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Abstract: Traditional techniques based on image fusion are arduous in inte-
grating complementary or heterogeneous infrared (IR)/visible (VS) images.
Dissimilarities in various kind of features in these images are vital to preserve
in the single fused image.Hence, simultaneous preservation of both the aspects
at the same time is a challenging task. However, most of the existing methods
utilize the manual extraction of features; and manual complicated designing
of fusion rules resulted in a blurry artifact in the fused image. Therefore, this
study has proposed a hybrid algorithm for the integration of multi-features
among two heterogeneous images. Firstly, fuzzification of two IR/VS images
has been done by feeding it to the fuzzy sets to remove the uncertainty present
in the background and object of interest of the image. Secondly, images have
been learned by two parallel branches of the siamese convolutional neural
network (CNN) to extract prominent features from the images as well as
high-frequency information to produce focus maps containing source image
information. Finally, the obtained focused maps which contained the detailed
integrated information are directly mapped with the source image via pixel-
wise strategy to result in fused image. Different parameters have been used to
evaluate the performance of the proposed image fusion by achieving 1.008 for
mutual information (MI), 0.841 for entropy (EG), 0.655 for edge information
(EI), 0.652 for human perception (HP), and 0.980 for image structural simi-
larity (ISS). Experimental results have shown that the proposed technique has
attained the best qualitative and quantitative results using 78 publically avail-
able images in comparison to the existing discrete cosine transform (DCT),
anisotropic diffusion & karhunen-loeve (ADKL), guided filter (GF), random
walk (RW), principal component analysis (PCA), and convolutional neural
network (CNN) methods.
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1 Introduction

The infrared sensors or multi-sensors are used to capture the infrared and visible images. As
different objects like the environment, people, and animals emit thermal or infrared radiations
which are further used for the detection of target and parametric inversion. These images have
a lesser effect and insensitive to the illumination variations and disguise. Thus, it overcomes the
hurdles while detecting the targets by working day and night [1]. But the most important visible
feature such as texture information get lost due to the small spatial resolution of the infrared
images, as a result objects contain insufficient details. This is due to the temperature-based nature
of the object. The objects that are warmer and colder than the background is easier to detect.
On the contrary, visible images deal with the spectral resolution and sensitivity to the effect of
changing brightness or illumination in the scene. It illustrates the perceptual scenes for the human
eyes and human vision system (HVS) [2]. Sharpened high spatial resolution VS images depicts
the important information on the geometric details of the objects, and thus helps for overall
recognition [3]. But mostly, a target cannot be easily identified due to the changing environmental
and poor lighting conditions like objects covered in smoke, disguises, night time, and disordered
background. Sometimes background and targets are similar due to which obtained information is
insufficient. Hence, IR/VS images offer integrative advantages.

Therefore, there is a need for an automatic fusion method that can fuse the two comple-
mentary images into a single image, i.e., integration of thermal radiations of the IR and texture
appearance of the VS images to produce an enhanced vision of an image [4,5]. Furthermore, the
main aim is to obtain the fused image with abundant VS image details and chief thermal targets
from the IR images. Hence, the goal of the IR/VS image fusion is to preserve the useful features
of IR and VS images.

In recent years, more attention has been paid towards the field of IR and VS image fusion.
Many researchers presented a lot of IR/VS image fusion approaches which are roughly classified
into various categories as multi-scale decomposition (MST), principal component analysis (PCA),
sparse representation (SR), fuzzy sets (FS), and deep learning (DL). In consideration to this
problem, the main motivation behind this work was to extend the research in the direction of the
examination of the fused image to be helpful in the object tracking, object detection, biometric
recognition, and RGB-infrared fusion tracking. Therefore, goal is to propose a reliable automatic
anti-noise infrared/visible image fusion technique for generating a fused image that has the largest
degree of visual representation of environmental scenes to be used in.

Major contributions of this study are: (1) The unique integration of fuzzification and siamese
CNN based infrared/visible fusion technique for the integration of complementary infrared/visible
images has been put forward. (2) Fuzzification has been done using the fuzzy sets to model
various uncertainties efficiently for problems like ambiguousness, vagueness, unclearness, and dis-
tortion present in the image by the determination of the membership grade of the background
environment as well as target detection. Whereas, feature classification has been done by the
CNN model with the extraction of the low level as well as high level infrared/visible features.
Furthermore, fusion rules are also automatically generated to fuse the obtained features. (3)
The proposed technique is more reliable and robust as compared to the classical infrared/visible
technique due to its advantage of making it less laborious. (4) A publically accessible dataset
consisted of 78 infrared/visible images has been used for the experiments. (5) The qualitative
as well as quantitative evaluation has been done using six classical infrared/visible techniques
such as discrete cosine transform (DCT), anisotropic diffusion & karhunen-loeve (ADKL), guided
filter (GF), random walk (RW), principal component analysis (PCA), and convolutional neural
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network (CNN) methods by using five metrics, i.e., mutual information (MI), entropy (EG), edge
information (EI), human perception (HP), and image structural similarity (ISS). Higher results are
given by the proposed technique proves its effectiveness concerning other pre-existing techniques.
This study deals with the problem of pixel level multi-sensor image fusion.

The key motivation of this research is to combine the advantages of the spatial domain
(CNN) and fuzzy based method to achieve the accurate extraction of IR targets while maintaining
the background features of VS images which is not easy to attain as there occurs various chal-
lenges during this process. Efficacious evaluation of the quality of pixels has been done with the
extraction of target features and background features in order to integrate them for the generation
of clear focused fused image. Additionally, it is a laborious task. Then, investigation of the deter-
mination of the pixels belongingness is an issue of relevance. Furthermore, from the literature,
it has been analyzed that FS represented the uncertain features. Therefore, indeterminacies, noise,
and imprecision present in the images can be considered as a problem of fuzzy image processing.
Subsequently, due to the powerful ability of the CNN for automatic data extraction, this research
work generated the data-driven decision maps with the utilization of CNN. Hence, as per the
literature, no attempt has been made to integrate the FS with CNN for IR/VS image fusion.
Therefore, in this research work, an attempt has been made to propose a novel fuzzy CNN based
IR/VS image fusion method for the fusion of images. The key contributions of this study are
outlined as follows.

• It helped to integrate different modality images to produce a clear more informative fused
image.

• It also improved the infrared image recognition quality of the modern imaging system.
• Subjective and objective experimental analysis have been performed.

The remaining structure of this study is presented as follows: Section 2 briefly describes
the background and related approaches for infrared/visible image fusion. In Section 3 detailed
description of the proposed technique methodology is given. Section 4 presents the dataset,
evaluation metrics, and validates the experimental results by doing an extensive comparison with
existing techniques. In Section 5, concluding remarks and future works discussion is drawn.

2 Related Works

In the past, numerous techniques for infrared/visible fusion had been developed like pyramid
decomposition [6], and DCT [7]. But, they were not suitable methods as they produced oversam-
pling, high redundancy, and so many other problems. Whereas, histogram-based methods [8,9]
produced unsatisfactory results due to their inability to amplify gray levels of the images as
well as background distortion. Hence, they produced the low-quality fused images. Bavirisetti
et al. [10] introduced the edge preserving ADKL transform technique. Although, good results were
obtained but still the qualitative as well as quantitative results needs to be improved and along
with this it was a labor-intensive method. Further, Liu et al. [11] presented the convolutional
sparse representation method whose main drawback was that only the last layer was used for
the extraction of features which resulted in the loss of the most useful information. Hence, it
was a crude method. Liu et al. [12] developed a variation model which was based on saliency
preservation. Only seven image sets were used, which were the main limitation of this study.
Many non-subsampled contourlet transform (NSCT) approaches [13,14] were developed. However,
these methods gave satisfactory fused images but there were many drawbacks like the process was
cumbersome and tedious. The decomposition of the image and reconstruction of the fused image
was computationally intensive and was not a feasible method to be used in real time applications.
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Yang et al. [15] developed the guided filter (GF) technique for the measurement of visual features
of the image. Although a better-quality of fused image was obtained but still subjective and quan-
titative results need to be enhanced. Only five sets of infrared/visible images with three evaluation
metrics were used for the validation purpose. Ma et al. [16] developed a boosted RW method for
the effective estimation of the two-scale focus maps. The quality of the fused image needed to
be improved. Afterwards, Shahdoosti et al. [17] introduced a hybrid technique with an integration
of PCA and spatial PCA techniques with the usage of an optimal filter. Subsequently, obtained
the synthesized results similar to the corresponding multisensors observed at the high-resolution
level. Liu et al. [18] developed the DL framework for the integration of multi-focus images
which was computationally intensive. They have exhibited their applications on other types of
modalities such as infrared/visible image fusion. Many other DL based techniques were introduced
for the fusion of different modality images. Li et al. [19] presented a fusion framework based
on DenseNet. Four convolution layers were included in the encoder block. Shallow features were
extracted by one of the convolutional layers. Another three layers constituted the Dense block
were used to obtain both shallow and deep image features. Then, Li et al. [20] fused the visible
and infrared images using VGG network. In this approach, middle layer information were utilized
but the information loss during the integration of features limited the model’s performance. Ma
et al. [21] propounded an image fusion method based on generative adversarial network (GAN).
Whereas, adversarial network was adopted to extract more visible details of the images. Zhang
et al. [22] designed a transform domain based convolutional neural network approach constituting
both feature extraction and reconstruction blocks. In this architecture, 2 CNN layers utilized to
obtain features of an image for fusion, and then reconstructions of image features were done to
generate fused images. Xu et al. [23] developed the U2Fusion architecture for the fusion of images.
This method was based on DenseNet [24] where vital information were retained by the designed
information measurement. Zhao et al. [25] attained the fused images by the designing of self-
supervised feature adaption architecture. Moreover, fuzzy set-based approaches [26–28] were also
used due to their very strong mathematical operations to deal with the fuzzy concepts even whose
quantitative illustration was not possible. Thus, on the basis of the literature study, the above
limitations motivated us to hybridize the advantages of fuzzy sets with deep learning concepts.
The presented work focused on the development of an automatic effective infrared/visible image
fusion technique for enhancing the vision of the fused image. With this incorporation, this method
preserved vital information.

3 Proposed Methodology

In order to handle the former problems, hybridization of the fuzzy set and Siamese CNN has
been employed to fuse the infrared/visible images. The proposed technique is presented as follows.

3.1 Fuzzification
Zadeh et al. [29] introduced the concept of a fuzzy set which is a very useful mathematical

expression to handle an object with some kinds of imprecision and uncertainties like distortion,
vague boundaries, ambiguity, blurriness, uneven brightness, and poor illumination [30]. When the
infrared/visible images are captured by sensors, there occurs an ambiguity in image pixels. Their
belongingness to the target or background is considered to be a typical problem. Therefore, this
problem has been solved by the use of fuzzy sets that further helps to solve the existence of
intermediate values by the assignment of a degree of truth ranges from 0 to 1 typically deals with
an uncertain problem.
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For the processing of an image, input images L and M was converted from pixel domain to
fuzzy domain. Eq. (1) illustrated the image representation. Let’s assume an image L as for illus-
tration. L (i, j) implies its pixel values whose mapping has to be done into its fuzzy characteristic
domain. It has expressed as shown below by Eq. (1).

L (i, j)=
p∑
i=1

q∑
i=

[μL (i, j) /L (i, j)] (1)

where μL (i, j) is a membership degree, whose values range from 0 to 1 i.e., μL (i, j): L→ [0, 1], L
is an element of the universal set. Each pixel is represented by μL (i, j) /L (i, j) . Therefore, mapping
of the original pixel value (0 to 255) is mapped to (0 to 1) i.e., fuzzy plane.

The membership grade describes the element’s degree of belongingness to a FS. Here, 1
indicates the elements with complete belongingness to a FS, whereas 0 implies it’s belonginess to
the fuzzy set. Summation of all the membership functions of the element ‘L’ is 1 as represented
below.
p∑
i=1

μL (i, j)= 1 (2)

where, p represents the number of FS where L belongs.

As input grayscale image includes darker, brighter, and gray level pixels whose value ranges
from 0 to 255. Therefore, image mapping has been done from pixel scale to fuzzy domain by
assigning triangular membership function.

Now, image having pixel values between 0 to 255 was converted to 0 to 1 indicating the pixel
fuzziness.

μ(L(i,j)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if F<L (i, j)≤ h
(L (i, j)−F) /

(
g−F

)
, if F<L (i, j) and L (i, j)≤g

h−L (i, j)/h−g, if g<L (i, j)≤ h
1, if L (i, j) > h

(3)

where F, h, and g implies the minimum, average, and maximum pixel intensity value, respectively.
L (i, j) indicates the input image pixel value.

The triangular membership function of the image has been applied whose mathematical
representation is shown in Eq. (3). Now, the image having pixel values between 0 to 255 is
converted to 0 to 1 indicating the pixel fuzziness. The membership grade describes the element’s
degree of belongingness to a fuzzy set. Here, 1 indicates the elements with complete belongingness
to a fuzzy set, whereas 0 implies that it does not belong to the fuzzy set. The calculation of
membership value i.e., the process of fuzzification is given by Eq. (3).

So, by using the above equation, pixels having minimum intensity value are assigned 0 whilst
pixels having maximum value are assigned 1, and the uncertainty, as well as ambiguity are
removed. Hence, the uncertainty was removed without diminishing the image quality.

3.2 Siamese CNN
The proposed Siamese CNN or convNet model designed for the fusion of IR/VS images is

described here. It is designed to automatically learn mid and high level abstractions of the data
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presented in the two heterogeneous images. By the use of the Siamese network, the same weights
were shared between two different branches. One branch was used to handle the infrared image
and the other was to process the visible image. Each branch has step-wise stages of CNN such
as convolution layer, max pooling, flattening, and full connection, i.e., fully connected layer.

These layers generate the feature maps parallel to each level of abstraction of features from
an image [31]. The CNN framework configuration for infrared/visible image fusion is used as a
stack of varied convolutional layers consisting of 3 convolutional layers, one max pooling, two FC
layers, and one output softmax layer. Therefore, the above-discussed features have been captured
by using three convolutional filters with a feature detector size of 3 × 3 pixels. ReLU is slid
over the whole input volume. ConvNet has been used during the implementation of the proposed
technique which has each layer of the convolution composed of (a) 3 × 3 convolutions (b) Batch
Normalization (BN′) (c) ReLU function and (d) max pooling.

Then, features extracted from the previous CNN layers are concatenated by the fully con-
nected (FC) layer. Subsequently, pooled feature maps are obtained by the flattening of the pooling
layers. The last layer consists of the output neuron which assigns a probability to the image. CNN
gives scalar output whose value ranges from 0 to 1.

3.3 Fusion Scheme
The proposed technique for the fusion scheme consisted of five steps: fuzzification,

focus detection by the feature map generations, segmentation, unwanted region removal, and
infrared/visible image fusion. This attempt has been made to generate a fused image consisting of
all its useful features as illustrated by the schematic block diagram of the proposed technique for
infrared/visible image fusion in Fig. 1.

Figure 1: Schematic block diagram of the proposed infrared/visible image fusion
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Firstly, L and M, the infrared/visible images, respectively are fed to the fuzzy set. Then, the
fuzzification has been done by doing the processing of the information presented in the image,
followed by L′ and M′, then, the output fuzzified images are passed to the pre-trained Siamese
CNN model. Additionally, binary classification of the infrared/visible images has been done by
pretrained Siamese CNN. During this, various distinct extracted image pixels are transferred to
the next convolutional layer until the entire classification is done.

For the first three convolutional layers, the fixed stride of 1 has been used. Max pooling
has been applied for the localization of the parts of the images using a window size of 2 × 2.
This has a stride of two, further helped in choosing the larger pixel value from each part of an
image. Therefore, every time the CNN layers stack is followed by the ReLU to keep the constant
network volume. In summary, the first three convolutional layers are represented as Con1, Con2,
and Con3. Con1 has generated the 64 FM ′ after applying the 64 filters, Con2 has produced the
128 FM ′ by the use of 128 filters. Due to the self-learning feature of the CNN, these filters are
automatically applied. After that, 256 FM ′ are obtained which then passed to the FC layer for
further combining with 256 dimensional vectors to produce two dimensional output vector. Lastly,
probability distribution among the two classes has been obtained using the SoftMax function.
These are followed by the generation of feature maps. The main task of the CNN is to do
automatic feature extraction from the given input images.

Thus, during the fusion, the network which has been trained using the patch size of 16 × 16
is fed with 2 fuzzified source images to generate a score map SM ′. In detail, first Con 1 has
extracted only low i.e., dark feature maps having high frequency information from the images.
Therefore, to capture the spatial detail of the image, Con 2 has been added. It has produced
the feature maps covering varied gradient orientations. Hence, the third convolutional layer has
integrated the gradient information and produced the output feature map i.e., score map. Here,
SM′ illustrated the focused information describing the image focus ability of a set of patches
having 16 × 16 size in the source image whose value ranges from 0 to 1. A more detailed focused
patch has been obtained when its value is near 0 (black) and 1 (white). SM ′ size is given in
Eq. (4).

SM′ =
(⌈

ht
2

⌉
− conv_patchsize+ 1

)
×

(⌈
wt
2

⌉
− conv_patchsize+ 1

)
(4)

If 0 < SM ′ < 1, it implied the focused parts, ht and wt implies the height and width of the
image respectively. Here, there is a reduction of the size of (SM)′ to half due to the presence of
overlapping pixels. Therefore, ht, wt, and conv_patchsize is also reduced to half and conv_patchsize
was reduced to 8 × 8.

Moreover, SM ′ consisted of an overlapped pixel. Hence, an averaging method was utilized
to produce a focus map of the same size to the source image. Now, focused information is
correctly detected where the black or white region represents the more abundant detailed image
information. However, the plain regions (gray) constitute a value of 0.6. To generate accurate
focused map, threshold factor of 0.6 was chosen empirically to keep the balance between good
quality and computationally expensiveness. As this is an optimum value chosen which gives the
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best binary segmentation map with the best evaluation metrics results in comparison to the other
values.

FM′ =

⎧⎪⎨
⎪⎩
1,White
0,Black
0.6,Gray

(5)

Now, more detailed information is contained in the focus map of the image which is near to
0 or 1 values. From Fig. 2, it can be observed that the obtained focus map constitutes of correctly
classified gray pixels, as shown in the white background.

Further processing of the focus map has been done to preserve the maximum of useful
features i.e., only to have focused parts i.e., black or white. For this purpose, the maximum
method has employed a 0.6 threshold value to segment FM′ to get binary map BM ′. As for the
segmentation purpose, user defined threshold value, i.e., 0.6 has been selected to obtain the good
quality BM′ by the following conditions.

BM′ =
{
1, if FM′ (x,y) > 0.6
0, otherwise

(6)

The obtained binary map contained some misclassified pixels and unwanted small objects or
holes as clearly seen in Fig. 1. Therefore, for the removal of some of the misclassified pixels from
the FM ′ small region removal has been done using bwareaopen to generate the initial decision
(ID′) map which will produce an image free from unwanted objects by using Eq. (7).

ID′ = bwareaopen
(
BM′,area

)
(7)

Here, the area threshold value is manually adjusted to 0.03 i.e., the threshold for area is given
in Eq. (8).

area= 0.03× ht×wt (8)

Now the computed ID′ further contained undesirable artifacts on the edges. This has been
improved by using edge preserving guided filter. Fig. 2 has clearly justified the difference between
the resultant output fused image with and without using a guided filter. The fused image obtained
by using the average rule on the ID′ without using guided filter containing blurriness whereas the
image obtained after using a GF is sharper and brighten. Subsequently, final decision map FD′
has been calculated with the use of a guided filter.

Figure 2: Fused image generated without using GF and with the use of GF
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FD′ = guided filter
(
inititial fused image, ID′, r, eps

)
(9)

where r is set as 5, eps is 0.2. This initial fused image is used as a guidance image for the
calculation of FD′.

Lastly, the pixel-wise weighted average method has been used to obtain the resultant single
fused image as described in Fig. 1 using Eq. (10).

F ′ (x,y)= FD′ (x,y)L′ (x,y)+ 1−FD′ (x,y)M′ (x,y) (10)

where, L′ and M′ are the given fuzzified images, FD′ (x,y) is the final decision map and fused
single image is represented by F ′ (x,y).

The proposed algorithm for infrared/visible image fusion is described in detail in Algorithm 1.

Algorithm 1: Fuzzy CNN based infrared/visible image fusion
Input: Two images, i.e., L and M.
Output: Single fused image F′.
Step 1: Input two images L and M are read.
Step 2: Convert L and M from the gray scale into the fuzzy domain by using fuzzy sets to

give L′ and M′, respectively.
Step 3: Compute the SM′ using pretrained Siamese CNN.
Step 4: Generate focus map FM′ using average method illustrated in Eq. (5).
Step 5: Get the binary segmented map BM′ after the calculation of FM′ using Eq. (6).
Step 6: Initial decision map was calculated using Eq. (7).
Step 7: Use GF, for obtaining final decision map

(
FD′) by setting values of the parameters,

r= 5 and eps= 0.2 as described in Eq. (9).
Step 8: Output fused image F′ is displayed by Eq. (10).

4 Experimental Evaluations

In this research work, both subjective and objective assessment has been done for the valida-
tion of the superiority of the proposed technique. For this purpose, six pre-existing infrared/visible
image fusion techniques such as DCT [7], ADKL [10], GF [15], DL [18], RW [16], and PCA [17]
have been compared.

4.1 Data Acquisition
In this, IR/VS images are obtained under changing environmental conditions. The publically

available datasets are acquired from RoadScene [23], TNO [32], and CVC-14 [33] datasets. The
experimental results have been conducted using 78 sets of infrared/visible images. Simulations are
conducted in Matlab R2016a, 64-bit using PC with processor Intel® Core™ i5-3470 CPU, 16.0
GB RAM.

The RoadScene dataset consisted of total 221 IR/VS sets of images. Images are of rich road
traffic spots. For an instance, pedestrians, roads, and vehicles. These highly representative spots
are acquired from naturalistic driving videos. These images have no uniform resolution.

The TNO dataset is common publically used for the IR/VS research. It includes the varied
military relevant scenes images that has registered with distinct multi-band cameras with non-
uniform resolution.
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The CVC-14 dataset included pedestrian scenes that is highly utilized for the manufacturing
of autonomous driving technologies. It is composed of two pair of sequence, namely day and
night pairs, respectively. Total are 18710 images, among which 8821 is the daytime sequence and
9589 as the nighttime sequence. All images have resolution of 640 × 471.

4.2 Performance Evaluation Metrics
Towards this approach, EG, MI, EI, ISS, and HP [34–39] metrics have been opted for the

validation of the proposed technique.

Entropy (EG) : It is used to calculate the spatial information of an image. It tells about the
richness of useful information. A higher entropy value signifies the excellent performance of the
method. The mathematical representation is shown below.

EG =
S−1∑
s=0

ps logps (11)

where, ‘S’ represents the number of gray levels i.e., 256 and ps contains the pixels with ‘s’ gray
values in the image.

MI: It tells about the transfer of the quantity of important useful information from the given
input source images to the single fused image.

I =
∑
f ,a

pA′F ′(f ,a) log
pA′F ′(a, f )
pA′(a)pF ′(f )

+
∑
f ,b

pB′F ′(f ,b) log
pB′F ′(b, f )
pB′(b)pF ′(f )

(12)

where, two source input images are described by A′ and B′, F′ is the fused image. Joint histograms
of the source input and fused output image are denoted by pA′F ′ and pB′F ′ . Whereas, pA′, pB′ ,
and pF ′ depicts the corresponding histograms of A′, B′, and F ′.

Edge information: It calculates the transference of the visual as well as edge information from
the two input source images to the fused image.

EI =
∑S

s=1
∑T

t=1(Q
A′F ′

(i, j)WA′
(i, j)+QB′F ′

(i, j)WB′
(i, j)∑S

i=1
∑T

j=1(W
A′

(i, j)+WB′
(i, j)

(13)

where, A′ and B′ denotes the source input images, F ′ is a fused image. WA′
(i, j) and WB′

(i, j) are
the weights of the pixels. QA′F ′

(i, j) and QB′F ′
(i, j) indicate the similarity between A′ and B′. The

location of an image is referred by (i, j).

Image structural similarity: It describes the amount of structural information preservation
into the resultant single image. It tells about the similarity between the given input images with
resultant single fused images.

SS=
∑

c
(
w′) (

α
(
w′)Q0

(
A′,F ′/w′)+ (

1−α
(
w′))Q0

(
B′,F ′/w′)) (14)

where, A′ and B′ denotes input source images, F ′ is fused output images, α
(
w′) is a local weight

which is 0 <= α
(
w′) <= 1. The value closer to 1 indicates more transfer of weights from an input

image to the fused image, c
(
w′) used for the computation of weights described and w′ denotes

the set of windows.
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Human Perception: The IF method is dependent on the perception of humans which is
calculated using human perception. Input as well as output images are filtered using a contrast
sensitivity filter. Then, the calculation of the contrast preservation map is done. It is represented
in Eq. (15).

HP= αA′ (i, j)QA′F ′ (i, j)+αB′ (i, j)QB′F ′ (i, j) (15)

where αA′ (i, j) and αB′ (i, j) are a saliency map, QA′F ′ (i, j) and QB′F ′ (i, j) describe the similarity
between input and resultant image.

All metrics values have ranges in the [0, 1] interval [29]. 0 indicates low-quality image whereas,
1 implies high-quality image.

4.3 Experimental Setup
In this study, Siamese CNN has been presented. It consisted of two branches having the

same neural structure with the same weights for the extraction of the features of two different
infrared/visible images. The network training has been done by using a framework of caffe [40].
Xavier algorithm is used for the weight’s initialization of each convolutional layer.

Training has been done on 50,000 natural images derived from the ImageNet dataset [41]. Due
to the lack of a labeled datasets, a Gaussian filter has been used to obtain the blurred version of
the images. After that, for every blurred version of the image, 20 sets of 16 × 16 patch size are
sampled from the input image. Thus, 1,000,000 sets of patches have been obtained. However, only
about 10,000 images have been used. The softmax loss function has been used as an optimization
objective whereas, minimization of loss function has been done using stochastic gradient descent.
Weights have been updated by the rule given below [42].

αi+1 =Mαi−W ∗ γ ∗wi− γ ∗ ∂L
∂Wi

(16)

where, α is a momentum variable, i is an iteration index, M is a momentum set at 0.9, W is a
weight decay that is set at −0.0005, L is the loss function and γ is a learning rate. Loss function
derivative is denoted as ∂L

∂Wi
, wi is a weight and Learning rate γ is chosen as 0.002. A higher

learning rate has adverse effects on the calculated loss, whereas a smaller learning rate takes
an increased epoch for system convergence. These values have been set after performing various
experiments. Lastly, standardization has been obtained by balancing the dataset. Transformation
and augmentations have been done on the infrared/visible images as shown below.

• Random flipping: both horizontal and vertical flipping is done.
• Rotation: both horizontal as well as vertical rotation of images is done by 90◦ and 180◦.
• Gaussian filter: blurring of images are obtained for noise smoothening.

4.4 Subjective Visibility
The fusion result on the six different sets of infrared/visible images has been attained. Based

on the fused images, it can be observed that infrared images have apparent objects and visible
images have an obvious background. The techniques such as GF, DL, RW, PCA, and ADKL
failed in retaining the objects presented in the images well.

From Fig. 3, it can be noted that in Figs. 3I–3III, the fused images produced by DL,
PCA, and ADKL are low-intensity images, hence, not able to keep the intensities of the object
information. They contained blurriness and artifacts in the images as shown by the area in red
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boxes. Thus, unclear and poor quality of images have been obtained. The visual quality of images
obtained from RW and GF methods are worst because there is information loss and the upper
right corner of these images seemed to be darker than the original image with some distortion
too. The image produced by DCT is better as compared to above-discussed techniques but is also
incapable to extract all the information. Thus, the proposed technique overcame these problems
very well as shown in Figs. 3I–3III by producing images of enhanced quality.

It is evident from the Figs. 3IV–3VI that the fused image produced by the proposed technique
contained more detailed information of the target image depicting image characteristics as well.
By contrast, DL, ADKL, and DCT generated a noisy, blurred image with a poor quality of fused
image. The DCT technique produced some distortion giving the distorted image. From the fused
images of GF, RW, and PCA it can be analyzed that all the contents from the source images are
not transferred to the resultant output images. On comparative analysis of the proposed technique
with the other techniques, it has been analyzed that other techniques exhibited the loss of contrast,
brightness, edges as well as incapable of fusing many types of features among two different
heterogeneous images. Thermal radiations of the infrared and target object of the visible image
has not been retained by these techniques and most of the information got damaged. Hence, the
proposed technique has outperformed all other techniques by producing the better fused image.

Figure 3: Qualitative fused images on 6 infrared/visible image pairs, (a)–(i) represents infrared
image, visible image, fused output by DL, fused output by PCA, fused output by ADKL, fused
output by DCT, fused output by RW, fused output by GF, and fused output by proposed
technique in (I)–(VI)
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4.5 Objective Visibility
For further illustrations of the fusion effects, five evaluation metrics such as MI, HP, ISS,

EG, and EI have been used. Higher values of metrics indicate the best quality of fused images.
Its value ranges in the interval of 0 to 1 where 1 or more than 1 indicates the enhanced quality
image [43–45]. Tab. 1, lists an average value of 78 sets of images. These values are compared on
the basis of five evaluation metrics. It can be clearly observed that the proposed technique has
fused the images with more MI, that is, more information transfer from the given input images to
the resultant single fused image. It has also achieved the highest entropy which indicates that it
has consisted of more spatial information of the given source images. On the contrary, ADKL has
attained the lowest entropy which implies the ineffectiveness of this technique and less information
has been transferred. Furthermore, the proposed technique also attained the highest values in
terms of EI and HP that validate the fused image containing better visual edges and sharpening
of the image. The proposed technique has also given the best ISS value near 1, which shows
superiority in comparison to other existing techniques.

Therefore, from the above discussions, it can be concluded that the proposed technique
attained the highest values in terms of every metric as shown in bold in Tab. 1. Hence, it has
outperformed the other traditional infrared/visible image fusion techniques.

Table 1: Average comparison of metrics values for 78 sets of images

Fusion methods MI EG EI ISS HP

DCT 0.7318 0.7202 0.6099 0.5543 0.5472
PCA 0.6111 0.7040 0.6370 0.6728 0.5304
RW 0.7355 0.7994 0.5647 0.7421 0.5634
GF 0.3850 0.7689 0.6174 0.7510 0.5232
CNN 0.6490 0.7962 0.5015 0.8109 0.5115
ADKL 0.6709 0.6790 0.6180 0.6994 0.6978
Proposed 0.9597 0.8429 0.6444 0.9709 0.6527

5 Conclusion and Future Directions

This paper designed an infrared/visible image fusion technique based on the fuzzification and
convolutional neural network. The main goal of this study is to solve the issue regarding the
maintenance of thermal radiation features in the pre-existing IR/VS based methods. Therefore,
benefits of two theories have been taken with the integration of FS and CNN to devise a new
strong and adaptable technique into a single scheme. The proposed technique firstly retained the
details of the thermal radiation of the infrared images, whereas simultaneously accumulated the
visibility in the visible image. Therefore, correct target location can be observed which further
helped in the processing and also vital for increasing precision and focused ability of the output
image. This technique dealt with 78 sets of infrared/visible images. Furthermore, high quality
and enhanced image has been produced even under bad illumination and varied expressions. The
main goal behind this work is the designing of the advanced automatic technique to obtain the
fused image containing contour, brightness, and texture information between IR/VS images to
illustrate clear target features of the infrared image while distinctly visible background which will
be further helpful in the military surveillance and object detection. The subjective, as well as
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objective evaluation, indicated that the proposed technique has given a higher performance in
comparison to the existing techniques in feature extraction and information gathering.

In the future, we intend on the optimization of the developed technique with the hybridization
of the neuro fuzzy and CNN. Moreover, this technique can be more generalized for the fusion of
more than two images at the same time by adapting the convolutional operations. Also, we intend
to extend this research in other domains as well.
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