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Abstract: Industry 4.0 is expected to play a crucial role in improving energy
management and personnel performance in power plants. Poor performance
problem in maintaining power plants is the result of both human errors,
human factors and the poor implementation of automation in energy man-
agement. This problem can potentially be solved using artificial intelligence
(AI) and an integrated management system (IMS). This article investigates
the current challenges to improving personnel and energy management per-
formance in power plants, identifies the critical success factors (CSFs) for
an integrated intelligent framework, and develops an intelligent framework
that enables power plants to improve performance. The theoretical basis is
founded on a systematic literature review to locate 110 out of 3108 papers
studied carefully to examine the performance architecture that best enables
effective maintenance. The findings from this literature review are combined
with expert judgment and the big data advantages of AI applications to
develop an intelligent model. Data are collected from a power plant in Iraq.
To ensure the reliability of the proposed model, various hypotheses are tested
using structural equationmodeling. The results confirm that the measurement
model is acceptable, and that the hypotheses are supported and significant. A
case study demonstrates the strong relationship and significance between big
data of performance and the CSFs. It is hoped that this model will be adopted
to enable performance improvement in power plants.

Keywords: Industry 4.0; artificial intelligence; critical success factors;
decision making; integrated management system; maintenance

1 Introduction

Performance in the maintenance of power plant facilities often poses significant risks. To
address the consequences of human errors, it is necessary to focus on the human factors related to
these risks [1]. Artificial intelligence (AI), integrated management system (IMS) and the Internet
of Things can help improve performance toward the vision of Industry 4.0 in power plants,
which anticipates advanced levels of automated performance [2]. Industry 4.0 is intended to
integrate performance within power plants, thus reducing human errors and ensuring high energy
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efficiency [3]. Lack of intelligent integration of performance and poor automation in the main-
tenance of power plants causes losses that are roughly 2.5 times higher than those attributed to
hardware failure [4]. In terms of maintenance, personnel performance is closely related to energy
management performance, and is thus a factor in energy consumption and human errors [5,6],
although further investigation is required to determine the interaction between personnel, energy
management, and the critical success factors (CSFs) associated with thermal and gas power plant
maintenance [7].

To date, most previous studies dealing with improvements to performance have focused on
nuclear power plants. Relatively few studies have analyzed the performance in the maintenance
of thermal and gas power plants and the associated effects on the reliability of the power
generation system. Using a systematic literature review (SLR), this study identifies the existing
problems and challenges facing performance in power plants. This SLR investigates several studies
using modern technologies and categorizes them based on their focus and findings. The previous
literature dealing with the interaction between personnel performance and energy management
performance in maintaining power plants is analyzed in an attempt to answer three specific
research questions: (RQ1) What are the current challenges facing the improvement of performance
in the maintenance of power plants? (RQ2) What are the CSFs for integrating an intelligent
performance improvement framework? (RQ3) Is it possible to develop an intelligent framework
that can improve performance? This study provides a new vision for improving performance
based on Industry 4.0 and AI, clarifying the integration of personal performance with energy
management performance in gas and thermal power plants within an intelligent framework. To
achieve this, 110 studies from five reliable databases are analyzed. Using the results of this analysis,
an intelligent framework for performance integration is then developed, along with the judgment
of experts working in power plants. To the best of our knowledge, this is the first study to
collect and organize existing evidence in order to develop an intelligent framework. The proposed
framework will assist power plants in overcoming poor performance, reducing human errors, and
enhancing energy management.

2 Methodology

Great efforts were made to address the scarcity of data. To enhance the SLR, a framework
was constructed based on the Industry 4.0 vision. The object of this study was a power plant in
Iraq. Most power plants in Iraq are old and have complex performance and energy management
problems, making them suitable for such studies. A two-way approach was adopted in which
information from energy experts and power plant specialists was used in the development stage to
increase reliability. The aim of the study was to systematically investigate the CSFs for improv-
ing performance in power plants under the Industry 4.0 vision. Fig. 1 illustrates the complete
methodology of the SLR.
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Figure 1: Research methodology flowchart

2.1 Quality Assessment
To ensure the quality of the SLR and reduce the possibility of bias, the selected articles

were screened and filtered using a three-step process. First, the selected papers were scanned
to identify their general content and eliminate duplicates. Second, the articles were examined
in more detail (abstracts and conclusions), and those failing to meet the predetermined criteria
were excluded. Third, the papers were read thoroughly, at which point we attempted to emulate
the authors’ work. This phase allows the novelty, strengths, and weaknesses of an article to be
identified. This stage further excluded articles that did not meet the needs of the present study.
For reference management, EndNote X9 was used to classify, sort, and delete duplicate articles.
Finally, the Newcastle Ottawa Scale (NOS) assessed the quality of the remaining literature. The
quality assessment was conducted by three of the authors independently, and a fourth reviewer
resolved any disagreements.

2.2 Study Protocol and Criteria
The study developed a protocol and a set of stringent criteria for analyzing published studies

and discover the patterns of existing research to help us identify research gaps. The research
adopted a clearly defined, rigorous, and reliable approach that allows presenting objective and
reproducible results to reduce possible bias. Study criteria include i) articles written in English
only; ii) focused specifically on discussing or investigating the performance of energy management
and personnel. Fig. 2 shown the criteria and steps used to identify the literature to be included
in the analysis.
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Figure 2: Steps in identifying the literature included in the analysis

3 Results of SLR

The initial search located 3108 articles. Of these, 1997 were sourced from ScienceDirect, 87
were from IEEE Xplore, 44 were from Web of Science, 757 were from Springer Link, and 223 were
from Scopus. All articles were published between 2014 and 2020. Accessibility issues prevented us
from downloading three papers from Web of Science and two papers from Springer Link. The
selected papers were filtered based on the research sequence described in the previous section:
197 papers that appeared in all five search engines were excluded, and the remaining articles were
examined in further detail. Finally, 110 articles were considered relevant to the present study.

3.1 Analysis of the Performance Shaping Factors Architecture in Industry 4.0
The 110 articles remaining after the three-step filtering process can be categorized into two

classes: (i) personnel performance and (ii) energy management performance.

3.1.1 Human Factors
Human factors should not be overlooked, as they play a key role in ensuring the stability

of maintenance procedures. Indeed, both the culture of maintenance and employee performance
are essential variables in improving human factors [8,9]. Meta-analysis of human factors could
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help improve employee performance in power plants [10]. Similarly, human factors have been
analyzed in terms of the risks faced by thermal power plants’ maintenance staff [11]. This analysis
showed that, to minimize such errors, understanding human behavior is imperative. Apart from
staff behavior, another cause of poor performance is fatigue, time stress, work overload, and
lack of teamwork [12–14]. It has been suggested that optimizing maintenance schedules can
reduce work overload [15]. Other articles focused on current and future human factors related to
interactions between different management decision-making processes [16–19]. It has been reported
that interest in human factors in maintenance and operation can be considered one of the tools
for the digital transformation of the industry, improving employee reliability [20–22]. Finally,
human performance fundamentally affects power system operation reliability [23].

3.1.2 Human Error
Human errors in power plant maintenance increase the percentage of dangerous accidents,

production delays, and losses of money and time [24]. The effects of human errors on power
systems have been analyzed [25–27], and the factors causing human errors in power systems have
been classified using statistical methods [28,29]. Case studies have attempted to measure the human
errors in power plants in an attempt to form a cognitive, systemic mechanism to minimize such
errors [30,31]. Based on two case studies and questionnaires, a Bayesian network has been used
to develop a human error probability model [32]. Human errors significantly affect power system
operations, and so a modified evaluation models of power system reliability have been developed
by integrating human efforts with protection system failures [33–35].

3.1.3 Energy Management Performance in Industry 4.0
We now focus on issues, technologies, and case studies related to employee performance

and energy management practices in maintenance and operation activities. This section investi-
gates and examines the available empirical evidence to clarify the relationship between employee
performance and energy management. Two case studies [36,37] investigated employee factors
related to energy efficiency and energy reduction in factories through semi-structured interviews.
The results indicated a strong relationship between employee performance and energy efficiency.
Another study [38] developed a framework that enables human-centric energy efficiency to be
enhanced, so that interactions between personnel and assets that consume energy can be improved.
Four other articles [39–42] investigated the role of workers in raising energy efficiency in the
workplace. Interpretive structural modeling has been used to show that human factors and the
workplace environment play an important role in energy management [43,44]. The challenges
and benefits of implementing energy management in a factory were analyzed in [45], which rec-
ommended adopting energy management within maintenance processes. Reference [46] presented
several interdisciplinary concepts relating to human performance interaction for energy efficacy,
whilst [47–49] investigated how the support and leadership style of top management figures
influenced decision-making regarding improvements in maintenance energy efficiency. The effect
of personnel performance roles on energy policy research has been studied [50,51], and a new
model-based assessment of industrial workers’ behavior in relation to energy saving social factors
and personnel training has been utilized to save energy in maintenance tasks [52,53]. Human
performance is vital in enhancing energy management during maintenance by controlling exactly
when equipment is shut down and started up [54–61]. Improve the interaction between perfor-
mance shaping factor with energy management performance is important in industry 4.0 with
more attention in CSFs such as skill flexibility, commitment, motivation, energy policy, continuous
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improvement and top management support [62–66]. Fig. 3 refers to the current literature trends
in energy management performance based on our literature review.

Figure 3: Current trends in energy management performance

3.2 Success Indicators of Integration Performance for Personnel and Energy Management
A careful study of the previous literature has identified the most important indicators for

the successful integration of personnel performance with energy management performance in
power plants. The CSFs help power plants to attain their goals. The most important CSFs
identified by previous studies are listed in Tab. 1. The CSFs are maintenance culture (MC) or
Leadership practice (LP), teamwork (TE), skill flexibility (SF), commitment (CO), motivation (M),
time pressure (TP), awareness (A), work overload (WO), top management support (TMS), energy
efficiency (EE), energy policy (EP), and continuous improvement (CI).

This study investigates the integration between CSFs for personnel performance and CSFs
for energy management performance. The goal of this analysis is to reduce human errors and
improve human factors in the workplace, thus optimizing maintenance performance in power
plants. Fig. 4 illustrates the contribution of various indicators of success for any integration
between performance elements.

3.3 Results of SLR
3.3.1 Distribution by Publication Year

In Fig. 5, the articles analyzed in the SLR are grouped according to year of publication. For
each year in the period 2014–2020, the articles were broken down according to whether they focus
on performance reliability or energy management.

3.3.2 Distribution by Nationality
Fig. 6 shows that authors from 41 countries published reports relating to reliability and

performance in the maintenance during the period 2014–2020. The nationality distribution of
110 technology-related papers in numbers and showed that the main contributors are from the
United States (27), followed by China (18); Germany (10); United Kingdom (9); South Korea
(8); Australia (7); Iran (6); Brazil, France, and Italy (5 each); Belgium, India, and Norway (4
each); Canada, Malaysia, Denmark and Sweden (3 each); Turkey, Belgium, Netherlands, Poland,
Romania, and Spain (2 each); Argentina, Belgrade, Colombia, Czech Republic, Finland, Indone-
sia, Ireland, New Zealand, Pakistan, Russian, Saudi Arabia, Scotland, Slovakia, South Africa,
Georgia, Slovenia, Japan and Algeria (1 each).
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Table 1: Comparison of performance integration success indicators

Study Main area

LP TE SF CO M TP A WO TMS EE EP CI

[6–9] � � � � � � � �
[10] �
[11] � � � � � �
[12–14] � � � � � � �
[15] � � �
[17] � � � � �
[18,19] � � � �
[20–22] � � �
[23] � � �
[24] � � �
[25] � � � � � � � � � �
[27] � � � � �
[30,31] � � � �
[36,37] � � � �
[38] � � � � � � �
[39–42] � � � � � �
[47–49] � � � � � �
[59] � � � � � � �
[60] � � � �
[61] � � � � �
[62] � � � � � � � � � �
[63] � � � � � �
[64] � � � � � �
[65] � � � �
[66] � � � � �
Score 8 12 15 13 11 8 15 11 11 9 5 10
% 32 48 60 52 44 32 60 44 44 36 20 40

3.3.3 Distribution by Methodology Type
Fig. 7 illustrates the various methodologies used in the articles considered herein. The most

common approach was a case study and questionnaire, which featured in 71% of articles. While
12% of articles opted for the survey as an approach to optimize the study’s subject, flowed by
10% of articles used the literature review and 7% are other articles that did not fall under earlier
classifications that had been used various methodologies. According to these statistics, case studies
and questionnaires are considered the leading and best methodologies for this type of studies.
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Figure 4: Effect of various indicators of success
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Figure 5: Statistics of articles by publication year

3.4 Discussion of SLR
The literature review focused on the current state-of-the-art in the maintenance of power

plants by examining the interaction between personnel and energy management performance. By
categorizing the literature, readers will be able to understand the topic in an organized manner.
For instance, in terms of performance architecture, it is clear that researchers are inclined to
propose human performance developments in nuclear power plants, with relatively few applications
to other power plants. Some researchers have focused on applications reported in multiple articles,
such as Bayesian networks and fuzzy systems, but have paid little attention to social factors
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affecting workers. There has been very little focus on CSFs for either personnel performance
and CSFs for energy management with quality energy management in thermal and gas power
plants. The SLR highlighted the performance aspects in maintenance that have not received
sufficient attention in the previous literature. There is a dearth of information on performance
in power plants (thermal and gas) and the critical need to identify relevant CSFs. Analysis of
the literature has shown that further investigations are needed to develop the interaction between
performance-shaping factors and energy management in power plants so as to minimize human
errors.

Figure 6: Statistics of articles by authors’ nationality
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Figure 7: Methodologies applied in the articles

3.5 Current Challenges
Analysis of the previous literature indicates a lack of identification of the CSFs for the

integration of performance-improving factors with energy management in power plants. Poor
performance is not confined to a specific country, but is a complex problem facing most power
plants, especially thermal and gas power plants. Rigorous formulations of error, such as by the
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mean squared error (MSE), will help reduce the incidence of human errors [67,68]. The literature
survey confirmed that human errors in power plant maintenance have increased due to the weak
development of performance-shaping factors and the lack of adoption of AI applications. Based
on the literature survey, we can summarize some important open issues and challenges that need
further investigations:

(i) Weak interest in improving performance through Industry 4.0 has created a workplace
environment in which human errors in power plant maintenance have increased.

(ii) There is a lack of comprehensive studies on the integration of personnel performance
and energy management performance to improve performance energy management and
personnel in gas and thermal power plants.

(iii) No worthwhile studies have addressed the integration of CSFs for personnel and energy
management performance, and there is no conceptual framework for optimizing personnel
and energy management performance in Iraqi power plants.

(iv) Power plants are suffering from neglect in their maintenance culture, particularly in
leadership practices and style as a mediator or moderator.

(v) The lack of studies that identified the CSFs to the success ISO 50001 energy manage-
ment program in power plants, which seeks to integrate the CSFs associated with energy
management and quality management.

(vi) No previous studies have integrated the CSFs associated with energy management and the
CSFs associated with quality management to success energy management in the power
plant . Doing so would enable the optimization of performance and energy management
in one intelligent system, with the leadership or organizational culture used as a mediator
or moderator for improving overall performance.

Neglecting to improve these factors leads to an increase in delays in maintenance, Losses in
costs and time, accidents, increased failures, losses in electricity production, poor reliability, and
energy management weakness.

3.6 Artificial Intelligence and Performance Improvement in Industry 4.0
AI can help systems to correctly interpret and utilize data for continuous improvement [69]. In

2012, convolutional neural networks hurried to control on computer research domain and human
performance improvement in conjunction with Industry 4.0, and in 2016, the Alpha-Go algorithm
was applied to human performance problems in the industry [70]. Regarding the human errors that
affect performance-shaping factors, several researchers have suggested methodologies for reducing
errors through the concept of AI [71]. The SLR performed in this study has found that AI
methodologies have the potential to integrate personnel performance and energy management
performance in power plants. However, an intelligent model that can improve performance is still
required.

4 Development of an Intelligent Integrated Framework

We now propose an intelligent framework for the integration of performance in power plants
based on Industry 4.0. An integrated management system IMS will allow groups of different
processes and systems to be combined in one intelligent model for continuous improvement,
enabling organizations to achieve their goals [72,73]. The integration between CSFs for personnel
performance management and energy management helps the power plants to reduce human errors
and improve human factors in maintaining power plants. Presenting with research gaps and open
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issues identified, there is an urgent need to develop a conceptual framework to improve overall
performance and promote positive interaction between personnel performance and energy man-
agement performance in ergonomics power plant maintenance. The performance success indicators
identified by this study are used to develop ten hypotheses. The obsolescence of power plants,
the apparent weak performance in the electricity sector, was the main reason that encouraged
researchers to choose a power plant in Iraq as a model for predicting performance and applying
the systematic review results. So, it is considered a good research environment. The researchers
took advantage of the comments of the energy experts working in that power plant to consolidate
the proposed model by the online meeting. The experts agreed with the analyzed literature on
selecting critical success factors to improve performance. This study adopted positivism philosophy
and deductive approach. It used the literature to identify theories and variables that the researcher
teste using available data. The research object was an Iraqi power plant. A questionnaire con-
sisting of closed questions adopted from [74]. The respondents’ sample was who are working in
power plant and responses were received July 2021 by Cross-sectional time with simple random
sampling techniques. All responses used Likert’s Five-Point Scale.

4.1 Hypothesis Development of Case Study
To address the research gaps in previous studies, various hypotheses tested the theoretical

model for performance improvement. The CSFs that obtained the highest scores in the literature
review (see Table and Fig. 8) were adopted , which represents the indicators of CSFs to integra-
tion performance for personnel and energy management that includes: skill flexibility (SF) and
Awareness (A) by 60% followed by the energy policy (EP) 56%, commitment (C) 52%, Teamwork
(TE) 48%, work overload (WO) 44%, top management support (TMS) 44%, motivation (M) 44%
as the independent variables. Personnel performance (PP) and energy management performance
(EMP) are considered as the dependent variables. The purpose of the hypotheses is to verify
the reliability with which each factor enhances the integrated performance. The ten research
hypotheses are as follows:

H1. Big data for performance through SF has a significant relationship with performance
integration.

H2. Big data for performance through A has a significant relationship with performance
integration.

H3. Big data for performance through EP has a significant relationship with performance
integration.

H4. Big data for performance through C has a significant relationship with performance
integration.

H5. Big data for performance through TE has a significant relationship with performance
integration.

H6. Big data for performance through WO has a significant relationship with performance
integration.

H7. Big data for performance through TMS has a significant relationship with performance
integration.
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H8. Big data for performance through M has a significant relationship with performance
integration.

H9. Intelligent performance integration has a significant relationship with PP.

H10. Intelligent performance integration has a significant relationship with EMP.

Fig. 8 refers to the conceptual model implemented to study the independent variables (IV)
that consist of CSFs that derived from the big data for performance with the dependent variable
(DV) of intelligent performance integration, which includes PP and EMP in the maintenance of
power plants.

Intelligent Integration
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Performance 
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Performance 
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Figure 8: Conceptual integration model for optimizing performance

4.2 Measurement Model
Structural equation modeling (SEM) is frequently used for multivariate data analysis [75]. To

evaluate the reliability of the proposed model, partial least-squares-based SEM (PLS-SEM) was
used within the WarpPLS program which proved successful in this type of studies. Their work was
approved in high-ranking journals like [76]. This study analyzed the quality indicators to study
the typical suitability of the selected factors and found important, as summarized in Tab. 2. A
reliability test and causal assessment recorded scores higher than 0.50 for all variables: SF (0.79),
A (0.82), EP (0.91), C (0.87), T (0.76), WO (0.84), TMS (0.78), M (0.79), PP (0.90), EMP (0.89).
The analysis results indicate the reliability of the factors and the constructs, as all results were
above 0.50. The results confirm the measurement model proposed acceptable with the Cronbach’s
alpha values, which should be above 0.50, are as follows: SF (0.75), A (0.79), EP (0.88), C (0.89),
T (0.80), WO (0.81), TMS (0.88), M (0.81), PP (0.91), EMP (0.87). These results indicate that the
model is highly reliable and acceptable (see Tab. 3). All hypotheses proposed above were supported
and have a significant relationship with performance integration. In particular, we found significant
relationships between intelligent performance integration and personnel performance (H9) and
between intelligent performance integration and energy management performance (H10).
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Table 2: Indicators of model fit and quality

Model fit and quality Indicators

Average path coefficient = 0.554, P < .001
Average R-squared = 0.510, P < .001
Sympson’s paradox ratio = 1.010, accepted when ≥0.7
Statistical suppression ratio = 1.500, accepted when ≥0.7
Direction ratio of nonlinear bivariate causality = 0.943, accepted when ≥0.7
Average full collinearity = 3.216, accepted when ≤5
R-squared contribution ratio = 1.020, accepted when ≥0.9

Table 3: Results of hypothesis testing

No. Hypothesis β Value Results

H1 Big data for performance through SF has a
significant relationship with integration of
performance

β = 0.75 p < .01 Supported &
significant

H2 Big data for performance through A has a
significant relationship with integration of
performance

β = 0.79 p < .01 Supported &
significant

H3 Big data for performance through EP has a
significant relationship with integration of
performance

β = 0.88 p < .01 Supported &
significant

H4 Big data for performance through C has a
significant relationship with integration of
performance

β = 0.89 p < .01 Supported &
significant

H5 Big data for performance through TE has a
significant relationship with integration of
performance

β = 0.80 p < .01 Supported &
significant

H6 Big data for performance through WO has
a significant relationship with integration of
performance

β = 0.81 p < .01 Supported &
significant

H7 Big data for performance through TMS has
a significant relationship with integration of
performance

β = 0.88 p < .01 Supported &
significant

H8 Big data for performance through M has a
significant relationship with integration of
performance.

β = 0.81 p < .01 Supported &
significant

(Continued)
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Table 3: Continued

No. Hypothesis β Value Results

H9 Intelligent performance integration has a
significant relationship with integration of
performance

β = 0.91 p < .01 Supported &
significant

H10 Intelligent performance integration has a
significant relationship with integration of
performance

β = 0.87 p < .01 Supported &
significant

5 Conclusion and Recommendation

The study has investigated the performance shaping factors and energy management in power
plants. The results of an SLR and a case study show that poor performance in the maintenance
of power plants is largely down to human error. The absence of AI applications and the lack
of integration of performance-shaping factors with energy management has contributed to an
increase in the occurrence of such errors. This study used the outputs of the SLR analysis to
develop an intelligent model for the integration of personnel performance with energy manage-
ment performance in the maintenance of power plants through a case study conducted in one
of the power plants. Analysis using PLS-SEM found that the selected factors were of significant
importance to power plant maintenance. A reliability test and causal assessment found that a
number of indicators scored higher than 0.50 for reliability, and the proposed measurement model
was confirmed to be acceptable according to the Cronbach’s alpha reliability coefficient. The case
study results confirmed a strong relationship and significance between performance and the iden-
tified CSFs. Also confirmed the absence of ISO 5001 energy management programs and quality
management programs in the Iraqi power plants. This means the failure of the energy management
file and poor performance (personnel and energy management) in the Iraqi maintenance power
plants. The research contributions of this study are twofold. First, we have created a coherent
taxonomy of research on performance in power plant maintenance, allowing research gaps and
current issues to be identified and addressed. Second, the proposed AI model will enable human
errors in power plants to be reduced, thus improving the overall maintenance performance. Based
on the results of this study, the following recommendations are made:

(i) More research should be conducted on the performance-shaping factors in thermal and gas
power plants.

(ii) Applications of AI according to the vision of Industry 4.0 should be investigated in gas
and thermal power plants.

(iii) A bi-annual cycle should be used to track motivation and competence levels (qualification
and certification), along with maintenance performance results.

(iv) Future studies should focus on maintenance culture, top management support, or leader-
ship practice as a mediator or moderator for enhancing performance.

(v) The CSFs for energy management ISO 50001 should be integrated with quality manage-
ment to be as an IEQM that include (energy policy, service quality improvement, top
management support, awareness, strategic planning, energy management team and energy
audit) in power plants, and the organization’s culture should be used as a moderator or
mediator.
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(vi) Further investigation on the integration the CSFs of PP and EMP represented by team-
work, work overload, time pressure, motivation, commitment, skill flexibility, and top
management support should be conducted with the leadership practice as mediator or mod-
erator to improve overall performance and enhance and improve maintenance procedures.
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