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Abstract: The last decade witnessed rapid increase in multimedia and other
applications that require transmitting and protecting huge amount of data
streams simultaneously. For such applications, a high-performance cryptosys-
tem is compulsory to provide necessary security services. Elliptic curve cryp-
tosystem (ECC) has been introduced as a considerable option. However, the
usual sequential implementation of ECC and the standard elliptic curve (EC)
form cannot achieve required performance level. Moreover, the widely used
Hardware implementation of ECC is costly option and may be not affordable.
This research aims to develop a high-performance parallel software imple-
mentation for ECC. To achieve this, many experiments were performed to
examine several factors affecting ECC performance including the projective
coordinates, the scalar multiplication algorithm, the elliptic curve (EC) form,
and the parallel implementation. The ECC performance was analyzed using
the different factors to tune-up them and select the best choices to increase
the speed of the cryptosystem. Experimental results illustrated that parallel
Montgomery ECC implementationusing homogenous projection achieves the
highest performance level, since it scored the shortest time delay for ECC com-
putations. In addition, results showed that NAF algorithm consumes less time
to perform encryption and scalar multiplication operations in comparison
withMontgomery ladder and binary methods. Java multi-threading technique
was adopted to implement ECC computations in parallel. The proposed
multithreaded Montgomery ECC implementation significantly improves the
performance level compared to previously presented parallel and sequential
implementations.

Keywords: Elliptic curve cryptosystem; parallel software implementation;
multi-threading; scalar multiplication algorithms; modular arithmetic

1 Introduction

Elliptic Curve cryptosystem (ECC) is a next-generation approach to public key cryptosys-
tems that uses relatively small keys to provide the same or greater level of security compared
to the other public-key cryptosystems [1]. The use of smaller key sizes led to a considerable
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improvement on the speed of the cryptosystem [2]. Therefore, ECC received increasing interest
in last decade, especially for security applications that demand high-performance cryptosystem,
such as multimedia and military applications. Recently, the dramatic increase in the amount of
data being processed by those applications, and the need to provide higher security levels make it
compulsory to improve the performance of ECC to satisfy these requirements.

The performance of ECC is affected by the choices of implementation environment; software
and hardware implementations, and the domain parameters such as field representation, Elliptic
curve (EC) form, algorithm for scalar multiplication, and the coordinates system. Every one of
the aforementioned parameters plays important role in the ECC performance [3].

The current research investigates the ECC performance using the different parameters, and
selects the best possible parameters’ choices and scalar multiplication algorithms to optimize the
cryptosystem’s performance. This study considers software implementation of ECC since it is
cost-effective and consumes less resources in comparison with hardware implementation. The rest
of this article is organized as follows: Section 2 mathematical background, Section 3 related
works, Section 4 proposed cryptosystem design, Section 5 results and discussion, and finally the
conclusion in Section 6.

2 Mathematical Background

ECC is a type of public key cryptography that depends on the discrete logarithm problem
for EC. ECC has two levels of computations; upper and lower levels of computations. The main
operation in the upper level is the scalar multiplication, which consists of two operations; point
doubling and point addition (called point operations). The lower level, on the other hand, includes
finite field (called Galois field GF) computations, which are modular addition, subtraction, mul-
tiplication, and division operations. The latter is the most time consuming operation because it
requires finding the multiplicative inverse [4].

The scalar multiplication algorithm performs either one or both of point operations in each
iteration. The point addition operation adds two different points G and Q on the EC to obtain
another EC point R. The point addition can be calculated via computing the coordinates (x3, y3)
of the resulting point, as follows:

G(x1, y1) + Q(x2, y2) = R (x3,y3), where x1 �= x2

The slope (M)= y2− y1
x2 −x1

x3 = M2 −x1 −x2

y3 =M(x1 −x3)− y1

Alternatively, the point doubling operation adds the point to itself (Q = G) and can be
calculated as follows:

G(x1, y1)+G(x1, y1)=R(x3, y3), where x1 �= 0

The slope (M)= 3x21+A

2y1

x3 = M2 − 2x1
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y3 =M(x1 −x3)− y1

It worth mentioning that the EC form does not affect the point addition calculations, hence
it relies only on the two points on the curve. On the contrary, point doubling calculation changes
according to the EC form and the use of coordinate systems, since it requires to derive the slope
equation from the elliptic curve equation.

There are two common types of finite fields in which ECC computations are applied; the
prime field GF(P) and the binary field GF(2m). The GF(P) consist of the set of integers F = {0,
1. . ., P-1} where all the operations performed using modular arithmetic (mod P) where P is the
prime number.

Several elliptic curve forms over GF(P) were presented previously. Among the most important
forms is the Montgomery curve since it has less computational complexity, which makes it
appropriate for security applications that need high speed ECC.

The Montgomery curve equation is defined as follows: E: By2 = x3+Ax2+x where the value
of A and B are predefined, and B.(A2− 4) �= 0, and x, y, A and B are elements of the GF(P).

To find all points on the Montgomery curve over GF(P), substitute the value of x= 0, 1,. . .P
in the Montgomery curve equation then take the square roots to find the value of y. The EC is
distinguished from other curves since it is symmetric about the x-axis; every point on the elliptic
curve has a mirrored point on the other side of the x-axis. For any non-vertical line drawn through
the elliptic curve, it will intersect exactly at three points. The EC has a point � called point at
infinity [5].

Points on a curve can be represented using different types of coordinates systems. The
standard coordinates is affine coordinates P(x, y). Alternatively, the use of projective coordinates
introduced to improve the performance of elliptic curve computations due to its ability to avoid
the time-consuming inversion operation. In projective coordinates a point (x,y) can represented by
triples (x,y, z) with x, y and z are elements in a finite field. There are three Known projective coor-
dinate systems, which are Homogenous, Lopez-Dahab and Jacobian. The relation of homogenous
projective to Affine is (x1 : y1 : z1)→

(x
z ,

y
z

)
. The relation of Lopez-Dahab projective to Affine is

(x1 : y1 : z1)→
(
x
z ,

y
z2

)
. The relation of Jacobin projective to Affine is (x1 : y1 : z1)→

(
x
z2
, y

z3

)
[6].

The main operation in ECC encryption is the scalar multiplication, which is usually used
to judge the cryptosystem performance. Three main algorithms were used to perform scalar
multiplication, which are the Montgomery ladder, NAF, and Binary left to right (LTR). The scalar
multiplication algorithms vary in terms of speed and security levels [7]. Their characteristics will
be studied in this research to determine the most efficient algorithm for developing high-speed
ECC.

3 Related Works

There has been an intense amount of researches done in the field of ECC since it was
introduced in 1985. The majority of previous studies investigated possible factors to improve ECC
performance such as the use of certain EC form, the use of projective coordinates, the parallel and
concurrent execution of elliptic curve computations, and the use of efficient scalar multiplication
algorithms. Again, all these factors affect the ECC performance and should be considered when
designing high-speed cryptosystem. Other research works focused on safeguarding ECC against
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certain types of attacks such as simple time attack (STA). This section surveys the most important
research works that studied the possible improvements on the performance and security of ECC.

EC point operations (point doubling (ECDBL) and point addition (ECADD)) include the
time expensive modular Inversion when using affine coordinates. Many researchers proposed
using projective coordinates systems to eliminate the modular Inversion [8]. The studies presented
in [9,10] proposed several parallel hardware designs for ECC point addition and point doubling
respectively using the standard EC over GF(P). Both studies investigated the use of three known
projective coordinates to eliminate the modular inversion operation. Researchers also used parallel
hardware implementation to utilize the inherent parallelism in ECC computations and hence
improve the speed of ECC encryption. Authors of [11] proposed parallel data flows for EC
computations over GF(P) using several projective coordinates. The mathematical equations of
Montgomery curve point operations were developed and then transformed into the best parallel
data flow that exploits the maximum parallelism degree. It has been suggested by this study that
Montgomery curve represents efficient choice for developing a high-speed EC crypto-processor. It
achieved better performance results compared to the standard EC form.

There is a plenty of studies that examined the hardware implementation of ECC forms. Some
of them used sequential implementation [12,13], where others investigated potential enhancements
that could be obtained using parallel hardware implementations [14–16].

However, the major disadvantage of hardware implementations is that they require a dedicated
crypto-processor and hardware components, entailing significant increase in the cost of designing
and implementing the cryptosystem. This makes hardware implementation of ECC not affordable
and complicated choice for many security applications, especially those applications with limited
resources. Software implementations for ECC, on the other hand, have low development costs,
easy to upgrade, and more flexible [17]. In addition, the majority of previous studies examined
the cryptosystem performance with only one scalar multiplication algorithm. This research uses
the software approach instead of hardware implementation, and investigates the cryptosystem
performance with three different and efficient scalar multiplication algorithms. Both sequential and
parallel software implementations will be studied in this research.

Authors of [18,19] surveyed the scalar multiplication algorithms that are common in EC
cryptography field. These algorithms were compared in terms of the execution time, the hamming
weight of the scalar k, the number of doubling operations, and the required precomputations.
Both studies stated that the addition and subtraction algorithm is more efficient than the binary
scalar algorithm because it uses signed binary representation of the scalar called Non Adjacent
Form (NAF), which is proven to have less hamming weight. The window method is suitable
for less constrained memory since it uses a table of pre-computed points. Another study [20]
conducted a performance analysis on five different scalar multiplication algorithms using the
Weierstrass curve over the two finite fields. The study stated that the NAF Algorithm was shown
to have the least execution time GF(P) compared to other algorithms. Moreover, the results con-
firmed that the prime field is more efficient for software implementations; the scalar multiplication
over the prime field is faster than the binary field.

In [21], researchers conducted a performance analysis on Java implementations of EC oper-
ations over both standard finite fields. The study suggested that the java BigInteger class is
more efficient for the software implementations of EC operations in the prime field more than
the binary field. The research work published in [22] presented a description for the software
implementation of ElGamal ECC over GF(P). In addition, the study provided detailed description



CMC, 2022, vol.70, no.3 4851

about the main steps of ElGamal ECC. The author used the general Weierstrass EC equation, and
the affine coordinates for point representation, in addition to the NAF algorithm to perform the
scalar multiplication. Authors in [23] proposed a new ECC that eliminates the need for the map-
ping operation that has been used in previous studies, which contributes in increasing the speed
of the encryption process. This was achieved by using the ASCII values for each character rather
than a dedicated algorithm for implementing the mapping procedure. The study presented in [24]
provided implementation details for the proposed software ECC that is able to encrypt/decrypt
text and images.

Authors of [25] proposed ECC software implementations using a new scalar multiplication
algorithm. In particular, the binary trees were used to carry out the results of point multiplication.
The proposed technique was based on adding the point to itself repeatedly and the divide and
conquer approach. The research work [26] introduced an EC cryptosystem that runs in a multi-
threading environment. The proposed parallel cryptosystem runs different mathematical algorithms
for point multiplication on the standard Weierstrass curve. The point multiplication algorithms
used are Karatsuba and Montgomery algorithms. Again, the results showed that the prime field
is faster than the binary field, which makes it appropriate choice for software applications.

The study presented in [27] provided an explanation on how to implement a java EC cryp-
tosystem over the prime and binary fields. The paper implemented the key pairs generation, keys
exchange, and ECDSA using SunEC provider. Another study [28] implemented the EC Digital
Signature Algorithm using the Java Development Kit (JDK) version 1.2. The developed system
was tested using the following key sizes 192,239, and 256 bits. The experimental results showed
that key pair generation using 256-bits takes 13.6 ms, and the signing process takes 13.7 ms, and
the verifying takes 13.7 ms.

It has been noticed that majority of previous research works did not conduct performance
testing on their software implementations of ECC to highlight the efficiency of their proposed
cryptosystems. In addition, previous studies focused on the sequential software implementation for
ECC computations and considered one scalar multiplication algorithm per each proposed ECC
implementation.

Furthermore, the reviewed research works that studied the software implementation of ECC
focused on the standard EC form and did not investigate the use of newly introduced EC
representations such as Montgomery, and tripling oriented curves. Another issue in previous works
is that they are predominately use the affine coordinates system to represent the EC points, which
leads to a significant drawback in ECC performance. This is because the use of affine coordinates
requires finding the multiplicative inverse to perform the modular division operation. Computing
the inverse is the most time consuming operation in EC cryptography.

Although, the projective coordinates were used in some studies, those researches did not ben-
efit from the parallel and concurrent execution of ECC computations with projective coordinates.
Instead, the vast majority of reviewed researches used the sequential implementation of ECC,
in which only one finite field operation can be performed in each level of computations. Again,
this increases the time delay of ECC operations and exposes the cryptosystem to the risk of
side channel attacks. The sequential software implementation of ECC in not efficient for security
applications that require high-speed cryptosystems such as multimedia and military applications.

This research seeks to develop improved software implementation for ECC. To this end,
the different factors affecting the ECC performance will be investigated, which are the use of
projective coordinates, the use of EC forms with less computations complexity, the scalar
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multiplication algorithm, and the use of parallel software implementation to perform ECC
computations. In the proposed ECC’s implementations, the different factors are tuned up and
combined to reduce the time delay. The ECC performance is evaluated and analyzed to find the
best combination of these factors that achieves the optimum performance level. This aims to
develop a high-performance and efficient ECC. To our knowledge, this combination of factors
and optimization of the software implementation of ECC have never been proposed and studied
previously.

4 Proposed Cryptosystem Design

This section presents the equations and methods used to implement ECC computations. The
parallel computational schemes, which are required for parallel software implementations, are
designed in this section. Eventually, this section introduces the enhanced software implementation
of ECC.

This research uses the recently introduced form of EC called Montgomery curve, which was
presented in Section 2. The Montgomery EC is selected since it has relatively low computational
complexity. EC points are represented using projective coordinates instead of usual affine form to
avoid the modular division operation. Three types of projective coordinates (Homogenous, Lopez
Dahab, and Jacobian) were tested in this research to find the one that gives the best performance.

The computations of point doubling and addition operations were implemented in parallel
manner via utilizing the inherent parallelism in ECC computations. Different parallelization levels
were tested to find out the best level that achieves the least time delay.

The major scalar multiplication algorithms were examined in this research. In particular, we
evaluated the performance of ECC using the Binary method, the NAF algorithm, and the Mont-
gomery scalar algorithm. Proposed ECC implementations are evaluated and compared in terms
of time consumption of the scalar multiplication operation. The Java programming language is
used to implement the proposed ECC and perform encryption and decryption operations. The
following section presents the underlying computations for Montgomery point operations using
the three coordinates systems.

4.1 Equations and Methods
In this section, the ECC point computations using projective coordinates are illustrated. The

main EC point operations are point doubling and point addition. Each one of them requires
performing a number of finite filed computations; multiplication, addition, and subtraction. The
projective coordinates use three dimensions (x, y, and z) to represent an EC point instead of two
dimensions. The point addition operation adds two different EC points to find a third point, while
the point doubling operation duplicates an EC point to find another point. Equations of point
doubling and addition are presented in Section 2.

4.1.1 Homogeneous Projection System
The Homogeneous coordinates were used to represent the points on the Montgomery curve.

The point doubling operation computes the third point represented by the coordinates X3, Y3,
and Z3. This can be done using the following equations:

X3 = 2bYZ[(3X2+ 2aXZ+Z2)2− 8b2Y2ZX]

Y3 = [(3X2+ 2aXZ+Z2) ∗ [12b2Y2ZX− (3X2 + 2aXZ+Z2)
2
]− 8b3Y4Z2]
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Z3 = (2bYZ)3

4.1.2 Lopez-Dahap Projection System
In the Lopez-Dahap coordinates, the EC point is represented using the coordinates system.

The equations used to compute the result of Montgomery point doubling using Lopez-Dahap
coordinates are as follows:

X3 =Z(3X2+ 2aXZ+Z2)2− 8b2Y2X

Y3 = 2bYZ(3X2+ 2aXZ+Z2) ∗ [12b2Y2X −Z(3X2+ 2aXZ+Z2)
2
]− 16b4Y5

Z3 = 4b2Y2Z

4.1.3 Jacobean Projection System
The Jacobean coordinates system uses the following equations to find the result of the

Montgomery point doubling operation:

X3 = (3X2+ 2aXZ2+Z4)2− 8b2Y2X

Y3 = (3X2+ 2aXZ2+Z4) ∗ [12b2Y2X − (3X2 + 2aXZ2+Z4)
2
]− 8b3Y4

Z3 = 2bYZ

The point addition computations, on the other hand, are similar for all ECs over GF(P) and
are not affected by the change in EC equation. The point addition computations are presented
in great details in [3]. The following section introduces the computational scheme designs that are
used to implement ECC computations in parallel manner.

4.2 Computational Scheme Designs
In this section, the ECC computational schemes to implement finite field arithmetic are

designed. All possible design choices to perform ECC points computations were investigated;
starting from the sequential design tell reaching the design with maximum parallel operations. The
rationale behind parallelizing ECC computations is to reduce the time delay as much as possible
and hence improving the cryptosystem performance. This study focused on the parallel ECC
design that achieves the shortest time delay. The main disadvantage of sequential implementation
of ECC is that it consumes longer time to implement the cryptosystem’s computations and wastes
the CPU capability by executing only one modular operation per each step.

The current study aims to improve the speed of ECC through utilizing the CPU’s capability
to allow the concurrent execution of multiple modular operations simultaneously. In this section
we present the data flows from inputs to outputs of the Montgomery ECC point Doubling
over GF(P). These designs created by mapping the computational operation to a parallel soft-
ware designs. Figs. 1–3 show the computational schemes for point doubling computations using
homogeneous, Lopez-Dahab, and Jacobian projections respectively.

The proposed designs use four parallel multiplications (4-PM) and two parallel additions (2-
PA), since it is considered the best parallelization level that yields the highest performance for
point doubling. In each level of computations, either addition or multiplication operations are
performed. The operations in each level are executed in a parallel manner. This was achieved
through using the multi-threading technique in software implementation as will be clarified in
Section 4.3.
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Note that the modular operations within each sequential level cannot begin unless the
operations from the previous level are fully executed.

Figure 1: Computational design for Montogomery point doubling using homogenous projection

Unlike the sequential design, the proposed ECC designs exploit the inherited parallelism in
EC commutations by allowing the concurrent executions of multiple modular operations within
each level.
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Figure 2: Computational design for Montogomery point doubling using Lopez-Dahap projection

It can be noticed from Fig. 3 that applying Montgomery ECC computations using Jacobian
projection requires the least number of multiplication operations. Thus, it is efficient choice for
sequential ECC implementations. On the other hand, applying the cryptosystem computations
using Homogenous projection presented in Fig. 3 requires less number of parallel multiplication
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levels, which yields the shortest time delay for points operations. Therefore, it is considered the
most efficient coordinates system when using parallel implementation for Montgomery ECC.

4.3 Software Implementation
This section elaborates on the software implementation of proposed parallel and high-

speed GF(P) ECC using Montgomery curve. First, we illustrate the implementation of modular
arithmetic; multiplication, addition, subtraction, and inversion operations. Then, the parallel
multi-threaded implementation of point doubling and addition operations is presented. The soft-
ware implementation of the scalar multiplication using the Montgomery ladder, the NAF, and
the Binary algorithms is shown in this section. Finally, an ECC encryption and decryption
experiments are performed to verify the cryptosystem efficiency and evaluate its performance level.

4.3.1 ECCModular Arithmetic
For Modular arithmetic operations, the java BigInteger class is used to allow very large integer

(typically 256-bit) calculations beyond the limits of all primitive data types, which cannot handle
values greater than 64 bits. In addition, the java BigInteger class provides a set of methods
to support the execution of modular addition, modular subtraction, modular multiplication and
modular inversion. All of these operations are implemented using built-in methods in the Big-
Integer class. For example, the modular multiplication is implemented by using the multiply and
mod methods of BigInteger class. The following code segment shows an example for the modular
multiplication operation used in the proposed cryptosystem.

BigInteger A = new BigInteger(“587995594274”);

BigInteger B = new BigInteger(“2000000000000”);

BigInteger P = new BigInteger (“504842927415879955942747”);

BigInteger C = A.multiply(B).mod(P);

System.out.println(“The result of A * B mod P is “+C);

In this research, we examined all possible design choices for Montgomery ECC using the three
main projections. The next section presents the software implementations for the most efficient
design choices used to perform ECC points operations.

4.3.2 ECC Point Operations
To facilitate the points operations on an elliptic curve, we implemented Point and Elliptic-

Curve Classes. The Point Class has three private members, representing the X and Y and Z
coordinates of a point. These members are objects of the BigInteger class.

The EllipticCurve class handles the domain parameters and have public functions pointAd-
dition( ) and PointDoubling ( ) and scalarMultplication( ). The pointAddition( ) and PointDou-
bling ( ) methods have sequential and multithreaded java implementations for each of the three
coordinates systems.

While the sequential implementation of point operations is straightforward and performs one
operation per each level, the parallel implementation of point operations reflects the parallel
designs presented in Section 4.2 and exploit the inherited parallelism in ECC computations. To
achieve this, the multi-threading technique in java was used to allow the parallel execution of
ECC computations. The Java threads are independent and save time; multiple operations can be
performed simultaneously and separately. Three main methods from the Java Thread class were
used in the proposed implementation, as follows:
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• Run ( ): It is used to do an action for a thread.
• start ( ): It is used to trigger the execution of the finite field operation within the thread.
• join ( ): It is used to wait for the results of the finite field operation within a specific thread.
This method can be used for the caller thread to wait for the completion of called thread.

At each level, multiple threads are created; one thread for each finite field operation within the
level. Within the bracket of the Run method, any segment of Java code can be placed. In our
implementation, a prime finite field operation using BigInteger Class’s object and procedures is
used. For the purpose of controlling the order of the executions of the levels within the parallel
design, the join ( ) method used, to make the main thread waits for the completion of all called
threads that perform the field operations within a particular level. The code segment below
showcases the creation and start of a Java thread used in the parallel Implementations of ECC.

Thread thread1 = new Thread(new Runnable( ) {

Public void run( ) { } };

thread1.start( );

Within the bracket of the Run method, any segment of Java code can be placed. In our
implementation, a prime finite field operation using BigInteger Class’s object and procedures is
used. And for the purpose of controlling the order of the executions of the levels within the
parallel design, the join ( ) method used, to make the main thread waits for the completion of
all called threads that performs the finite field operations within the same level. For instance, in
the code of the parallel implementation for Montgomery Point Doubling using Homogeneous
projection, four thread objects were created at the first multiplication level and named thread1,
thread2, thread3, and thread4. In this level, each thread responsible for carrying out the result
of modular multiplication assigned to it within the design presented in Fig. 3. After each thread
creation, the thread immediately started using the start method. The following code segment
presents the parallel implementation of the first level of multiplications for Montgomery ECC
point doubling.

At the end of a particular level of computations, each thread was created in this level will
call the join method to ensure that each thread completes its calculations before starting the
next level. Other levels of computations for ECC points are implemented in parallel using similar
mechanism. Sixteen java threads were created to implement the Montgomery point doubling using
Homogeneous Projective system.

Thread thread1 = new Thread(new Runnable( ) {

public void run( ) {

M1= G.getX( ).multiply(G.getX( )); } };

thread1.start( );

Thread thread2 = new Thread(new Runnable( ) {

public void run( ) {

M2= G.getY( ).multiply(G.getY( )); } };

thread2.start( );

Thread thread3 = new Thread(new Runnable( ) {

public void run( ) {

M3= G.getZ( ).multiply(G.getZ( )); } };
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thread3.start( );

Thread thread4 = new Thread(new Runnable( ) {

public void run( ) {

M4= G.getX( ).multiply(G.getZ( )); } };

thread4.start( ); thread1.join( ); thread2.join( ); thread3.join( ); thread4.join( );

4.3.3 Implementation of Scalar Multiplication Algorithms
The scalar multiplication is the most critical operation in ECC. The current research inves-

tigates the three main algorithms used for performing the scalar multiplication, which are the
Montgomery Ladder, the NAF, and the Binary algorithms. This aims to determine the fastest
algorithm that provides best performance level for ECC encryption/decryption processes. Exper-
imental results showed that the NAF algorithm is faster than the Montgomery ladder and the
Binary Left-to-Right method, because it requires less number of point addition operations. The
following code segment is used to implement the NAF algorithm after computing the signed
binary representation (NAF) of the scalar K through the function (computeNAF(k)).

public Point scalarMultplication(BigInteger k , Point G) {// The NAF Algorithm

Point R = new Point (new BigInteger (“0”), new BigInteger(“0”), new BigInteger(“0”) );

BigInteger [ ] s = computeNAF(k); // compute the NAF representation

R = G; //The result point R initialized to the input point G

for (int i = s.length-2; i >= 0; i- -) { //traverse through each NAF digit

R = PointDoubling(R); // During each iteration perform a point doubling

if (s[i].compareTo(BigInteger.ONE) == 0)

R = PointAddition(R,G); // if value = 1, perform a point addition R = R + G

else if (s[i].compareTo(new BigInteger(“−1”)) == 0)

{Point inverseG = new Point (G.getX( ), P.subtract(G.getY( )));

R = PointAddition(R, inverseG); // If value =−1 perform a point subtraction

} }

return R; }

4.3.4 ECC Encryption and Decryption Experiments
In order to test the proposed cryptosystem, and verify its functionality, a number of encryp-

tion and decryption experiments were conducted. Moreover, this contributes in evaluating the ECC
performance more precisely, and assists developers to build high-speed and efficient cryptosystems.

For multithreaded implementations of point operations. all of the tests are run on a Dell PC
(Intel(R) Core(TM) i7–4770 CPU @ 3.40 GHz, 4GB RAM), running the Windows 7 operating
system. The code was compiled and run with Java version 1.8 using the Eclipse IDE tool. The
M-221 curve used for the implementation and testing of the cryptosystems.
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Figure 3: Computational design for Montogomery point doubling using Jacobean projection
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The process of implementing the ECC encryption and decryption went through the following
phases:

1) Cryptosystem setup:

To set up an ECC, both senders and receivers are required to select and agree upon the
same EC domain parameters, i.e., the underlying finite field Fp, the EC coefficients ‘a’ and ‘b,’
the base point G in the curve (generator), the order of cyclic subgroup n, and the cofactor h=
#E(Fp)/n. Also, they are required to agree upon the lookup table and the same set of algorithms
for representing the EC points and implementing the EC operations.

2) Key generation and exchange:

Each side selects a random integer as its private keys and then computes its public key.
The selectPrivatekey, getRandomNumber, and computePublic_key methods were used for the key
generation purposes.

3) Message encoding:

In this phase, each char in the message is mapped to its corresponding point in the lookup
table that the senders and receivers have agreed upon. The encoding method takes an array of
char types and returns an array of Point types. The method loop the input array to map each
char element with its EC Point using the ASCII value of the char, and then this value is used as
an index for the point representing this char.

4) ECC Encryption

In this phase, the cryptosystem encrypts the point array representing the message after encod-
ing to produce a cipher array. The encryption function is a part of the EllipticCurve class, and
takes as an input; the Private Key, the message points, and the other Party’s Public Key. This
method returns a cipher array of points for each char in the message after encryption. The
encryption process is implemented through the following code segment:

Point [ ] cipher = new Point [messagetoPoints.length];

cipher = ec.Encryption(Private_Key, messagetoPoints, other_Party_Public_Key);

Point[ ] Encryption (BigInteger Private_Key, Point [] M , Point otherPartyPublicKey) { Point
Ciphers[ ] = new Point[M.length];

for (int n = 0; n < M.length; n++) {

Ciphers[n] = PointAddition(M[n], scalarMultplication(Private_Key, otherParty-
PublicKey)); }

return Ciphers; }

5) Decryption

In the decryption phase, the cryptosystem decrypts the ciphertext using a member method
of the EllipticCurve Class. The Decryption method takes the cipher array of points as an input
and returns the message mapped points back. The decryption process inverses the encryption to
restore the plaintext.
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6) Message Decoding

In the message decoding phase, each elliptic curve Point in the cipher array is mapped back
to its corresponding char using the lookup table that both sender and receiver have agreed upon
at the setup phase. The decoding method takes an array of Point types and returns an array of
Char types representing the plaintext.

The following section presents the experimental results for the proposed ECC, and discussion
about the performance evaluation.

5 Results and Discussions

Tab. 1 shows the average execution time for the finite field operations. The experimental
results confirmed that modular inversion is the most expensive in terms of time delay. The
results also showed that modular multiplication and addition operations are the second and
third time-consuming operations respectively. To calculate the running time for proposed ECC
implementations precisely, the java command System.nanoTime was used to get the current time
at the beginning (startTime) and the end (endTime) of the encryption process. Then, the actual
time consumption is calculated by subtracting the start time from the end time

Table 1: The execution time for Montgomery ECC point operations

GF(P) operations Average execution time (nanosecond (ns))

Multiplication 731891 ns
Addition 647204 ns
Inversion 1393295 ns

Tab. 2 presents a comparison in terms of time consumption for ECC point operations when
implemented using sequential and parallel designs. The implementation results also highlight the
time delay for each projective coordinates system used to apply EC computations.

Table 2: A comparison between time delays of parallel and sequential ECC implementations

EC operation/
Projective
coordinates system

Homogenous Lopez–Dahab Jacobian

Sequential Parallel Sequential Parallel Sequential Parallel

Montgomery
point doubling

447402 ns 176611 ns 458541 ns 191111 ns 429292 ns 384655 ns

Point addition 411182 ns 382558 ns 434728 ns 404962 ns 393655 ns 368348 ns

In order to highlight the improvement on the performance achieved by using the proposed
parallel implementation, Tab. 3 shows an estimated Speed-up Percentage for each parallel ECC
operation with each projection. The Speedup Percentage for the parallel designs can be computed
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as follows:

Speedup Percentage= Sequntial Running Time
Parallel Running Time

× 100

It can be observed from the results presented in Tabs. 1–3 that parallel implementation
significantly improves the ECC performance compared to the sequential implementation. The best
reported improvement percentage is 253% and was achieved using the Homogenous projection.
Moreover, this projection achieved the shortest time delay (191111 ns) for the parallel (multi-
threaded) implementation of point doubling operation. For sequential ECC implementation,
Jacobian coordinates system achieved the shortest time delay. This was expected since Jacobian
projection requires less number of modular multiplications.

Table 3: The performance improvement percentage for proposed parallel ECC implementations

EC operation/Projective coordinates system Homogenous Lopez–Dahab Jacobian

Montgomery point doubling 253% 239% 111%
Point addition 107% 107% 106%

The scalar multiplication is the main operation in ECC encryption, and usually used to
evaluate the cryptosystem performance. Tab. 4 presents a performance (time consumption in
millisecond (ms)) comparison between the sequential and parallel ECC implementations using
three known algorithms; Montgomery ladder, NAF, and Binary (LRT) method.

Table 4: A comparison between time delay of ECC scalar multiplication algorithms

Scalar algorithms Sequential Parallel

Homogenous Lopez–Dahab Jacobian Homogenous Lopez–Dahab Jacobian

Montgomery ladder 18.733 22.269 21.624 14.608 19.545 17.448
NAF method 13.728 14.225 12.005 5.335 12.981 11.154
Binary (LTR) 17.772 19.557 20.972 9.722 17.481 19.440

It can be noticed from Tab. 4 that NAF algorithm achieved the least time consumption results
(5.335 ms) for Montgomery ECC encryption when applied using the parallel (multi-threaded)
design and Homogenous projection. For sequential ECC implementation, NAF algorithm also
achieved the shortest time delay (12.005 ms) when used with Jacobian coordinates. The low hum-
ming wait of the NAF algorithm might be the main reason for its good performance levels. The
Binary (LTR) and Montgomery ladder algorithms achieved the second and third place respectively
in respect to the performance level.

Fig. 4 shows the results of the running time of all scalar multiplication algorithms on
Montgomery Curve using sequential and parallel implementations. The results clearly show that
NAF with the parallel implementation and the use of homologous projection takes the least time
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compared to the other implementations. On the other side, the sequential ECC implementation
using Montgomery ladder and Lopez_Dahab projection consumes the longest (worst) time delay.

Tab. 5 presents a comparison with ECC implementations presented in previous research
works. It can be noticed that proposed parallel ECC implementation overcomes others in terms
of performance for the main EC operations; including Encryption, scalar multiplication (ECSM),
point addition (ECADD), and point doubling (ECDBL).
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Sequntial Parallel Sequntial Parallel Sequntial Parallel

The NAF Method The Montgomery Ladder The Binary Method
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Figure 4: The time-delay (in Millisecond) of ECSM algorithms on Montgomery ECC

Table 5: A comparison with previous research works

The research works ECC operation Time delays Proposed implementation

[24] Encrypt 50.68153 ms 8.009 ms
[25] ECSM 7.762 ms 5.335 ms
[21] ECADD 3770 ms 5.335 ns
[20] ECSM 556.51 ms 5.335 ns

6 Conclusion

The explosive increase in the amount of data being transmitted over communication networks
makes it necessary to develop a high-speed cryptosystem. Elliptic curve cryptosystem (ECC) has
been proposed as an efficient public key cryptosystem since it can provide comparable security
level to other systems with using shorter key length. However, ECC using its usual sequential
implementation and affine coordinates cannot achieve adequate performance level to protect the
huge amount data processes by modern applications such as multimedia and military. Moreover,
the majority of previous studies investigated the hardware implementation of ECC, which is costly
option, and used only one standard curve.

In this article, a high-speed parallel software implementation for ECC is developed. It studied
and tuned-up the main factors playing significant role in improving ECC performance. A newly
introduced form called Montgomery curve is studied in this research because it has lower compu-
tational complexity, and hence requires less field operations. This research studied the performance
level of sequential and parallel implementation of Montgomery ECC. The parallel implementation
was done using Java multithreading techniques. Three projective coordinates were implemented
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and examined due to their ability to avoid the long time inversion operation. It has been shown
the proposed multi-threaded ECC implementation using Homogenous projection achieved the
best performance results. Such implementation is efficient choice for applications that need fast
encryption process. For sequential Montgomery ECC, Jacobian projection obtained the shortest
time delay. As a future research, other forms of EC and extensions of projective coordinates can
be studied, since it may reduce the time complexity. Parallelizing the upper level of computations
for ECC could be considered to increase the speed of encryption process as well.
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