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Abstract:Minimizing time cost in time-shared operating systems is considered
basic and essential task, and it is the most significant goal for the researchers
who interested in CPU scheduling algorithms.Waiting time, turnaround time,
and number of context switches are themost time cost criteria used to compare
between CPU scheduling algorithms. CPU scheduling algorithms are divided
into non-preemptive andpreemptive. RoundRobin (RR) algorithm is themost
famous as it is the basis for all the algorithms used in time-sharing. In this
paper, the authors proposed a novel CPU scheduling algorithm based on RR.
The proposed algorithm is called Adjustable Time Slice (ATS). It reduces the
time cost by taking the advantage of the low overhead of RR algorithm. In
addition, ATS favors short processes allowing them to run longer time than
given to long processes. The specific characteristics of each process are; its
CPU execution time, weight, time slice, and number of context switches. ATS
clusters the processes in groups depending on these characteristics. The tradi-
tionalRR assigns fixed time slice for each process. On the other hand, dynamic
variants of RR assign time slice for each process differs from other processes.
The essential difference between ATS and the other methods is that it gives
a set of processes a specific time based on their similarities within the same
cluster. The authors compared between ATS with five popular scheduling
algorithms on nine datasets of processes. The datasets used in the comparison
vary in their features. The evaluation was measured in term of time cost and
the experiments showed that the proposed algorithm reduces the time cost.

Keywords: Clustering; CPU scheduling; round robin; average turnaround
time; average waiting time

1 Introduction

1.1 CPU Scheduling
CPU scheduling is defined as allocating and de-allocating the CPU to a specific pro-

cess/thread. CPU scheduling is the most important and most effective task in the performance
of the operating system [1–3]. CPU scheduling should provide efficient and fair usage of the
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computing resource (i.e., CPU time). The main goal of CPU scheduling is managing CPU time
for running and waiting processes to provide the users with efficient throughput. The scheduler
is the part of the OS that responsible to perform this task by choosing the next process to be
allocated or de-allocated. The scheduling technique is divided into non-preemptive or preemptive.
The non-preemptive technique does not suspend the running process until the process releases the
CPU voluntarily. In contrast, under predetermined conditions, the preemptive technique suspends
the running process. The task of choosing a process for execution is defined as scheduling and
the algorithm used for this choice is indicated as the scheduling algorithm. Scheduling process
described in Fig. 1 [4].

Figure 1: Schematic of scheduling

1.2 Scheduling Criteria
Different CPU scheduling algorithms have different characteristics and the choice of a specific

algorithm influences the performance of the system, so the characteristics of the algorithms must
be considered. For comparing between CPU scheduling algorithms, many scheduling criteria have
been suggested (i.e., waiting time (WT), turnaround time (TT) and number of context switches
(NCS)). WT is the sum of the periods that the processes spent waiting in the ready queue. TT is
the interval from the submission time of a process to the completion time. NCS is the number of
times the process is stopped, put at the tail of the queue to be resumed. The scheduler executes
the process at the head of the queue. The scheduler is considered efficient if it minimizes WT,
TT, and NCS.

1.3 Basic Scheduling Algorithm
1.3.1 First Come First Serve (Non-Preemptive Scheduler)

The easiest and the simplest non-preemptive CPU scheduling algorithm is the First come First
Serve (FCFS) algorithm. The policy of FCFS implementation is managed with a FIFO queue in
which the process that arrives to the ready queue first is assigned to the CPU first (see Fig. 2).

1.3.2 Shortest Job First (Non-Preemptive Scheduler)
In the Shortest Job First (SJF), the CPU is assigned to the process with the smallest burst

time. SJF compares between the burst times of all processes residing in the ready queue and
selects the process with the smallest burst time. If two processes have the same burst times, FCFS
scheduling is used (see Fig. 3).
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Figure 2: FCFS CPU scheduling

Figure 3: SJF CPU scheduling

1.3.3 Round Robin Scheduling
Round Robin scheduling (Fig. 4) allocates each process an equal portion of the CPU time.

The policy of RR implementation is managed with a FIFO queue. Processes are in a circular
queue; the process is put to the tail of the queue and the selected process for execution is taken
from the front [5].

Figure 4: Round robin scheduling

The OS is driven by an interrupt (i.e., clock tick). Processes are chosen in a fixed sequence for
execution. On each clock tick, the process running is paused and the next process starts execution.
All processes wait in the queue for the slot of CPU time where all of them are treated as of equal
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importance. Process is not permitted to run to completion, but it is preempted. The implications
of the preemptive process switching and the overhead are significant and must be taken into
consideration. There is an inescapable time overhead when the process and context are switched
(represented by the black bars in Fig. 5).

Figure 5: Context switches overhead

For example, assume that the scheduler runs three processes {A, B, C} in the sequence A, B,
C, A, B, C, A, . . .., until they are all completed. This sequence for these processes is shown in
Fig. 6. It is noticed that the processor is busy all the time because there is a process is running.
The pseudocode of the RR algorithm is shown in Algorithm 1.

Algorithm 1: RR Algorithm Pseudocode
1 Implement the queue as a FIFO queue.
2 New processes are added to the end of the queue.
3 Assign a slot of time to the processes.
4 If the burst time of a process A less than or equal the assigned time in step 3
5 Process A runs and then leaves the queue.
6 The scheduler will proceed to next process B (if found).
7 Else
8 If the queue contains other processes (e.g., B)
9 Process A is paused after the assigned time in step 3.
10 Process A is put at the tail of the queue.
11 The scheduler will proceed to next process B.
12 Process A is resumed in the next round.
13 Else
14 Process A runs until completion without interruption.
15 End if
16 End if
17 If queue is not empty
18 Go to step 4

Figure 6: A sequence of process state for RR scheduling with three processes
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1.4 Clustering Technique
Dividing the data into useful, meaningful, or both is known as clustering [6]. The greater

the difference between the clusters and the greater the similarity between the elements within the
same cluster, the better the clustering [7]. Both clustering and classification are fundamental tasks
in machine learning. Clustering is used mostly as an unsupervised learning, and classification for
unsupervised learning. The goal of classification is predictive, and that of clustering is descriptive
which means that the target of clustering is to find out a new set of groups, the assessment of
these groups is intrinsic and they are of interest in themselves. Clustering gathers data elements
into subsets that similar elements are grouped together, while different elements belong to different
groups [8,9]. The categorization process is determined by the selected algorithm [7]. Features’ types
determine the algorithm selected in the clustering (e.g., statistical algorithms for numeric data,
conceptual algorithms for categorical data, or fuzzy clustering algorithms that allow data element
to be joined to all clusters with a membership degree from 0 to 1). Most commonly used clustering
algorithms are divided into traditional and modern clustering algorithms [10].

1.4.1 K-means Clustering Algorithm
K-means is the most common of clustering algorithms, the steps of K-means are shown in

algorithm 2. The simplicity of K-means comes from the use of the stopping criterion (i.e., squared
error). Suppose that D be the number of dimensions, N the number of elements, and K the
number of centers, and K-means runs I iterations, hence K-means time complexity is O(NKI).
The goal of K-means is to minimize some objective function which is described in Eq. (1) [11].

min
{mk}, 1≤ k≤K

K∑
k=1

∑
x∈Ck

πxdist(x,mk) (1)

where K is the number of the clusters, πx is the weight of x, mk =
∑

x∈Ck
πxx
nk

is the centroid of

cluster Ck, The distance between centroid and the object x is computed by the function ‘dist’,
1≤ k≤K. Determining the number of clusters k is discussed in the next subsection.

Algorithm 2: K-means clustering algorithm
Input: D, a data set of N points; K, number of clusters.
Output: A set of K clusters.

1 Initialization.
2 Repeat
3 For each point p in D do
4 Find the nearest center and assign p to the corresponding cluster.
5 End for
6 Update clusters by calculating new centers using mean of the members.
7 Until stop-iteration criteria satisfied.
8 Return clustering result.

1.4.2 Silhouette Method
Silhouette method is one of the most popular clustering evaluation techniques. It determines

how well each element lies within its cluster, so it measures the clustering quality. It can be
summarized as follows:
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(1) Applying the selected clustering algorithm for different values of k.
(2) Calculating the Within-cluster Sum of Square (WSS) for each k.
(3) Plotting WSS curve.
(4) The knee’s position in the curve points out the suitable number of clusters.

Eq. (2) defines the Silhouette coefficient (Si) of the ith data point.

Si = biai
max(bi,ai)

(2)

where bi is the average distance between all elements in different clusters and the ith element; ai is
the average distance between all elements in the same cluster and the ith element [12,13]. Fig. 7
shows the organization of the paper.

Figure 7: Organization of the paper

2 Related Works

Various forms of the RR algorithm have been proposed to minimize time cost. This section
shows the most common of these forms. Tab. 1 compares between these versions of RR. Harwood
et al. [14] proposed VTRR (Variable Time Round-Robin scheduling) algorithm which is a dynamic
form of RR algorithm. VTRR takes into consideration the time needed to all processes when
assigning the time slice to a process. Tarek et al. proposed BRR (Burst RR) a weighting form of
RR by grouping five groups of processes and each process belongs to a group depending on its
burst time. The weight of each process is inversely proportional to its burst time [15]. Mostafa
et al. [16] proposed CTQ (Changeable Time Quantum), CTQ finds the time slice that gives
smallest waiting time and turnaround time and every process runs for that time. Mishra et al. [17]
proposed IRRVQ (improved Round Robin with varying time quantum) in which the processes are
sorted in ascending order and the queue is divided into heavy and light. The time slice in each
round is equal to the median processes’ burst time. On a similar approach, Lipika proposed a
dynamic form of RR, the time slice is calculated at beginning of each round depending on the
residual burst times of the processes in the successive rounds, the processes are sorted in ascending
order [18]. McGuire et al. [19] proposed Adaptive80 RR, the time slice equals the burst time
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of the process at 80th percentile. In the same way that Lipika took, Adaptive80 RR sorts the
processes in ascending order. Samir et al. proposed SRDQ (SJF and RR with dynamic quantum),
SRDQ divided the queue into Q1 (for short processes) and Q2 (for long processes; the process
with burst time long than the median is considered long and the process with burst time small
than the median is considered short. Like Lipika’s and Adaptive80 RR, SRDQ sorts the processes
in ascending order [20]. Mostafa [21] proposed PWRR (Proportional Weighted Round Robin) in
which the burst time of a process is divided by the summation of all burst times and the time
slice is assigned to a process based on its weight. Mostafa et al. [22] proposed ARR (Adjustable
Round Robin) in which the short process is given a chance for completion without pausing, this
is done under a predefined condition. In the same way, Uferah et al. proposed ADRR (Amended
Dynamic Round Robin) in which the time slice is assigned to the process based on its burst
time. Like some of its predecessors, ADRR sorts the processes in ascending order [23]. Samih
et al. proposed DRR (Dynamic Round Robin) which uses clustering technique in grouping similar
processes in a cluster, it differs from its predecessors in that it allocates time for the cluster and
all processes get the same time within the same cluster [7]. Mostafa et al. [24] proposed DTS
(Dynamic Time Slice), DTS takes the same approach as DRR in clustering the processes using
K-means clustering technique, the only difference between them is the method of calculating the
time slice.

Table 1: Comparison of common forms of RR (TT denotes turnaround time, and WT denotes
waiting time)

Authors Year Technique
name

Technique
type

Based on Performance Metrics

WT TT NCS

Aaron et al. 2001 VTRR Dynamic RR
√ √ √

Tarek et al. 2007 BRR Dynamic RR
√ √ √

Samih et al. 2010 CTQ Dynamic SRR
√ √ √

Mishra
et al.

2014 IRRVQ Dynamic RR and SJF
√ √

–

Lipika
Datta

2015 — Dynamic RR and SJF
√ √ √

Christoph
et al.

2015 Adaptive80
RR

Dynamic RR and SJF
√ √ √

Samir et al. 2017 SRDQ Dynamic RR and SJF
√ √ √

Samih 2018 PWRR Dynamic RR
√ √ √

Samih et al. 2019 ARR Dynamic based on
threshold

RR
√ √ √

Uferah
et al.

2020 ADRR Dynamic RR and SJF
√ √ √

Samih et al. 2020 DRR Dynamic based on
clustering

RR and K-means
√ √ √

Samih et al. 2020 DTS Dynamic based on
clustering

RR and K-means
√ √ √
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3 Proposed Algorithm

Before starting the proposed algorithm, the meanings of abbreviations used should be clarified
as shown in Tab. 2.

Table 2: List of abbreviations used

Abbreviations Meaning

PW Process weight
PTQ Permitted time quantum
PTS Proportional time slice
BT Burst time
RBT Residual burst time
PBT Proportional burst time
NCS Number of context switches
TRR Traditional Round Robin
FTS Fixed time slice
CW Cluster weight
CTS Cluster time slice
Cavg Average of burst times in a cluster
ATS Adjustable time slice

The process features PW, PTQ, PBT, and NCS basically depend on BT. Firstly, the proposed
approach rounds up similar processes in clusters and the resemblance between processes depends
on these features. ATS algorithm uses k-means in the clustering process. Preparation of the data,
clustering the data, and the dynamic implementation are the three stages of the proposed work,
which are described in the following subsections.

3.1 Data Preparation
PW and NCS are calculated in this stage. Eq. (3) calculates PW, and Eq. (4) calculates NCS.

PWi = BTi∑N
j=1BTj

(3)

where BTi is burst time of the ith process, N is the number of the processes.

NCSi =

⎧⎪⎨
⎪⎩
[
BTi
FTS

]
if BTi �= h×FTS h= 1, 2, 3, . . .

BTi
FTS − 1 if BTi = h×FTS h= 1, 2, 3, . . .

(4)

FTS is determined by TRR algorithm (i.e., FTS that will be used to calculate the dynamic time
slice is determined by the RR in the OS). �X� means the largest integer smaller than or equal
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to X . PTS changes from one process to another within the same round, and it changes from one
round to another. The PTQ assigned to a process in a round is calculated from Eq. (5).

PTQi =
⎧⎨
⎩
FTS if BTi > FTS

BTi if BTi ≤ FTS
(5)

PBT of a process in a round is calculated from Eq. (6).

PBTi = BTi∑n
z=1PTQz

(6)

PTS is calculated from Eq. (7).

PTSi = (1−PBTi)×FTS (7)

3.2 Data Clustering
The mean reason of choosing K-means clustering algorithm in this work is that K-means

works properly only with the numerical features [9]. The parameter k is determined using Sil-
houette method, and k-means creates k clusters of data points. BT ,PW ,PTQ, PBT and NCS
are the features used in the clustering. The cluster is represented by the centroid within this
cluster. K-means is a gradient-decent procedure starts with an initial set of K cluster-centers
and consecutively updates this set. Fig. 8 displays how K-means cluster a dataset (e.g., d31
dataset) [25].

Figure 8: Clustering dataset using K-means A) d31 dataset before clustering B) d31 dataset after
clustering

3.3 Dynamic Implementation
Process with long burst time causes more overhead resulted from numerous NCS. A threshold

is predetermined to avoid this overhead. The proposed algorithm allows the process that close to
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finish to be completed and leave the queue. CWl (i.e., weight of the lth cluster) is computed from
Eq. (8) and CTSl is computed from Eq. (9).

CWl =
Cavgl∑k

m=1Cavgm
(8)

CTSl =
(
1− CWl∑k

l=1CWl

)
×FTS (9)

The proposed algorithm behaved similar to the DTS algorithm [24] which takes into consid-
eration not only the burst time of the process in the current round, but also the in the successive
rounds. In addition, the proposed algorithm splits the queue into Q1 for short processes (shorter
than median) and Q2 for long processes (longer than median) [20]. The proposed algorithm
assigns each process with a time slice computed from Eq. (10).

ATSr,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
CTSl + threshold

{
if
(
threshold×

(
BTr
FTS + 1

)
≥mod(BTr,CTS)

)
and if (BTr <Median)where mod(BTr,CTS) > 0

CTSl

{
if mod(BTr,CTS)= 0
and if (BTr ≥Median)

(10)

where ATSr,l is the adjustable time slice assigned to the process Pr in the cluster l. In consecutive
rounds, RBT is updated according to Eq. (11). The proposed algorithm is described in Fig. 9.

RBTi =BTi−CTSi (11)

4 Experimental Implementation

The computer’s specifications used in the experiments are shown in Tab. 3:

4.1 Benchmark Datasets
Nine artificial datasets were generated to be used in the experiments. Each dataset has a

number of processes varying in the BTs which have been randomly generated. To prove that the
proposed algorithm is valid for diverse data, each dataset contains different number of processes
varying in their burst times and accordingly the PW, NCS, PTQ, PBT, and PTS are different.
Tab. 4 presents the characteristics of the datasets used.

4.2 Performance Evaluation
The proposed algorithm has been compared with five common algorithms VTRR, DTS,

ADRR PWRR and RR. The submitted processes may be arrived in the same time or different
times. The experiments were conducted taking into account the two cases.

Case 1 (same arrival time): The average turnaround times and waiting times comparisons are
shown in Fig. 10, the NCS comparisons are shown in Fig. 11. The improvement of ATS over the
compared algorithms is shown in Fig. 12. Time cost comparisons are shown in Tab. 5 and the
improvement is shown in Tab. 6.
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Figure 9: Algorithm flowchart

Table 3: Test bed specifications

Hardware specifications Software specifications

CPU - Intel core i5-2400 (3.10 GHz) Gnu/Linux Fedora 28 OS
1 TB HDD (Python 3.7.6 (default, Jan 8 2020, 20:23:39)
16GB RAM

Case 2 (different arrival time): Process arrival was modeled as Poisson random process. The
arrival times are exponentially distributed [16]. The average turnaround times and waiting times
comparison are shown in Fig. 13, the NCS comparisons are shown in Fig. 14. The improvement
of ATS over the compared algorithms is shown in Fig. 15. Time cost comparisons are shown in
Tab. 7 and the improvement is shown in Tab. 8.
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Table 4: Datasets specifications

Dataset ID #Processes #Features Features

PW NCS PTQ PBT PTS

1 10 5
√ √ √ √ √

2 15 5
√ √ √ √ √

3 20 5
√ √ √ √ √

4 25 5
√ √ √ √ √

5 30 5
√ √ √ √ √

6 35 5
√ √ √ √ √

7 40 5
√ √ √ √ √

8 45 5
√ √ √ √ √

9 50 5
√ √ √ √ √

Figure 10: Avg_WT and Avg_TAT comparison (case 1)

Figure 11: NCS comparison (case 1)
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Figure 12: Improvement comparison (case 1)

Table 5: Average waiting time and turnaround time comparison between the proposed algorithm
and five scheduling algorithms (case 1)

Dataset ATS DTS RR

WT TT NCS WT TT NCS WT TT NCS

1 1055.81 1202.81 141 1055.83 1202.83 142 1137.68 1284.68 148
2 1632.86 1775.46 205 1646.13 1788.73 206 1751.48 1894.08 210
3 2244.61 2388.21 278 2270.28 2413.88 279 2368.01 2511.61 277
4 2900.94 3045.9 346 2904.73 3049.69 347 2998.81 3143.77 346
5 3556.94 3702.61 415 3570.15 3715.82 416 3658.62 3804.29 415
6 4163.22 4307.91 487 4162.25 4306.93 488 4272.39 4417.08 481
7 4874.44 5021.64 568 4873.75 5020.95 569 4980.18 5127.38 560
8 5064.15 5211.59 641 5094.15 5241.6 642 5664.03 5811.47 631
9 5409.32 5557.64 705 5343.27 5491.59 706 6289.8 6438.12 704
Average 3433.588 3579.308 3435.615556 3581.336 3680.111 3825.831
Improvement% 0.194947607 0.180004 6.05453 5.762972

Dataset VTRR RR ADRR

WT TT NCS WT TT NCS WT TT NCS

1 1163.1 1310.1 142 1163.9 1310.9 142 1186 1333 140
2 1786.8 1929.4 207 1787.33 1929.93 207 1828 1970.6 205
3 2424.78 2568.38 279 2425.15 2568.75 277 2490 2633.6 277
4 3069.03 3213.99 349 3069.24 3214.2 349 3144 3288.96 345
5 3734.82 3880.49 420 3735 3880.67 420 3824 3969.67 415
6 4361.7 4506.38 491 4361.8 4506.49 488 4457.71 4602.4 486
7 5073.72 5220.92 573 5073.8 5221 568 5180.5 5327.7 569
8 5760.97 5908.41 645 5761.04 5908.49 640 5877.78 6025.22 641
9 6414.06 6562.38 716 6414.64 6562.96 716 6553.2 6701.52 705
Average 3754.331 3900.05 3754.656 3900.377 3837.91 3983.63
Improvement% 7.972041 7.591376 7.986159 7.604464 10.00378 9.535625
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Table 6: Improvement percentages of the proposed algorithm over five scheduling algorithms
(case 1)

DTS PWRR VTRR RR ADRR

WT TT NCS WT TT NCS WT TT NCS WT TT NCS WT TT NCS

1 0.002 0.002 1.399 7.196 6.373 4.730 9.224 8.189 0.704 9.287 8.245 0.704 10.977 9.767 −0.714
2 0.806 0.742 1.442 6.773 6.263 2.381 8.615 7.979 0.966 8.643 8.004 0.966 10.675 9.903 0.000
3 1.131 1.063 0.714 5.211 4.913 −0.361 7.430 7.015 0.358 7.444 7.028 −0.361 9.855 9.318 −0.361
4 0.130 0.124 1.143 3.264 3.113 0.000 5.477 5.230 0.860 5.483 5.236 0.860 7.731 7.390 −0.290
5 0.370 0.356 1.425 2.779 2.673 0.000 4.763 4.584 1.190 4.767 4.588 1.190 6.984 6.728 0.000
6 −0.023 −0.023 1.016 2.555 2.472 −1.247 4.551 4.404 0.815 4.553 4.407 0.205 6.606 6.399 −0.206
7 −0.014 −0.014 1.045 2.123 2.062 −1.429 3.928 3.817 0.873 3.929 3.818 0.000 5.908 5.745 0.176
8 0.589 0.573 0.774 10.591 10.322 −1.585 12.096 11.794 0.620 12.097 11.795 −0.156 13.842 13.504 0.000
9 −1.236 −1.203 1.674 13.999 13.676 −0.142 15.665 15.311 1.536 15.672 15.318 1.536 17.455 17.069 0.000

Figure 13: Avg_WT and Avg_TAT comparison (case 2)

Figure 14: NCS comparison (case 2)
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Figure 15: Improvement comparison (case 2)

Table 7: Average waiting time and turnaround time comparison between the proposed algorithm
and five scheduling algorithms (case 2)

Dataset ATS DTS PWRR

WT TT NCS WT TT NCS WT TT NCS

1 1054.75 1201.61 126 1054.77 1201.63 127 1136.54 1136.54 133
2 1631.23 1773.69 184 1644.48 1786.94 185 1749.73 1749.73 189
3 2242.37 2385.82 250 2268.01 2411.47 251 2365.64 2365.64 249
4 2898.04 3042.85 311 2901.83 3046.64 312 2995.81 2995.81 311
5 3553.38 3698.91 373 3566.58 3712.1 374 3654.96 3654.96 373
6 4159.06 4303.6 438 4158.09 4302.62 439 4268.12 4268.12 432
7 4869.57 5016.62 511 4868.88 5015.93 512 4975.2 4975.2 504
8 5059.09 5206.38 576 5089.06 5236.36 577 5658.37 5658.37 567
9 5403.91 5552.08 634 5337.93 5486.1 635 6283.51 6283.51 633
Average 3430.15 3575.73 3432.18 3577.75 3676.43 3676.43
Improvement% 0.19 0.18 6.05 5.76

(Continued)
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Table 7: Continued

Dataset VTRR RR ADRR

WT TT NCS WT TT NCS WT TT NCS

1 1161.94 1308.79 127 1162.74 1309.59 127 1184.81 1331.67 126
2 1785.01 1927.47 186 1785.54 1928 186 1826.17 1968.63 184
3 2422.36 2565.81 251 2422.73 2566.18 249 2487.51 2630.97 249
4 3065.96 3210.78 314 3066.17 3210.99 314 3140.86 3285.67 310
5 3731.09 3876.61 378 3731.27 3876.79 378 3820.18 3965.7 373
6 4357.34 4501.87 441 4357.44 4501.98 439 4453.25 4597.8 437
7 5068.65 5215.7 515 5068.73 5215.78 511 5175.32 5322.37 512
8 5755.21 5902.5 580 5755.28 5902.58 576 5871.9 6019.2 576
9 6407.65 6555.82 644 6408.23 6556.4 644 6546.65 6694.82 634
Average 3750.58 3896.15 3750.90 3896.48 3834.07 3979.65
Improvement% 7.97 7.59 7.99 7.60 10.00 9.54

Table 8: Improvement percentages of the proposed algorithm over five scheduling algorithms
(case 2)

DTS PWRR VTRR RR ADRR

WT TT NCS WT TT NCS WT TT NCS WT TT NCS WT TT NCS

1 0.0019 0.0017 1.3986 7.1962 6.3728 4.7297 9.2245 8.19 0.7 9.2869 8.2455 0.704 10.9772 9.7667 0.0000
2 0.8061 0.7419 1.4423 6.7726 6.2627 2.3810 8.6154 7.98 0.97 8.6425 8.0039 0.966 10.6751 9.9026 0.0000
3 1.1307 1.0634 0.7143 5.2111 4.9132 −0.3610 7.4304 7.02 0.36 7.4445 7.0283 −0.361 9.8550 9.3177 −0.4016
4 0.1305 0.1243 1.1429 3.2636 3.1131 0.0000 5.4770 5.23 0.86 5.4834 5.2361 0.86 7.7309 7.3902 −0.3226
5 0.3700 0.3555 1.4252 2.7792 2.6728 0.0000 4.7627 4.584 1.19 4.7673 4.5884 1.191 6.9838 6.7275 0.0000
6 −0.0233 −0.0228 1.0163 2.5552 2.4715 −1.2474 4.5505 4.404 0.82 4.5527 4.4065 0.21 6.6063 6.3986 −0.2288
7 −0.01 −0.014 1.04 2.12 2.06 −1.43 3.93 3.817 0.87 3.9292 3.8184 0.00 5.9079 5.7447 0.1953
8 0.58 0.57 0.77 10.6 10.32 −1.59 12.1 11.79 0.62 12.097 11.7949 −0.156 13.8425 13.5037 0.0000
9 −1.24 −1.2 1.67 13.1 13.68 −0.14 15.67 15.31 1.54 15.672 15.3181 1.536 17.4553 17.0690 0.0000

5 Conclusion

This paper presented a dynamic version of RR. The proposed goal is to reduce the time
cost (i.e., waiting time and turnaround time). The traditional RR uses fixed slot of time for each
process in all rounds regardless the BT of the process, however, the proposed algorithm (ATS)
assigns particular time slice for each process. This time slice is different from the other processes
in the same cluster. If the BT of a process is longer than the assigned time slice, the process will
be put at the end of the queue and assigned a new time slice in the new round. In addition, the
proposed algorithm starts by grouping similar processes in a group depending on the similarity
between the features. Each cluster is a signed a slot of time and every process in this cluster
is assigned this time slice. In a round, some processes may finish their BT and leave the queue,
and may new processes arrive. In both cases the number of the clusters and clusters’ weights will
be updated and therefore the time slice assigned to a cluster and the number of the processes
in the cluster will be updated. Furthermore, ATS takes into account the remaining times of the
survived processes and allow short process to complete (under predetermined conditions) without
interruption even if its BT longer than the assigned Time Slice, in other words, ATS grants more
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time to the process that is close to complete in the current and consecutive rounds. Comparison
has been done between ATS and five common versions of RR from the point of view of time
cost. The results showed that the proposed algorithm achieves noticeable improvements.
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