, and fabrication. A malicious application
targeting loT devices damages the EDGE layer and cloud. Subsequently, it destructs IoT networks
interconnected with similar EDGE nodes. Currently, one of the major challenges is intrusion
detection in IoT environments [6] and essential key points are detecting unauthorized user attacks.
IDS is a very important tool for identifying attacks on computer networks, providing different
types of solutions.

While IoT devices have different features, there is no possibility of applying those solutions
in the current scenario. In IoT, applications have network distributed devices with limited mem-
ory and computation power capabilities. Inappropriately, these devices are not capable of data
integrity, can never be able to defend against malicious attacks and can cause system failure.

Many methods have been applied in IoT to ensure intrusion detection, some of which accom-
plish anomaly analysis [7,8] on ToT nodes. However, such approaches require high processing
capability in the IoT node and more specific hardware. Thus, these methods can only handle views
of events. The second method is to analyze the traffic of IoT milieus of the cloud’s data [9,10].
The detection approach on the centralized cloud has various limitations such as latency, battery
power constraints, and bandwidth.

CMC, 2022, vol.71, no.1 1771

This article’s main thrust is on improving the performance of intrusion detection, in terms
of reliability, accuracy, safety and suitability performance, for IoT application-based devices. Our
paper presents an intrusion detection method that drives in the EDGE computing layer. Our pro-
posed layer has a more advanced feature than the existing IoT device layer. It can detect specific
types of attacks and countermeasure the control, altering the network manager for vulnerabilities.

However, multiclass anomaly-based detection is still not precise enough [11-13]. Hence, in this
paper, we present a novel detection method with two groups to handle the attack and non-attack
events. In the first step, the binary classification of events is intrusive and non-intrusive. In the next
step, events classified as intrusive are grouped to specify the attacks and execute countermeasures.
Our approach is relevant and more advanced in this regard.

Earlier works are based on two strategies. The first strategy employs various learning algo-
rithms and high performance [14], whereas the other strategy applies hyper-parameters to achieve
a higher level of accuracy [11,15,16]. As machine learning approaches are not adequately accurate,
it is essential to use hybrid methods to decrease the uncertainty of the model. However, high-tech
hybrid approaches [13,17] have failed to attain the requisite level of accuracy and stability with
the testing of the database.

Our proposed hybrid approach incorporates binary classification with high precision, showing
detection methods. The first stage has recall and a high accuracy rate, which indicates that most
of the possible events are classified as intrusive.

The proposed PCA and CNN-based approach has demonstrated promising results. Although
earlier studies have used ML and Al-based techniques for IDS, as per our knowledge, a com-
bination of PCA and CNN has not been applied so far for binary and multiclass classification
to defend an IoT environment, ensuring high accuracy. The main contributions of the current
research are:

(1) We have proposed a new approach that combined the benefits of PCA for feature collection
and the deep learning-based CNN classifiers to ensure effectual and accurate intrusion
detection in IoT environments.

(i) Hybrid PCA-CNN multiclass and binary classification method yielded high accuracy in
both training and validation phases.

(iii) EDGE computing-based design ensured intrusion detection to defend within [oT environ-
ments.

(iv) The main contribution of this paper is to detect an application-specific threat, e.g., Denial
of Services (DoS), which is one of the most common attacks.

(v) The proposed approach is reliable, advanced, accurate, safe, and suitable for detecting
intrusions in IoT devices.

CNN models are efficient at solving classification problems through future learning. Also,
CNN models get an internal representation of the input. One of the main advantages of CNN
models is to get comparable performance from feature learning input in time series data. This
model never depends on the domain expertise, and it does not learn the feature input manually.
Thus, it is suitable and fits the NSL-KDD dataset.

An input vector in 1-d convolutional takes a € R” and a filter b € R? where q<p. In the
neighboring set of each q elements aa{i:ii+q}, one takes bT {i:i+q} and gives 1 node of the
convolutional layer. The multiple filters may have been used by the convolution layer. The vectors
(one for each filter) obtained from taking all of these inner products of the weights and every

1772 CMC, 2022, vol.71, no.1

q element of the original vector together form the convolutional layer. In 1-D convolution, the
kernel moves 1-direction (time-axis) and is used to calculate convolution. The input contains
batch, input width, and input channels; the filter contains width, in channels, and out channels;
and the output contains batch, the width of filter, and output channels. E.g., if we have an
input(k) of {2, 2, 2, 2, 2} with filter(w) {0.35, 0.30, 0.35} then the output will be {2, 2, 2, 2, 2} of
1D shape. Filters are multiple feature representations of an input. In our experiment, the input is
3D ex) 20x14X7; however, the output shape is 1D matrix instead of 3D because the kernel height
is equal to the input height.

A neural network needs an activation function in the output layer to make accurate predic-
tions. The rectifier activation function (ReLU) is one of the default activation functions for deep
learning applications; it adds nonlinearity to the network. ReLU output 0 for a negative value
and output the same value for non-negative values. Another activation function is the sigmoid
or logistic function. Output value of the sigmoid function lies between 0 and 1 and is S-shaped,
also having similar values. Sigmoid is the most ideal approach for binary classification, getting the
result based on the binomial probability distribution. However, the sigmoid function is not suitable
for multiclass classification environments as it needs the multinomial probability distribution for
mutual exclusive class. Instead, Softmax is the function used to activate the output layer of the
neural network to deal with the multiclass classification problem. This activation function predicts
a multinomial probability distribution with more than two classes.

If we have an input of {1, 2, 3}, the max function will output the largest number 3. Argmax
will output the index of the largest number, which is 2. Also, the Softmax function, which is the
probabilistic or “softer” version of the argmax function in which the unit with the largest input
has output +1. In contrast, all other units give the output 0 {0, 0, 1} in the current example.

A 1-D CNN model can have single or multiple convolutional hidden layers that operate on
a 1D sequence. Generally, the pooling layer comes after the convolution layer; both layers have
the same function to predict the outputs based on optimization of the neural network loss. The
convolutional and pooling layers are followed by a dense, fully connected layer that interprets the
features of the model’s convolutional part. A flattening layer is used between the convolutional
layers and the dense layer to reduce the feature maps to a single one-dimensional vector. Pooling
divides the vector into equal-sized groups and obtains the summary statistic of each group. After
that, it presses out noise in local dynamics. The three pooling types are average, minimum and
maximum pooling. The maximum value of the batch is selected.

2 Related Works

The main idea of IoT is the existence of an enormous range of intelligence nodes in our
daily social life [18]. It requires state-of-the-art methods of intrusion detection in IoT and EDGE
computing networks, emphasizing the import of approaches based on Artificial Intelligence. In
IoT, digital devices connected to the internet aim to link everyone with smart IoT applications
and create network-distributed environments with limited power capability, storage, and memory.
IoT embeds the sensor devices into the internet to share resources and information with other
connected devices. However, devices related to IoT networks have limited resources and are
vulnerable. Intrusion can take advantage of protection blockades to compromise the integrity,
confidentiality, and availability of resources [19].

Intrusion Detection System (IDS) identifies the intrusion action and behaviors, and raises
the alarm for the administrator to take automated action [20]. The IDS can detect intrusions as

CMC, 2022, vol.71, no.1 1773

per signature methods. In rule detection, the signature is compared to predefined intrusive events
in the database [21]. It ensures immediate detection and reduces false alarms, though it has a
significant disadvantage: only known intrusions can be detected [22].

All intrusive activity is considered anomalous by Anomaly detection [13,15-17,23-25]. That
is, an activity does not match standard treatment as an intrusion. Anomaly-based detection has
a significant advantage in detecting the Zero-day attack and variants of known attacks also.
Most of the approaches have applied the traditional environment of machine learning to detect
intrusions. Robust methods of anomaly detection use applications based on Artificial Neural
Networks (ANN) and Deep Learning (DL). This method ignores the limitation of available
classical approaches. ANN’s features encourage ANN application in various areas and attempt
enhancement in intrusion detection [26-28]. These latest approaches are highly useful for modern
computing and EDGE computing [16,29-31]. The summary of related work is presented in Tab. 1.

Table 1: Summary of related works

Method Type Merits/Demerit References

Signature-based approach Intrusion detection no issue of jitter and latency 9

SVM Binary and multiclass Average accuracy 11
classification for intrusion

DNN Binary and multiclass Less accuracy for multiclass 12
classification for intrusion classification

Anomaly detection Anomaly based IDS for IoT Low accuracy 13, 32-34

Deep Learning DoS detection Generalize well 14

Deep learning Intrusion detection High accuracy; however, issue 16

of single-point failure

NN Multiclass IDS classification Low accuracy 28

KNN Binary classification and Low accuracy and insufficient 29
non-attack classification resource for anomaly detection

Binary detection Intrusion detection lower accuracy 31

Deep Learning-based Android and windows malware Multi-platform 35

MHTS attack

Signature-based IDS Detection of novel attack Overcome from shortcomings 36

Stacked autoencoders malware classification and Semantic similarity works well 39
anomaly detection

Self-taught learning Intrusion detection Less training time and better 39

accuracy

Autoencoder+isolation Intrusion detection Low accuracy 40

forest

DNN+KNN Intrusion classification High accuracy and low overhead 41

Genetic Binary classification Improved accuracy 42

algorithm+Random forest

model

(Continued)

1774 CMC, 2022, vol.71, no.1

Table 1: Continued

Method Type Merits/Demerit References

PCA+XGBoost+Firefly Intrusion detection High accuracy and feature 43
detection

CANintellilDS Vehicle intrusion High accuracy 44

Grey Wolf with DL and Feature extraction for intrusion High accuracy 45

ML detection

SP2F based on LSTM Attack classification High accuracy 46

3 Data Pre-Processing

The NSL-KDD dataset is extensively used for intrusion detection [32-36]. There are 41 fea-
tures in the NSL-KDD dataset (Tab. 2), which can be characterized as int64, float64, and nominal.
The attacks were categorized into 23 classes (see Tab. 3 and Fig. 1). This dataset comprised of 3
protocols, including TCP, UDP, and ICMP. A correlation heatmap was generated to understand
the relationship between the 41 features (Fig. 2). In the pre-processing step, the nominal attributes
were converted into discrete attributes using a one-hot encoder (Tab. 3). There were no data gaps
in the training and testing dataset; however, one attribute (num_out bound_cmds) column was
zero throughout and did not have any significance on training and testing. Therefore, it was
removed from the attribute lists. All the attributes were then normalized in the range of {0, 1} by
applying max-min scaling. After pre-processing steps, the number of the attributes was expanded
from 40 to 119.

Table 2: NSL-KDD dataset features

S. No. Features No. of Data type
records

1 Duration 148517 int64
2 protocol type 148517 Object
3 Service 148517 object
4 Flag 148517 Object
5 src bytes 148517 int64

6 dst bytes 148517 int64

7 Land 148517 int64

8 Wrong fragment 148517 int64

9 Urgent 148517 int64
10 Hot 148517 int64
11 num failed logins 148517 int64
12 logged in 148517 int64
13 num compromised 148517 int64
14 Root shell 148517 int64
15 su attempted 148517 int64
16 num root 148517 int64
17 num file creations 148517 int64

(Continued)

CMC, 2022, vol.71, no.1 1775
Table 2: Continued
S. No. Features No. of Data type
records
18 num shells 148517 int64
19 num access files 148517 int64
20 num outbound cmds 148517 int64
21 is host login 148517 int64
22 is guest login 148517 int64
23 Count 148517 int64
24 siv count 148517 int64
25 setror rate 148517 floato4
26 SIv seiror rate 148517 floato4
27 reiror rate 148517 floato4
28 siv mrror rate 148517 floato4
29 same srv rate 148517 floato4
30 diff srv rate 148517 floato4
31 srv diff host rate 148517 floato4
32 dst host count 148517 int64
33 dst host srv count 148517 int64
34 dst host same srv- rate 148517 float64
35 dst host diff srv rate 148517 float64
36 dst host same src_port rate 148517 float64
Table 3: Classification of traffic proportions
Class Label Traffic proportions
back 0 956
buffer_overflow 1 30
ftp_write 2 8
guess_passwd 3 53
imap 4 11
ipsweep 5 3599
land 6 18
loadmodule 7 9
multihop 8 7
neptune 9 41214
nmap 10 1493
normal 11 67343

(Continued)

1776 CMC, 2022, vol.71, no.1

Table 3: Continued

Class Label Traffic proportions
perl 12 3
phf 13 4
pod 14 201
portsweep 15 2931
rootkit 16 10
satan 17 3633
smurf 18 2646
spy 19 2
teardrop 20 892
malicious

traffic proportions

normal

Figure 1: Malicious traffic vs. normal traffic

We observed six feature vector values (land, urgent, root_shell, su_attempted, num_shells,
is_host_login) to be close to zero. Therefore, applying PCA was a feasible attempt to reduce
the feature vector’s size based on feature extraction and engineering (Fig. 3). The features were
extracted and transformed into principal components, and statistics were computed. The 3-
dimensional scatterplot captured only a small portion of the information (Fig. 3). It would take
more principal components to capture meaningful information. We could make a few more 3d
scatterplots with other principal components, but again, as seen in the explained variance graphs
(Fig. 4), these could offer far less insight than the first three components.

The PCA process involves finding the mean, covariance matrix with eigenvectors and eigen-
values, selecting principal components with the higher eigenvalues, and multiplying with the actual
(original) data matrix. An important part was to estimate the number of principal components
required to describe the data. It was then described based on the CEVR (Cumulative Explained
Variance Ratio) as a function of the number of principal components (Fig. 5). Time series graph
is given in (Fig. 0).

CMC, 2022, vol.71, no.1

dst_host_same_srv_rate
dst_host_diff_srv_rate 110
dst_host_same_src_port_rate 110
dst_host_srv_ditf_host_rate
dst_host_serror_rate
ast_host_srv_sermor_rate

RN -

dst_host_diff srv_rate -ESIIEY

I

in-& & & &

login
is_guest_login

num_access_files
num_outbound_cmds -
is_host_
av_diff_hest_rate

gins
logged_|
promised
root_shell

._port_rate

num_shells

num_failed_lo
num_file_creations
dst_host_count
dst_host_srv_count
dst_host_same_srv_rate
dst_host_same_src,
ast_host_serror_rate
dst_host_srv_serror_rate
dst_host_rerror_rate -G
dst_host_srv_reror_rate -1 r

dst_host_srv_diff_host_rate

Figure 2: Correlation heatmap between all features

Figure 3: PCA visualization

1777

1778 CMC, 2022, vol.71, no.1

0.200

0.175

0.150

0125

0.100

0.075

0.050

0.025

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0.000

Figure 4: Explained variance ratio

Cumulative Explained Variance Ratio

10 A

0.9 1

0.8 A

0.7 |

0.6 4

0.5 1

0.4 1

03+

0.2 |

Figure 5: The CEVR curve

The CEVR curve estimated the total, and the 34-dimensional variance was within the first
N components. It was observed that the initial 10 components contained around 70% of the
variance; however, it required 24 components to describe approximately 100% of the variance.
It was also observed that this 2-D projection dropped considerably high information (based on
CEVR), and to describe 90% of the variance, it required total 20 components. The CEVR helped
understand the presence of ambiguity for a high-dimensional dataset.

CMC, 2022, vol.71, no.1 1779

4 Methodology
4.1 CNN Modeling

We attempted both multiclass and binary classification. For binary, we clustered all malicious
traffic data in a single class. We developed 13 layers of Sequential 1-D Convolutional Neural
Network for IDS detection trained on the NSL-KDD dataset (Fig. 7). Python 3.8 and Keras 2.3.0
API with Tensorflow 2.0 backend were used on a single GPU (19, 10900k, 128 GB 2666 MHz
RAM) in this research. Firstly, we carried out the data pre-processing (IDS data). We used two
multiple convolutional hidden layers that operated on a 1D sequence. The batch normalization
layer was used after the convolution layer to standardize the inputs with mean value and standard
deviation as 0 and 1, respectively, to each mini-batch layer. The batch normalization layer func-
tioned to stabilize the process of training and decrease the number of training epochs needed to
train the deep CNN networks. The rectifier activation function (ReLU) was used in convolution
layers. The fourth layer was a max-pooling layer, followed by a fifth dropout layer. The dropout
layer was added between two convolution layers, and outputs of the prior layer were fed to
the subsequent layer to prevent overfitting. This worked by “dropping out” or probabilistically
removing inputs to a layer, which may be input variables from a previous layer.

200 600 800 1000

g.

Figure 6: Traffic time series data: only 1000 values (x-axis) were selected for better visual clarity,
labeled class (y-axis)

A value of 0.5 was chosen with two dropout layers. Layer 2 to layer 5 was repeated as layer 6
to 9. A flattening layer was added as the 10th layer, as it was required to utilize the fully connected
layers after convolutional/max-pool layers. The flattening layer combined all the observed local
features of the previous convolutional layers. First fully-connected dense layers (11th) and second
fully-connected LVQ layers were added, and then layer 11 and 13 were separated by a dropout
(12th) layer. The dense layers acted as an artificial neural network (ANN) classifier. In the
proposed architecture, the 13th layer, which was a LVQ layer, was used as the output layer to
predict and specify the output’s transformation and structure.

1780 CMC, 2022, vol.71, no.1

X1

Deied

X3 —>Q A — Y3
]
\.
Xn > @ ——» Yn
Input Layer Kohonen Layer Output Layer

Figure 7: Architecture of LVQ

The model compilation was the next step after adding the layers. Compilation requires an
optimizer, a loss function, and a metric function to evaluate the model accuracy. The Adam
optimization algorithm was used for optimization, which is an extension of stochastic gradient
descent and has many benefits such as fewer memory requirements and faster and straightforward
computation. The binary cross-entropy loss function was utilized to compute the rate of error
between the actual and the m values for binary classification, such as

0
1 < n n
Loss = ~o. E aj-logt; + (1 —ay) -log(1 —) (1)
S =0

where Oy is the output size, a; and 7; are the target output values, respectively.

The metric function “accuracy” and F-1 measure were used to evaluate our model’s perfor-
mance. This metric function is similar to the loss function, except that the metric evaluation results
are not used when training the model. During the training process, the weights in the CNNs are
optimized to improve the accuracy; however, these improvements attempt to correlate positively
with the number of runs and reach a point where overfitting takes place and results in lower
generalization performance.

Dropouts were used efficiently to reduce the overfitting; however, the early stopping technique
was also added during CNN model fitting. The early stopping technique was implemented using
the tf.keras. Early Stopping callback function: In CNN classification, the 14th epoch resulted in
better training accuracy but lower validation accuracy than the previous (13th). Thus, the training
was terminated at the 14th epoch, notwithstanding that the number of maximum epochs was set
to 30. The data was reshaped to 3-dimensional so that it could be fed to CNN. The training and
testing size were 100778 and 25195 for training and testing, respectively (Tab. 4).

4.2 Convolution Neural Network with Learning Vector Quantization (CNN-LVQ) Algorithm

Learning Vector Quantization (LVQ), a well-established heuristic technique, was utilized to
assimilate CNN. The LVQ layer was added as a second fully connected layer in the proposed
CNN-LVQ model. LVQ is primarily a 3-layer neural network that utilizes competitive and super-
vised learning to solve classification problems. The three layers include the input layer, the
Kohonen layer (or competition layer) and the output layer. The input layer neurons collect the

CMC, 2022, vol.71, no.1 1781

values from the input variables, while each neuron of the output layer represents a class of input.
The Kohonen and output layers are connected partially, while the input layer and the Kohonen
layer are fully connected. The learning takes place in the Kohonen layer, and the classification
results are passed to the output layer. The LVQ architecture is shown in Fig. 7. Complete network
is given in Fig. 8.

Table 4: Number of trainable and non-trainable parameters for both binary and multiclass
classifications

Parameters Binary classification Multiclass classification
Total params 1,018,241 2,344,127

Trainable params 1,017,473 2,343,167
Non-trainable params 768 960

In the proposed method, weighting parameters were selected by using the LVQ technique for
classification. In LVQ, the first step was setting the initial synaptic weight for random values with
the interval between 0 and 1. Then the learning rate of 0.01 was used, and the input vector «;
was initiated with the random value.

If the class label @; and the weight vector AVIW are close, the LVQ will move in the direction
of a;. If labels have different average values. for class ¢; and weight vector AVW, the LVQ will
move away from a;. Assuming that the weight vector in parallel AVIW(¢) is close to the input
vector x;, the mathematical equation representation is as follows for AVIV Eq. (2).

AVW (t) = argmin||a; — AVW (1)]]2 2)
Let the class of AVIW(t) be denoted as CVIW and the class of a; be stated as Ca;. The

weight vector AV (¢) is adjusted as follows: if both classes are similar CVW = Ca;, then ANN
parameters are represented as Eq. (3).

AVW(+1)=VW(@) +n)(a; — V(D) (3)

where 7(¢) is denoted as the learning rate of the adaptation procedure. If both classes are different
CVW # Ca;, then LVQ is denoted by Eq. (4).

AVW(+1)=VW(@) —nt)(a; — VIV(2)) 4)

Based on the condition, either Eqs. (3) or (4) can be used to update the weighting function in
ANN. Using the weighting function, the output of the predicted value is determined by Eq. (5).
bi=f(a;x VW(t+1)) (5)

The output b; classifies the NSL-KDD threats for multiclass and binary classification.

5 Accuracy Assessment

We evaluated our model’s performance based on accuracy and f-measure as the new version
of Keras removed recall and precision (Fig. 9). These metrics are defined as follows: Accuracy of
a method on a test dataset is the percentage used to correctly identify the test occurrences and it

1782 CMC, 2022, vol.71, no.1

is computed as
Accuracy = (TP + TN)/(TP + FP + TN + FN) (6)
F-measure was applied to obtain the testing accuracy, which is computed based on the
harmonic mean of the precision and recall:
2 x Precision x Recall

F-measure = 7
b Precision + Recall)

An attempt was made to see if the models were overfitted. Overfitting can be detected if
training loss is comparatively less than validation loss or there is a significant variance between the
validation and training loss. It was observed that the variance between validation loss and training
loss was significantly lower; therefore, it indicated that underfitting was absent. The dropouts
were also utilized to prevent the overfitting issues. The main features of dropout were to disable
neurons so that some information loss might occur for each sample, and the next layers attempt
to construct the representation based on incomplete representations. It was observed that the
training loss was higher since it was harder for the network to provide the correct representation.
However, all of the units were available during validation so that the network could utilize its full
computational power-therefore, it could perform better than in training. The training accuracy and
validation accuracy for both binary and multiclass classification were also significantly promising.

The proposed method showed a high accuracy of 99.13% for multiclass classification and
99.34% for binary classification. Accuracy is useful based on the consideration of true positives
and true negatives, while F1-measure uses the false negative and false positive, which are crucial
to assess any model’s performance. In real-world problems, due to imbalanced class data, Fl-score
provides a better metric to evaluate a model. In this study, the F-measure values were 99.27% and
99.78% for multiclass and binary classification, respectively.

6 Comparison with Other Studies

Intrusion detection is a highly investigated topic, and the previous body of works provides
an opportunity to compare our results with similar studies. Previous studies have employed
algorithms ranging from conventional machine learning such as Random Forest and SVM to
sophisticated Deep Learning methods such as CNN and RNN. A comparative analysis was
made in this section with other contemporary intrusion detection methods based on machine
learning and deep learning techniques with reference to the accuracy observed for the NSL-KDD
dataset. Tab. 5 advocated that methods based on Deep Neural Network (DNN) and CNN showed
significantly better performance than other methods, based on the accuracy values.

A major limitation of the present method is the computing time required to calculate the
CNN models, which is an important parameter for any real-time solution. The future scope of the
proposed model is to reduce the computation time by adding an extra pre-processing technique,
utilizing GANs (Generative Adversarial Networks) for IDS in FOG or EDGE environments and
using many available datasets. Another important way forward will be to use mobile CNN for
IoT infrastructure as it requires real-time solutions with fewer computing requirements.

CMC, 2022, vol.71, no.1

convld_input: InputLayer

A
convld: ConvID

Y

batch_normalization: BatchNormalization

Y

max_pooling1d: MaxPoolingID

dropout: Dropout

convld_l: ConvlD

Y

batch_normalization_1: BatchNormalization

Y
max_poolingld_1: MaxPooling1 D

Y

dropout_I: Dropout

Y
flatten: Flatten

dense: Dense

Y
dropout_2: Dropout

Y

dense_1: Dense

Figure 8: Proposed CNN architecture

1783

1784 CMC, 2022, vol.71, no.1

(a) Training Loss vs Validation Loss (b) Training Loss vs Validation Loss
0.08 0.2
0.07 i
0.16
0.06
0.14
0.05 0.12
0.04 0.1
0.03 0.08 e ———
0.06 —
0.02 0.04
0.01 0.02
0 0
1 2 3 4 5 [7 8 9 10 11 12 13 1 % 3 4 5 [7 8 g
w055 = val_loss e [055 e ya|_lOSS
(c) 55 i (d) o i 3
Training Accuracy vs Validation Accuracy Training Accuracy vs Validation Accuracy
0.995 0.995
0.98 —
0.99 0.985 .
0.98
0.985 0975
0.97
0.98 0,865
0.875 0.95
0.955
0.87 0.85
0.945
0.965 0.94
1 2 3 4 5 6 5 g 9 0 131 12: 1% 1 2 3 4 5 & T B]
—SCCUTBCLY — =———yal aCCUracY —SCCLNBLY =3l SCCUraSLY

Figure 9: CNN model performance (a) Training loss and validation loss for binary classification,
(b) Training loss and validation loss for multiclass classification, (¢) Training accuracy and valida-
tion accuracy for binary classification, (d) Training accuracy and validation accuracy for multiclass
classification

Table 5: Comparison of different deep learning and machine learning-based techniques used for
IDS based on the NSL-KDD dataset

No. Method Accuracy (%) Type
1 Naive Bayes [36] 75.56 DL
2 Multi-layer perceptron [36] 77.41 DL
3 Random forest [36] 80.67 ML
4 NB-Tree [36] 82.02 ML
5 Recurrent neural network [37] 83.28 DL
6 Autoencoder and Naive Bayes [3§] 83.34 DL
7 Fuzzy approach [27] 84.12 ML
8 Self-taught learning + SVM [39] 84.96 DL
9 Autoencoder and Isolation Forest [40] 95 DL
10 DAE+DNN [35] 98.6 DL

(Continued)

CMC, 2022, vol.71, no.1 1785

Table 5: Continued

No. Method Accuracy (%) Type
11 Current method Multiclass Classification) 99.13 DL
12 Current method (Binary Classification) 99.34 DL
13 DNN+KNN [41] 99.77 DL
14 Genetic Algorithm+Random forest model [42] 97.20 ML
15 KNN+PCA+Firefly [43] 99.40 ML
16 Naive Bayes-PCA and Firefly [43] 84.20 ML
17 Random Forest+PCA+Firefly [43] 99.80 ML
18 SVM+PCA+Firefly [43] 97.5 ML
19 CANintelliIDS (Known intrusion) [44] 97.54 DL
20 CANintelliIDS (Test intrusion) [45] 93.94 DL
21 DNN+PCA+GW [46] 99.90 DL
22 KNN+PCA+GW [46] 99.80 ML
23 NB+PCA+GW [40] 86.20 ML
24 RF+PCA+GW [406] 99.90 ML
25 SVM+PCA+GW [46] 98.20 ML
26 SLSTM for DoS [47] 99.54 DL
27 SLSTM for DDoS [47] 98.87 DL

7 Conclusion

IDS (Intrusion Detection System) is essential for detecting and identifying attacks on IoT
devices. In this investigation, a solution was designed based on PCA and CNN (Convolutional
neural network) to detect intrusion in EDGE Computing. Two categories were proposed to
handle the attack and non-attack events in the system. The current investigation demonstrated a
benchmark for both multiclass and binary classification. We developed 13 layers of sequential 1-D
CNN for IDS detection trained on the NSL-KDD dataset. PCA was implemented before applying
CNN to reduce the feature vector’s size based on feature extraction and engineering. The proposed
approaches applied on the NSL-KDD dataset demonstrated the accuracy values of 99.34% and
99.13% for the binary classification and the multiclass classification, respectively. The experimental
results showed that the proposed PCCNN approach achieved greater precision based on deep
learning and can be used for current advancements in intrusion detection for EDGE systems. The
present investigation’s future scope is to apply GANs (Generative Adversarial Networks) for IDS
in FOG or EDGE environments and utilize other available datasets.

Funding Statement: Mohd Anul Haq would like to thank the Deanship of Scientific Research at
Majmaah University for supporting this work under Project No. R-2021-117.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

1786 CMC, 2022, vol.71, no.1

References

[11 F Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog computing and its role in the internet of things,”
in Proc. First Edition of the MCC Workshop on Mobile Cloud Computing ACM, Helsinki Finland, pp.
13-16, 2012.

[2] A. C. Panchal, V. M. Khadse and P. N. Mahalle, “Security issues in IloT: A comprehensive survey
of attacks on IIoT and its countermeasures,” in 2018 IEEE (GCWCN), Lonavala, India, pp. 124-130,
2018.

[3] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, “DDoS in the IoT: Mirai and other botnets,”
Computer, vol. 50, no. 7, pp. 80-84, 2017.

[4] J. Arshad, M. A. Azad, M. Mahmoud Abdellatif, M. H. Ur Rehman and K. Salah, “COLIDE: A
collaborative intrusion detection framework for internet of things,” IET Networks, vol. 8, no. 1, pp.
3-14, 2019.

[5] F. Muhammad, W. Anjum and K. S. Mazhar, “A critical analysis on the security concerns of internet
of things (I0T),” International Journal of Computer Applications, vol. 111, no. 7, pp. 1-6, 2015.

[6] R. Roman, J. Lopez and M. Mambo, “Mobile edge computing, a survey and analysis of security
threats and challenges,” Future Generation Computer System, vol. 78, pp. 680-698, 2018.

[71 N. Berjab, H. H. Le, C. Yu, S. Kuo and H. Yokota, “Hierarchical abnormal-node detection using fuzzy
logic for ECA rule-based wireless sensor networks,” in Proc. 2018 IEEE 23rd Pacific Rim Int. Symp. on
Dependable Computing, Taipei, Taiwan, pp. 289-298, 2018.

[8] F. De Almeida Florencio, E. D. Moreno Ordonez, H. Teixeira Macedo, R. J. Paiva De Britto Salgueiro,
F. Barreto Do Nascimento et al, “Intrusion detection via MLP neural network using an arduino
embedded system,” in Proc. 2018 VIII SBESC, Salvador, Brazil, pp. 190-195, 2018.

[91 M. Rebbah, D. El Hak Rebbah and O. Smail, “Intrusion detection in cloud internet of things
environment,” in Proc. ICMIT, Adrar, Algeria, pp. 65-70, 2017.

[10] B. Hajimirzaei and N. J. Navimipour, “Intrusion detection for cloud computing using neural networks
and artificial bee colony optimization algorithm,” ICT Express, vol. 5, no. 1, pp. 56-59, 2019.

[11] X. Tang, S. X. D. Tan and H. B. Chen, “SVM based intrusion detection using nonlinear scaling
scheme,” in Proc. 14th IEEE ICSICT, IEEE, Qingdao, China, pp. 1-4, 2018.

[12] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat et al., “Deep learning
approach for intelligent intrusion detection system,” IEEE Access, vol. 7, pp. 41525-41550, 2019.

[13] H. H. Pajouh, R. Javidan, R. Khayami, D. Ali and K. K. R. Choo, “A two-layer dimension reduction
and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks,”
IEEFE Transactions on Emerging Topics in Computing, vol. 7, no. 2, pp. 314-323, 2019.

[14] M. Roopak, G. Yun Tian and J. Chambers, “Deep learning models for cyber security in IoT networks,”
in Proc. IEEE 9th Annual CCWC, Las Vegas, NV, USA, pp. 452457, 2019.

[15] S. Prabavathy, K. Sundarakantham and S. M. Shalinie, “Design of cognitive fog computing for
intrusion detection in internet of things,” Journal of Communications and Networks, vol. 20, no. 3, pp.
291-298, 2018.

[16] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme using deep learning approach
for internet of things,” Future Generation Computer Systems, vol. 82, pp. 761-768, 2018.

[17] M. E. Pamukov, V. K. Poulkov and V. A. Shterev, “Negative selection and neural network based
algorithm for intrusion detection in IoT,” in 2018 41st Int. Conf. on Telecommunications and Signal
Processing, Athens, Greece, IEEE, pp. 1-5, 2018.

[18] L. Atzori, A. Iera and G. Morabito, “The internet of things: A survey,” Computer Networks, vol. 54,
no. 15, pp. 2787-2805, 2010.

[19] R. Heady, G. Luger, A. Maccabe and M. Servilla, “The architecture of a network level intrusion
detection system,” Technical Report, University of New Mexico, Department of Computer Science,
1990.

CMC, 2022, vol.71, no.1 1787

[20]

[21]

R. Bace and P. Mell, “NIST special publication on intrusion detection systems,” Technical Report,
Booz-Allen and Hamilton Inc Mclean Va, 2001.

J. Arshad, M. A. Azad, M. Mahmoud Abdellatif, M. H. Ur Rehman and K. Salah, “COLIDE: A
collaborative intrusion detection framework for internet of things,” IET Network, vol. 8, no. 1, pp.
3-14, 2019.

S. Northcutt, M. Cooper, M. Fearnow and K. Frederick, “Intrusion Signatures and Analysis,” New
Riders Publishing, New Jersey, 2001.

M. G. Raman, N. Somu, K. Kirthivasan, R. Liscano and V. S. Sriram, “An efficient intrusion detection
system based on hypergraph-genetic algorithm for parameter optimization and feature selection in
support vector machine,” Knowledge-Based Systems, vol. 134, pp. 1-12, 2017.

K. Atefi, H. Hashim and T. Khodadadi, “A hybrid anomaly classification with deep learning (DL) and
binary algorithms (ba) as optimizer in the intrusion detection system (IDS),” in 2020 16th IEEE CSPA,
Langkawi, Malaysia, IEEE, pp. 29-34, 2020.

Y. Zhong, W. Chen, Z. Wang, Y. Chen, K. Wang et al, “A novel network anomaly detection model
based on heterogeneous ensemble learning,” Computer Network, vol. 169, pp. 107049, 2020.

K. Vieira, A. Schulter, C. Westphall and C. Westphall, “Intrusion detection for grid and cloud
computing,” IT Professional, vol. 12, no. 4, pp. 38-43, 2009.

R. A. R. Ashfaq, X. Z. Wang, J. Z. Huang, H. Abbas and Y. L. He, “Fuzziness based semi-supervised
learning approach for intrusion detection system,” Information Sciences, vol. 378, pp. 484497, 2017.
M. G. Raman, N. Somu, K. Kirthivasan and V. S. Sriram, “A hypergraph and arithmetic residue-based
probabilistic neural network for classification in intrusion detection systems,” Neural Network, vol. 92,
pp. 89-97, 2017.

L. Li, Y. Yu, S. Bai, Y. Hou and X. Chen, “An effective two-step intrusion detection approach based
on binary classification and k-nN,” IEEE Access, vol. 6, pp. 12060-12073, 2017.

J. Ni, K. Zhang, X. Lin and X. Shen, “Securing fog computing for internet of things applications:
Challenges and solutions,” IEEE Communications Surveys & Tutorials, vol. 20, pp. 601-628, 2018.

G. D’angelo, F. Palmieri, M. Ficco and S. Rampone, “An uncertainty-managing batch relevance-based
approach to network anomaly detection,” Applied Soft Computing, vol. 36, pp. 408-418, 2015.

P. Illy, G. Kaddoum, C. Miranda Moreira, K. Kaur and S. Garg, “Securing fog-to-things environ-
ment using intrusion detection system based on ensemble learning,” in Proc. 2019 IEEE Wireless
Communications and Networking Conf., Marrakesh, Morocco, pp. 1-7, 2019.

Y. Otoum and A. Nayak, “AS-Ids: Anomaly and signature based ids for the internet of things,” Journal
of Network and Systems Management, vol. 29, no. 3, pp. 1-26, 2021.

M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi and A. Razaque, “Deep recurrent neural
network for IoT intrusion detection system,” Simulation Modelling Practice and Theory, vol. 101, pp.1
02031, 2020.

M. AL-Hawawreh, N. Moustafa and E. Sitnikova, “Identification of malicious activities in industrial
internet of things based on deep learning models,” Journal of Information Security and Applications, vol.
41, pp. 1-11, 2018.

M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data
set,” in Proc. 2009 IEEE Symp. on Computational Intelligence for Security and Defense Applications, Ottawa,
ON, Canada, pp. 1-6, 2009.

C. Yin, Y. Zhu, J. Fei and X. He, “A deep learning approach for intrusion detection using recurrent
neural networks,” IEEE Access, vol. 5, pp. 21954-21961, 2017.

M. Yousefi-Azar, V. Varadharajan, L. Hamey and U. Tupakula, “Autoencoder-based feature learning
for cyber security applications,” in Proc. Int. Joint Conf. on Neural Networks, Anchorage, AK, United
States, pp. 3854-3861, 2017.

M. Al-Qatf, Y. Lasheng, M. Al-Habib and K. Al-Sabahi, “Deep learning approach combining sparse
autoencoder with SVM for network intrusion detection,” IEEE Access, vol. 6, pp. 52843-52856, 2018.

1788 CMC, 2022, vol.71, no.1

[40] K. Sadaf and J. Sultana, “Intrusion detection based on autoencoder and isolation forest in fog
computing,” IEEE Access, vol. 8, pp. 167059-167068, 2020.

[41] C. A. de Souza, C. B. Westphall, R. B. Machado, J. B. M. Sobral and G. D. S. Vieira, “Hybrid
approach to intrusion detection in fog-based IoT environments,” Computer Network, vol. 180, pp. 1-18,
2020.

[42] A. Adel, “Anomaly classification using genetic algorithm-based random forest model for network attack
detection,” Computers, Materials & Continua, vol. 66, pp. 767-778, 2021.

[43] S. Bhattacharya, S. R. Krishnan, P. K. R. Maddikunta, R. Kaluri, S. Singh, T. R. Gadekallu et al, “A
novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU,”
Electronics, vol. 9, no. 2, pp. 1-16, 2020.

[44] A. Rehman, S. Ur Rehman, M. Khan, M. Alazab and T. R. G, “CANintellil DS: Detecting in-
vehicle intrusion attacks on a controller area network using CNN and attention-based GRU,” IEEE
Transactions on Network Science and Engineering, vol. 4697, no. c, pp. 1-11, 2021.

[45] R. M. S. Priya, P. K. R. Maddikunta, M. Parimala, S. Koppu et al, “An effective feature engi-
neering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture,” Computer
Communications, vol. 160, no. 2, pp. 139-149, 2020.

[46] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, T. R. Gadekallu et al, “SP2F: A secured privacy-
preserving framework for smart agricultural unmanned aerial vehicles,” Computer Networks, vol. 187,
no. 1, pp. 1-17, 2021.

[47] M. D. Hossain, H. Ochiai, D. Fall and Y. Kadobayashi, “LSTM-Based network attack detection:
Performance comparison by hyper-parameter values tuning,” in Proc. EdgeCom, New York, NY, USA,
pp. 62-69, 2020.

