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Abstract:Mobile phones are an essential part of modern life. The two popular
mobile phone platforms,Android and iPhoneOperating System (iOS), have an
immense impact on the lives of millions of people. Among these two, Android
currently boasts more than 84%market share. Thus, any personal data put on
it are at great risk if not properly protected. On the other hand, more than
a million pieces of malware have been reported on Android in just 2021 till
date. Detecting and mitigating all this malware is extremely difficult for any
set of human experts. Due to this reason, machine learning–and specifically
deep learning–has been utilized in the recent past to resolve this issue. How-
ever, deep learning models have primarily been designed for image analysis.
While this line of research has shown promising results, it has been difficult
to really understand what the features extracted by deep learning models
are in the domain of malware. Moreover, due to the translation invariance
property of popular models based on Convolutional Neural Network (CNN),
the true potential of deep learning for malware analysis is yet to be realized.
To resolve this issue, we envision the use of Capsule Networks (CapsNets),
a state-of-the-art model in deep learning. We argue that since CapsNets are
orientation-based in terms of images, they can potentially be used to capture
spatial relationships between different features at different locations within
a sequence of opcodes. We design a deep learning-based architecture that
efficiently and effectively handles very large scale malware datasets to detect
Android malware without resorting to very deep networks. This leads to much
faster detection as well as increased accuracy. We achieve state-of-the-art F1
score of 0.987 with an FPR of just 0.002 for three very large, real-world
malware datasets. Our code is made available as open source and can be used
to further enhance our work with minimal effort.

Keywords: Malware; security; Android; deep learning; capsule networks

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.021271


5346 CMC, 2022, vol.70, no.3

1 Introduction

In little more than a decade, Android has become one of the most dominant software stacks
for touch screen devices like smartphones and tablets. It has retained the top position in market
share for the past few years. According to a report by IDC [1] in the first quarter of 2021,
more than 83% of all smartphones sold to end users were powered by Android operating system.
Statcounter Global Stats in their recent release of market share statistics [2] has also stated
that Android maintained the number one global smartphone operating system spot by further
extending its lead over Apple’s iOS, with a 72.72 percent market share to 26.46 percent share
for iOS.

One of the most significant differences of Android software stack with its competitors is
the unprecedented business model realized by open source development and distribution. Android
software stack is kept completely open source that includes an operating system, middleware, and
some built-in applications (cf. Fig. 1). The open source nature of Android has attracted a large
number of developers and contributors, working towards improvement of the architecture. Unlike
the previous open source mobile phone approaches, Android has targeted the consumer market
and thus become the first open source mobile phone software stack that can be bought and sold
off-the-shelf.

Figure 1: Android software stack

Being open source implies that it is an undeniable choice for all emerging smartphone
manufacturers at the time when smartphone markets were taking off. Some prime examples
include Samsung, Huawei and the fastest-growing brands such as OnePlus and Xiaomi. From
the developers’ perspective, it is much easier to build applications for Android as compared to
others. On the flip side, this same open nature of Android also attracts a huge number of malware
applications that aim to steal users’ personal information. Smart devices in general and Android-
based devices in particular, are an appealing target of malware writers due to the fact that they are
not only popular, open source in nature and have a unique application market [3], but also because
of the presence of enormous amount of users’ private and sensitive data on these devices [4].
For instance, these devices are equipped with a number of sensors that can easily track users’
physical activities and current location. Similarly, embedded cameras and microphones can be used
to record videos and take pictures, even without the users’ consent and awareness [5,6].

According to McAfee [7], until 2009 no more than 1000 mobile malware were known but
since then, malware growth and diversity has been explosive, with the expansion of new tech-
nology in the smart device market. F-Secure, in one of their reports [8], show an interesting
correlation between the rise in mobile malware detection and the distribution of Android-based
smartphones in the market. Accordingly, between 2004 and 2007, only about 400 mobile malware
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infections were reported, while this number increased by 3350% in the last quarter of 2011 for
Android alone [9]. Recently, for Android, Kaspersky Lab detected around 1,245,894 malicious
installation packages, of which 38,951 are Trojans targeting banking applications and 3,805 are
mobile ransomware Trojans [10]. They also concluded that most of these infected applications are
distributed through the official app stores, which makes it really difficult for common users to
identify them. Kaspersky Lab data also indicates that mobile malware writers make good use of
the current trends to distribute their malicious code. For instance, an application called Gustuff
including a malware–Trojan-Banker.AndroidOS.Gustuff.a–appeared on Google Play in 2019 and
was one of the most autonomous and massive spreading distributions targeting more than 125
banking and cryptocurrency applications. This makes these threats even more frightening from
users’ perspective. According to the same report [10], in recent times mobile banking Trojans and
Wireless Application Protocol (WAP) Trojans are on the rise in Android devices. The Mobile
banking Trojans are not only targeting applications provided by financial institutions but rather
getting control over applications providing online hotel and taxi bookings. WAP Trojans, on the
other hand, are stealing money from the users by visiting WAP subscription websites without even
the consent and knowledge of the users [11].

We note that malware detection has always been a race against the clock, with security experts
trying to detect the newly emerging 0-days and malicious software writers cooking up new ways
of evading the detection algorithms. However, in the recent past, the use of deep learning has
given an advantage to the detection side over malicious software. Due to the fact that learning can
be performed from samples automatically, machine learning in general and deep learning models
in particular have had great success in mitigating the malware issue on Android [12–14].

Almost all the deep learning models applied to-date for malware detection on Android have
been based on the core concept of a Convolutional Neural Network (CNN) [15]. This type of
neural network is based on the convolution operation, which is inherently translation invariant.
This means that if a feature is found in one location, it is the same as being found in another
location and the relationship between different features is not important. An easy to understand
example is that of a car–for a CNN, an image with a hood, four tires and a couple of doors is a
car regardless of whether they are all in the correct position relative to each other. We note that in
the case of real world images, it is unlikely that we will see different parts of an image that do
not ‘fit together’ and therefore CNNs have immense success in the image domain.

However, for the case of malware (and opcode sequences in any software in general), this is
not a feature one would consider useful. For instance, the order in which different sequences or
subsequences of operations are carried out is of immense importance. This has been shown by
the extremely crafty technique of Return-Oriented Programming [16] to make benign software act
maliciously simply by changing the order in which different operations are carried out.

In this paper, we thus argue that translation invariance is not a property we would like to
have in our models and moreover, the spatial relationship between different features is also quite
important. For instance, the orientation in images gives different latent properties of the objects
within the image such as their geospatial relation with the coordinate system as well as the differ-
ent objects within that coordinate system. Similarly, the concept of orientation in malware data
can capture the relationship between the baseline functioning of executables and their behavior
towards other executables on the system. Existing malware detection techniques based on CNN
cannot capture such data because of the inherent limitations of CNNs [17]. For instance, in case
of image-based datasets, the features learned by different convolutional layers could be visualized
and information such as edges, lines, and curves in images could easily be depicted. However,
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in case of malware datasets it is extremely difficult to visualize or even comprehend the learned
features. Moreover, by design CNNs are rotation and translation invariant, which means that a
feature found in one location is as good as if it is found in any other location regardless of their
spatial relationship as mentioned in our car example above.

We therefore need to forsake CNN and turn to a model that handles these two issues properly.
In the recent past, Capsule Networks [17] have been shown to handle both these issues with great
success in the domain of image analysis. We therefore utilize Capsule Networks to model malware
and thus remove both these limitations from malware detection. Concretely, our contributions in
this paper are:

(1) We propose and implement a deep learning-based model for malware analysis that is
centered around the concept of Capsule Networks as opposed to CNNs. This helps us
learn “orientation-based” relationships between different subsequences in an application’s
code that captures the behavior in a much more succinct manner.

(2) We evaluate this model on three very large scale datasets to demonstrate its efficacy in
detecting real-world malware.

(3) We make our source for the whole pipeline available as open source so that any further
modifications to our work can be made easily to further enhance the results.

The rest of the paper is organized as follows: We first describe the background related to deep
learning in brief. We then turn to Capsule Networks in particular and show how it is different
from the traditional CNN-based models. Section 3 shows the details of our model and network
design as well as the details of the dataset. Our detailed experiments, results, limitations, and
future directions are discussed in Section 4. Related work is detailed in Section 5 and the paper
is concluded at the end.

2 Background

Malware detection and its analysis over various platform has remained a top priority of
researchers working in the domain of security. A number of approaches are presented for the
purpose, each having its own weaknesses and strengths. The presented solution can be broadly
classified into traditional approaches i.e., use of Anti-virus software programs along with various
hardware devices. However, it suffers issues like availability of signatures from prior set of fam-
ilies of malware. Machine learning approach regarding malware analysis automates the analysis
mechanism. However, traditional approaches are unable to learn application feature over a large
scale. Deep architectures have proven quite effective in the tasks of classification, and it facilitates
in terms of reducing human involvement and increasing classification accuracy. Deep architectures
can learn malign traits in automated fashion. Malware developers write applications in a manner
that malware changes its appearance to avoid being detected. Handcrafted features are ultimately
used for labeling through use of algorithms. However, the newly developed malware are rapidly
increasing and these cannot be detected efficiently and at scale through hand-crafted features.

The conception of Deep learning satiates end-to-end learning, which refers to machine learn-
ing that can automate every step starting from input to the architecture, extracting features
from the input and then performing various operations for its representation for classifying the
input accordingly. The Deep learning architectures include neural networks wherein the nodes are
organized into layers and are densely connected. The concept of deep learning is proven quite
effective in domains of artificial intelligence [18,19]. For the purpose of clarity, a number of deep
learning models are presented below:
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Typically, in machine learning a dataset is classified into training and test set. A process
is trained on the training set to generate another model that receives samples from test set as
input, performs some computation based on theta values and predicts the ground truth. To
minimize the energy function, the theta values are modified to optimize the model. Regression
model is fitted to obtain an overall conception of how far the expected values are from the
ground truth for individual data items. In case errors are high, the gradient descend mechanism
is adopted to minimize the error. However, the typical machine learning approaches require
human intervention in terms of defining the input for training purpose. Also, the traditional
machine learning approaches are not efficient computationally [20]. To overcome the difficulties of
traditional machine learning, deep neural network architectures are introduced. In the following
subsections, we provide a comprehensive details of various Deep Learning models.

Each Deep learning model essentially includes neural networks. It provides an approximation
to the ground truth in a specific domain similar to a human brain. After training, input from the
test set is provided to neural networks so that it can extract features and based on learned features
it can predict the label as result. A neural network (cf. Fig. 2) has an input layer containing
data in the form of text, image etc. The inputs are obtained from a dataset, which can be either
in processed or unprocessed form. The processed data contains rows defining various input data
points and columns, which specifies associated feature with the data points. These features are then
fed to the input layer for Neural Network training one by one [21]. The dataset is preprocessed
if it is not in conformance with format design of the Deep learning model.

Figure 2: Fully connected neural networks
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2.1 Hidden Layers of the Network and its Various Components
Hidden layer includes neurons with activation functions inside them. These receive input

previous layer in form of input∗weights+bias and uses activation functions to present the input in
a range [22]. Similarly, it provides output to the next layer. Hidden layers are not included in a
simple neural network. It is only included for the deep learning model.

2.2 Learning Through Activation Functions
Likewise, activation functions are utilized inside each neuron of hidden and output layer to

decide whether the coming input from the previous layer is significant. The activation functions
are of various kinds including the linear and sigmoid function. The linear activation function
puts linearity in the network and has the following as general function F(x) = ax + b The
sigmoid activation function is also a most well-known function that outputs values between 0 or
1. However, it suffers from vanishing gradient problem because it produces small values which
diverges the learning process as well [23]. Another activation function is called Tanh function that
produce output between −1 and 1. Tanh functions also face vanishing gradient issue as well at
some stage of neural training. A general solution repeatedly used to remedy this issue is the ReLu
activation function and its several variants [24].

2.3 Fully Connected Neural Network (FCNN)
Fully connected neural network contains layers of nodes that are connected fully to each

other. A fully connected layer is a function from Rm to Rn. Wherein its output dimension depends
on the input dimension. One of the forms of fully connected layer is represented pictorially
in Fig. 2.

Since all nodes are connected and there may be a number of other layers, the fully connected
network suffers from vanishing gradient issue [25]. Another issue is that of huge number of
parameters which is handled through CNN. Similar to ordinary neural networks, CNNs are made
up of neurons that are sparsely connected instead of fully connected nodes. The neurons receive
some inputs, perform a dot product followed with a non-linearity. It repeatedly applies a number
of filters on images which results in translation invariance [26]. For a detailed analysis of these
and other neural network based methods, we refer the readers to [14].

2.4 Machine Learning and Capsnets
Traditional machine learning employed the age old concept of statistically modelling the

correlation between input features and outputs. As mentioned before, this was extremely difficult
and did not scale well. Fully connected deep neural networks were introduced to automatically
extract features from large datasets.

However, there are two major limitations with CNN first, CNN were developed with image-
based datasets in mind. This has its upsides–learned features could be visualized and depicted
information such as edges, lines, curves, and high and low contrast areas. However, for datasets
of a different nature–such as malware, the learned features are extremely difficult to visualize or
even comprehend.

The second and more important limitation is more rooted in the way CNNs are designed.
By their very nature, CNNs are rotation and translation invariant. This means that if a feature is
found in one location, it is just as good as if it was found in any other location. While this makes
CNNs more scalable and a lot more computationally feasible, it has its drawbacks. Consider, for
example, a case where there is an image that contains several tires strewn around a workshop.
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There is also a hood of a car and a few doors in the image. As far as the CNN is concerned,
all the features that define a “car” are present in the image and therefore, the image represents a
car–which is definitely not the case.

To tackle this issue, Sabour et al. [17] devised a new architecture of deep learning called
Capsule Networks (or CapsNet). The idea is that the different features extracted from a data point
not only have to be present, but they also need to have an interaction with each other before they
can be considered to form a larger whole. In the example above, the tires and the hood need to
be in a certain position relative to each other before they can be considered parts of a car. The
way through which this is achieved is described briefly as follows.

Capsule networks are very similar to CNNs with a few minor changes. The basic architecture
of a CapsNet is essentially that of a few filters connected sparsely with each node on the next
layer. The output produced are through the typical convolution operation.

However, after the convolution operation has been applied, the activation has three
possible outcomes:

• If the activation is not carried out but the feature does not contribute correctly to the
overall label, it is penalized by a factor of βu

• If the activation is carried out and the feature does not contribute to the final label, it is
penalized by βu and an additional penalty of βa

• Finally, if we feature did contribute to the correct label, it is not penalized and in essence
carried more weight in the final label.

This seemingly simple algorithm is termed as routing-by-agreement since the different features
combine together and agree on what the final label should be. An example of how parts of an
image can contribute to the correct labeling of the overall image can be seen in Fig. 3. The two
images contain the correct parts but the orientation of the triangle and its spatial position relative
to the rectangle dictates whether the image should be labeled a house or a boat.

Moreover, the cost function is slightly modified as well. Briefly, it is defined in Eq. (1) as:

cost
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=
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Let us explain that briefly: i denotes a data point and j denotes a single capsule. Phi|jis the

probability density of the vote dimension h for the given data point and capsule. Finally, Vh
i|j is

the “vote” for the capsule j for data point i along dimension h. This may be, for the sake of
understanding, considered as the activation along this dimension.

An easier way to understand this is to think of the activation of the output of a single node
as not being a single value but a vector of h dimensions.
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Figure 3: Capsule network routing-by-agreement example

Based on the above, the final activation for capsule j in the output layer is defined in
Eq. (2) as:

aj = logistic

(
λ

(
βa − βu

∑
i

rij −
∑
h

costhj

))
(2)

This routing-by-agreement algorithm ensures that only those features are contributing to the
final label which actually have an agreement about the different properties of the final label. These
properties are, in the case of images, orientation of the different parts and their composition. For
instance, the orientation of a triangle in Fig. 3. For further details about this algorithm as well
as the effectiveness of this method, we refer the interested reader to [17].

In our use case of malware analysis, these different properties will be completely different. We
discuss how CapsNet can be used to improve malware analysis and make it much more semantics-
aware in the section below.

3 CapsDroid

As discussed before, the limitations of CNN have been catered to effectively in the domain
of image classification through the use of Capsule Networks. In this section, we describe how we
envision the same model as being applied to malware analysis and the changes required to model
the problem in this domain.
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3.1 Network Architecture
We base our malware analysis model on the seminal work by Sabour et al. [17]. First, we

describe the architecture that achieved the best results and then discuss some of design choices
and hyperparameter values we tried along the way to our top result.

Our top-performing model in terms of accuracy of classification is shown in Fig. 4. It is
essentially a two-layer learning process. The primary difference between the way capsules are used
in image classification and our work is the input. Images are two dimensional by nature and have
a horizontal and vertical correlation between neighboring pixels.

Figure 4: CapsNet architecture for predicting families of malware

3.1.1 Embeddings for Opcodes
The complete architecture of our CapsNet is shown at an abstract level in Fig. 4. Malware

analysis is typically done using sequences of opcodes (or bytecode in our case). This is a one-
dimensional structure. Moreover, the dependence can be not only among neighboring operators
but also among opcodes farther apart from each other. Finally, since the opcode values are
discrete and do not have an inherent partial or full order to them, the numerical values assigned
to opcodes are purely arbitrary.

In order to break the partial ordering between the numeric values assigned to them, we first
convert the numeric values to one-hot vector encoding. This results in each opcode in the sequence
to be represented using a vector of length 256–the total number of possible opcodes. However,
this is a very large vector (especially considering the fact that typical length of the sequences of
these opcodes is more than 80,000). If we use this encoding, the number of nodes in our input
layer for the CapsNet would be more than 20 million–which is obviously infeasible.
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To cater to this problem, we first use a different neural network to learn the embeddings for
each of the opcodes. This can be seen in Step 0 and Step 1 of our full architecture in Fig. 4.
To achieve this goal, we create a four-layer neural network which tries to classify the data points
into malware and benign applications. While this dataset is nothing new and does not achieve
good results, it does help us learn embeddings for the opcodes in its first layer. Once this network
reached an accuracy of 80%, we stopped the training and used the first layer of the network as
the embeddings for the opcodes. The weights of the nodes for the first layer were used to learn
vector embeddings for opcodes. This vector was only of length 4 which significantly reduces the
amount of computation and storage required in the CapsNet network.

3.1.2 CapsNet
We then re-encoded our complete dataset to represent each of the opcodes using the embed-

dings learned in the first step. This was a one-time process and any changes to the CapsNet
architecture did not affect our embeddings. The output of this layer was therefore in the shape
(ψ ,800000,4), where ψ was the batch size. These embeddings were then fed to the capsule layer.
This is where the core of our learning happens. We kept the number of capsules to quite small.
Our best results were achieved using the number of capsules set to 250. (We discuss alternate
results later.) In order to avoid overfitting over the training data, we utilized a separate dropout
layer after the capsule layer as it is not clear if embedding the dropout within the capsule layer
would be prudent.

Afterwards, in order to reduce the number of parameters, we utilized a global average pooling
layer which significantly reduces the number of parameters before passing them on to a fully
connected layer. While this has the disadvantage of losing some information, the alternative is
simply not feasible as two fully connected layers of more than 500,000 parameters would lead
to over 250 billion trainable parameters. Finally, we utilize batch norm to avoid the problem of
internal co-variate shift which invariable creeps into deep learning model [27]. The output layer of
our model depicted in Fig. 4 was used to predict the family of malware to provide fine-grained
classification. Our initial experiments however, only predicted whether the sample being fed was
malicious or benign.

Some further details of how the analysis was carried out from a practical perspective are
given below.

3.2 Dataset Description
As with any deep learning-based analysis, we need to have a large enough dataset to satiate

the requirements of the deep model with a large number of parameters. If we do not have
sufficient data, we would be significantly overfitting. To handle this issue, we utilized three large
scale datasets in tandem. First one is Drebin which is a massively popular, high quality collection
of malware collected over a period of two years containing more than five thousand malware
samples belonging to 20 families.

The second dataset used in our study was Android Malware Dataset (AMD) which is a
slightly newer dataset that has more than 60 gigabytes of malware collected in more than a
hundred families.

Finally, we augmented this with some very recent malware samples coming from VirusShare.
All three combined, we had a total malware collection of 40,000+ samples. To create a balanced
dataset, we downloaded around 50,000 samples of benign applications from the Google Play store
(along with some third party stores). To get a slightly better assurance that these samples were
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indeed benign, they were passed through the VirusTotal online virus detection service. The final
result was a benign sample size of 45,000 and a malicious sample size of approx. 40,000.

Since the dataset contained Android packages (apk files), which cannot be fed directly to a
neural network, we processed them using the AndroGuard tool which helped us extract the dex
files, which contain the actual bytecode of applications. After getting the dex file, we used an
in-house script to extract the opcode sequences from the code section of the dex file. The operator
part of each instruction was saved, and the operand parts were ignored for the sake of tractability.
The resulting data was saved in a hdf5 file for easier processing in the future. This dataset was
then fed to the neural network as described in Section 3.1.2. We describe the physical aspect and
some design decisions for our experiment in the section below.

4 Experiments and Results

4.1 Experiment Setup
The experiment was run on an NVidia k80 GPU (mounted on a system with a 32GB main

memory and a 8-core processor clocked at 3.5 GHz) using Keras with the Tensorflow backend.
The code for our CapsNet module for Keras is available as open source under the GPLv3. Since
the sequences in datasets were quite long, we clipped them to a max sequence length of 800,000.
This covered more than 92% of the data points fully but led to a significant improvement in
performance and learning times.

Our codebase is dependent on Keras as the front-end API to Tensorflow. We utilized h5py
to perform out-of-memory data allocation since the total dataset was much larger than the total
available physical memory. Matplotlib and the excellent seaborn library were used to automatically
generate learning curves and result plots simultaneously with the training and validation process.

Our maximum sequence length discussed above was a major hyperparameter. If this hyper-
parameter is reduced by a lot, the training becomes quite fast but unfortunately turns the whole
learning process into an n-gram feature classifier, which has poor accuracy. If, on the other hand,
we increase this number by a lot, the resulting accuracy is exceptional but leads to slow and
sometimes infeasible learning times.

Another important hyperparameter is the number of layers in the CapsNet architecture
described above. Again, the issue is that if we increase the number of layers even by one, the
inefficiency of the CapsNet architecture to-date means increasing the time taken by an order of
magnitude. This significantly reduces the ability to, at least given the hardware we have access to,
increase the number of layers to improve the accuracy further. Hopefully with a cluster of GPUs
and utilizing Tensorflow’s horizontal parallelization of the network, we should be able to train a
much larger network in the future.

Last but not least, the number of capsules in the hidden layer is a major hyperparameter. We
tried several alternatives for this hyperparameter. Details of the effect of these experiments are
discussed in the section below.

One important point to note is that, typically, hyperparameters are optimized using a better
strategy such as grid search. This was not feasible in our case as a single training session takes
days to complete even a handful of epochs. This would make grid search infeasible and thus
required expert hand-tuning of the hyperparameters discussed above.
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4.2 Results and Discussion
We summarize the results of all our experiments in Tab. 1. We compare our results to [14,28–

31] since these are the best results achieved for malware detection till date. The symbol ‘-’ in
Tab. 1 indicates that the corresponding metric is not reported by the source paper. As can be seen,
CapsDroid performs quite well in terms of the evaluation metrics. We achieved an F1 score of
0.987. This seems like a minor improvement over LUNA but note that LUNA is an uncertainty
based model and it achieved an F1 score of 0.986 at the expense of a loss of coverage of 0.024.
It means that while they were able to predict with that F1 score, they were not able to make
predictions for all of the applications due to the higher amount of uncertainty associated with
some applications. This, we feel was a major limitation in that model. CapsDroid, however was
able to classify all applications with a minimal False Positive Rate (FPR).

Table 1: Comparison of results with existing techniques

Metric [28] [29] DDefender [32] IMCFN [33] LUNA [14] CapsDroid

Accuracy 0.833 0.858 0.916 0.982 0.989 0.991
Precision 0.714 0.892 0.857 0.982 0.982 0.983
F1 Score 0.833 0.874 0.923 0.982 0.986 0.987
Coverage 1.0 1.0 1.0 - 0.976 1.0
FPR 0.01 - - - 0.002 0.002
Detec. Rate 0.94 0.969 - 0.973 0.981 0.980
AUC 0.88 - 0.93 - 0.983 0.984
Datasets Drebin Android

Malware
Gnome

Drebin Malimg and
IoT-
Android

Drebin and
VirusShare

Drebin,
Android
Malware
Dataset,
and
VirusShare

Learning
Model

SVM DNN DNN CNN Multiple
Deep
Learning
Models

Capsule
Network

For the rest of the metrics, it can be noted that we achieved the lowest FPR of only 0.2%
as well as a very high detection rate of 98% and an Area Under the Curve (AUC) of 0.984.
The higher AUC value achieved by CapsDroid implies that it is able to distinguish the benign
applications from the malicious samples in the datasets. An important aspect of the results shown
in Tab. 1 is that the F1 score and AUC of the model improves significantly with increase in
the complexity of the learning models as evident from the performance metrics. The IMFCN
approach also reported a higher F1 score of 0.982 with almost the same accuracy rate. However,
these results were achieved by using relatively smaller datasets for experiments.

The Receiver Operating Characteristic (ROC) curves of our model along with that of LUNA
are shown in Fig. 5. The graph showing the training and validation loss calculated for each epoch
of the CapsDroid network is shown in Fig. 6, where the vertical dashed line shows the early-
stopping point, which is used as a form of regularization to avoid overfitting of the model. As
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mentioned earlier, the dropout layer embedded after the capsule layer and early-stopping technique
helped in avoiding overfitting over the training data and improves our model’s performance on
the test data.

Figure 5: ROC comparison: LUNA vs. CapsDroid

Figure 6: Loss curves for the best model

4.3 Limitations and Future Directions
Although, CapsDroid achieve good results, we do note a limitation of our model here. The

time taken to perform the training of our model is quite slow as compared to other deep
learning models. This is due to the fact that the capsule module (and its routing-by-agreement
algorithm) is quite slow in nature. This is an active area of machine learning research, and we are
quite confident that advancements in this area will alleviate this limitation of our work overtime.
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Moreover, since this is only an issue at training time, the runtime performance of our model is
not an issue at all.

An important research direction to enhance the work presented in this paper is to analyze
dynamic behavior of applications such as system calls traces that would classify benign and
malicious applications based on the inherent relationship between system calls made by various
applications during the course of execution. Another important future research route would be to
analyze our model performance over a broader range of applications across platforms other than
Android such as iOS and Windows platform. We believe that machine learning has the potential
to effectively tackle the over expanding issue of malware on the current mobile ecosystem and
our work can contribute to highlight the effectiveness of deep learning models in mitigating these
treats.

5 Related Work

Machine learning techniques are extensively used for mitigating cyber security threats in gen-
eral and are continuously optimized for malware detection and classification in particular [34,35].
Some of the recent machine learning classifiers used for malware detection on mobile devices are
presented here.

Bourebaa et al. [36] utilizes multiple CNN-based models for detection and classification of
malware on Android-based devices. The authors extracted API calls and application permis-
sions list as features and applied a one-dimensional CNN model to suits low memory usage
on handheld devices. Further, they applied Inception and Multichannel CNN-based models to
achieve better performance in terms of accuracy rate. Although, the choice for linear model
for simplification and lower memory usage is surmounted by the complexity of inception and
multichannel models. Similarly, Alshahrani et al. [32] proposed DDefender, an Android malware
detection solution that employ both the static and dynamic malware analysis techniques to extract
features such as application’s components, system calls, requested permissions, network traffics,
and system information from the device. DDefender use dynamic analysis to extract features for
an inspected application at runtime, then apply static analysis to further extract features from the
APK files, and then apply deep learning-based model to detect malicious applications. Though,
the hybrid approach of DDefender outperformed some of the best performance models, however
significant performance overhead was reported.

McLaughlin et al. [13] have used convolutional neural networks (CNN) for malware classifica-
tion using static analysis of bytecode from a disassembled application. Malware indicative features
are learned automatically by the network from raw bytecode sequence, which eliminates the need
for malware signature to be designed manually. Similarly, Karbab et al. [30] proposed MalDozer,
an Android malware detection framework based on sequences mining using CNN. MalDozer
takes the sequences of API calls as input, which are extracted from Android app packages, and
generate sequences of vector for all applications in the same order of API calls. It applies neural
network to the vector sequence and classify applications as benign or malicious. Hou et al. [37]
have proposed an Android malware detection framework that extracts Linux kernel system calls
for each application automatically and construct weighted directed graphs. Further, they apply
convolutional neural network framework to classify newly unknown malware. Hasegawa et al. [38]
has proposed a one-dimensional CNN (1-D CNN) for malware detection using a small portion of
Android Application Package (APK) files. Using the shallow one-dimensional model, their model
has achieved a promising accuracy rate. However, the authors only analyze a small portion of
APK files without decompression, reduces the chances of capturing key features of malware.
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Martinelli et al. [39] has proposed a CNN-based linear model that is applied to system
calls occurrences of applications installed on Android device. The authors used a relatively small
dataset for experiments and achieved detection accuracy of up to 95%. Similarly, Yakura et al. [40]
used a linear CNN model to extract bytecode sequences and combine an attention mechanism to
produce attention maps for malware. The bytecode sequences are converted into images and the
attention mechanism is applied to highlight important regions for malware classification. However,
the extracted sequences from the attention maps are only useful for manual analysis, which could
only be performed for bytecode extracted from a smaller number of applications. Another CNN-
based approach known as IMCFN, proposed by Vasan et al. [33], converted malware bytecode
to colorful images and applied a fine-tuned CNN-based architecture known as ImageNet to
perform multiclass malware classification. The used two different malware datasets and achieved
an accuracy of 98.82% with one of the datasets used. However, similar to [40], the authors used
relatively smaller datasets for experiments.

Fan et al. [31] applied Deep Belief Network (DBN) architecture to classify malware by con-
structing a deep learning model. The authors have also compared their model detection accuracy
with Logistic Regression based models, C4.5, and SVM and concluded that the deep learning
model showed better accuracy than the other machine learning models. Ali-Gombe et al. [41],
and Canfora et al. [42] proposed dynamic analysis method by identifying behavioral signature of
running applications. Although, these and other dynamic analysis methods [43–45] are more resis-
tant to obfuscation but offer less scalability due to incurring additional computational cost [46].
We have based our work on different datasets of significantly larger size. The previous studies
mentioned here do not report their findings on these datasets. While we also provide our results
based on the datasets they have used, our results are much more comprehensive.

6 Conclusion

Detection of malware on mobile phones–especially on Android-based systems, which form a
vast majority of the market share–is an immensely important and constantly changing research
landscape. In this paper, we have presented CapsDroid–a Capsule Network-based model–for mal-
ware detection. This model presents a new way of detecting features of malware that not only
provides better results in terms of detection rates and F1 measure but also output features that
are more coherent and capture the intrinsic relationship between opcode sequences in different
parts of the code being analyzed. Our model was able to beat state-of-the-art results for mal-
ware detection on the Android platform. However, note that our model, in its general form,
is not restricted to the Android platform. We envision the use of this technique to analyze a
broader range of application code on other platforms as well such as iOS, Windows and MacOS–
whichever platform you consider–the code is invariably composed of a sequence of instructions,
whether interpreted bytecode or compiled machine code. Our model can be used without too
many modifications, and we plan on exploring these venues in much greater in the future.
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