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Abstract: Gaze estimation is one of the most promising technologies for
supporting indoor monitoring and interaction systems. However, previous
gaze estimation techniques generally work only in a controlled laboratory
environment because they require a number of high-resolution eye images.
This makes them unsuitable for welfare and healthcare facilities with the fol-
lowing challenging characteristics: 1) users’ continuous movements, 2) various
lighting conditions, and 3) a limited amount of available data. To address these
issues, we introduce a multi-view multi-modal head-gaze estimation system
that translates the user’s head orientation into the gaze direction. The proposed
system captures the user using multiple cameras with depth and infrared
modalities to train more robust gaze estimators under the aforementioned
conditions. To this end, we implemented a deep learning pipeline that can
handle different types and combinations of data. The proposed system was
evaluated using the data collected from 10 volunteer participants to analyze
how the use of single/multiple cameras and modalities affect the performance
of head-gaze estimators. Through various experiments, we found that 1)
an infrared-modality provides more useful features than a depth-modality,
2) multi-view multi-modal approaches provide better accuracy than single-
view single-modal approaches, and 3) the proposed estimators achieve a high
inference efficiency that can be used in real-time applications.

Keywords: Human-computer interaction; deep learning; head-gaze estima-
tion; indoor monitoring

1 Introduction

Since the outbreak of COVID-19, governmental bodies worldwide announced that, to limit
the spread of the virus, noncontact interactions should be established between people [1]. Non-
contact interaction is essential for medically vulnerable people (e.g., the elderly, patients, or the
disabled, as shown in Fig. 1) who can be easily infected by the virus [2].
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Figure 1: Examples of medically vulnerable people

Accordingly, medical welfare facilities (e.g., hospitals and nursing homes) have begun to limit
face-to-face care and contact visits [3]. Although non-contact interaction will be effective in
preventing the medically vulnerable from contracting the virus, it makes continuous monitoring of
their statuses and conditions challenging. Therefore, it is essential to develop more effective and
advanced noncontact interaction techniques to monitor and predict the health status, intentions,
and behaviors of people in the welfare domain.

As shown in Fig. 2, many researchers have attempted to develop contactless monitoring
systems for various applications. Previous methods for monitoring people can be divided into
1) vision-based [4–13], 2) wearable-based [14–21], and 3) head-gaze-based technologies [22–31].
Vision-based methods usually detect and track the pose or movements of medically vulnerable
people using user images captured by cameras. References [4–6] mainly detected the fall status
of a person using a deep learning network or image processing algorithm. In addition, various
approaches have attempted to recognize their behaviors (e.g., sitting, standing, and lying) [8,9] or
analyze their sleep patterns [11,12]. In contrast, wearable-based systems monitor user conditions
using wearable sensors or hand bands to measure the heart rate, blood pressure, and body
temperature of users [17–21]. With wearable-based methods, physiological data can be acquired
without the assistance of caregivers or nurses. However, these approaches mainly focused on
monitoring the user’s behaviors or status, so that they still lack the interactive features, such as
understanding user intents and predicting user’s interests, which are particularly essential for the
users in welfare facilities.

Figure 2: Examples of contactless monitoring systems (a) Vision-based method (b) Wearable-based
method (c) Gaze-based method
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In recent years, gaze estimation has been considered one of the most promising interaction
technologies for monitoring and predicting user intentions and behaviors because it is based on
the assumption that users look at a certain area with particular attention or interest. Conventional
gaze-based methods mainly focus on fine-grained gaze estimation. For example, they compute the
values of yaw, roll, and pitch of the user gaze direction to predict a point (coordinates) on a
monitor screen where the user gazes at [32–34] (see Fig. 3a). These methods usually utilize deep
learning techniques or geometric eye models to compute the gaze point from the eye feature.
However, because they require the use of handheld/nearby devices, such as monitors, laptops,
mobile phones, and tablets, they are not suitable for the target domain of this study, where
natural indoor monitoring and interaction is needed. On the other hand, another type of gaze
estimation technology called head-gaze estimation utilizes the head orientation of users. This
approach attempts to predict an indoor predefined zone or area that the user is looking at,
rather than a specific point on the monitor screen. For example, head-gaze estimation systems
estimate where a user is looking (e.g., a side or rear mirror, etc.) while driving a vehicle [22–31]
(refer to Fig. 3b). Even though these systems attempted to interact with users by estimating the
head-gaze direction, there still exists a limitation that they are also targeted to a confined and
controlled environment such as an in-vehicle setup. Therefore, the existing systems are not suitable
for our target domain (welfare facilities), which has the following challenging conditions: 1) (head-
) gaze estimation should be extended to support an indoor, 2) various lighting conditions must
be handled, and 3) only a limited data size can be used.

Figure 3: Example of conventional (a) gaze-based and (b) head-gaze-based methods

To address the limitations of the previous approaches, we introduce an indoor user monitoring
and interaction system based on the multi-view multi-modal head-gaze estimation. In the proposed
approach, user images are captured by multiple cameras with depth and infrared modalities;
subsequently, the head-gaze direction of users is estimated through deep learning architectures.
Based on head-gaze estimation, which is a proxy of user gaze direction, we attempt to interact
with users more naturally in an indoor environment. In addition, we exploit depth and infrared
imaging modalities, which are more robust to changes in lighting conditions, to handle various
situations (e.g., nighttime and blackout). Finally, we adopt a multi-view, multi-modal approach to
overcome the problem of a limited amount of data by capturing the various perspectives of a user.
A few studies have examined interactive head-gaze estimation techniques that use a multi-view or
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multi-modal approach [22,35]. For example, Yoon et al. [22] tried to estimate the head-gaze direc-
tion using two cameras (i.e., frontal and side views) with infrared modality, and Lian et al. [35]
predicted the user gaze direction using RGB images captured in three views. Although various
multi-view or multi-modal approaches have been studied for head-gaze estimation, the effects of
the view and modality configurations on the overall performance of head-gaze estimation systems
still need to be investigated in depth.

In this study, we analyze the differences in the performance of the proposed system under
various camera configurations (i.e., views) and modalities in terms of accuracy and efficiency. In
particular, we conduct various experiments to answer the following research questions.

•Which modality performs well in both single-view and multi-view approaches?

First, we examine which modality (i.e., depth or infrared image) would be more effective in
single-view and multi-view setups. The answer to this question will provide a basic insight into
the use of image modality for head-gaze estimation under challenging conditions.

• Does the multi-view approach yield better performance than the single-view approach?

Conventionally, it has been often observed that the multi-view approach performs better than
the single-view approach in various tasks, such as object recognition, pose estimation, and so on.
However, the effects of using multiple views on the performance of head-gaze estimation in the
welfare domain remain unclear. Therefore, we investigate whether this assumption can also be
applied to our problem domain.

• Does the multi-modal approach perform better than the single-modal approach?

The multi-modal approach is generally considered more effective than the single-modal
approach in various domains. In this study, we verify this assumption in terms of single or
multi-view head-gaze estimation. To this end, we applied three approaches to combine the image
modalities: i) data-level, ii) feature-level, and iii) modal-wise. The data-level method combines the
depth and infrared images directly before feeding them to the estimation network. The feature-
level method concatenates the intermediate convolution neural network (CNN) features of each
modality in each view before the final prediction layers. The modal-wise method concatenates the
intermediate CNN features of the same modality across multiple views. Further details on the
methods used to exploit multi-modal data are discussed in Section 4.4.

The remainder of this paper is organized as follows. Section 2 reviews related studies and
Section 3 describes the data collection procedure. The details of the proposed approach are
described in Section 4. Section 5 presents the experimental results for each research question, and
Section 6 discusses the performance of the proposed method in terms of efficiency. Finally, we
present our conclusions and future research directions in Section 7.

2 Related Work

As mentioned in the Introduction, many contactless monitoring and interaction methods have
been presented and integrated into various applications. The previous methods can be divided into
the following: 1) vision-based systems, 2) wearable-based systems, and 3) head-gaze-based systems.
In this section, we briefly review the characteristics of conventional methods and compare them
with the proposed method.
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2.1 Vision-Based Monitoring
Vision-based systems monitor users using images captured by RGBD cameras. These methods

mainly focus on fall detection, behavior monitoring, and analysis of sleep patterns. First, [4–7]
proposed a fall detection system based on user images. These systems observed user movements by
capturing RGB and depth images in an indoor environment with bright lighting conditions. The
captured images were fed to a vision-based deep learning network that was trained to detect the
fall status. Next, [8–10] monitored user behavior in a care room by capturing users or detecting a
bed. In Nari et al. [8], a care room was divided into three zones, namely, relaxing, walking, and
toilet zones; next, the system identified the location of the elderly and monitored their behaviors
(e.g., sitting, standing, and lying). In addition, [9,10] detected a bed in a care room by capturing
RGB images from multiple views and capturing videos using a monocular camera, respectively.
Subsequently, whether the patients were leaving their beds was monitored. Some approaches have
analyzed the sleep patterns of users for medical care purposes. In Torres et al. [11], the RGB
and depth images of a patient were captured in three views; and in [12,13], the depth images of
users lying in their beds were captured. The captured images were then fed to a vision-based deep
learning network to extract the features of the sleep patterns of the users. The previous vision-
based systems presented various methods for contactless interaction using cameras; however, they
were only limited to monitoring the status of a care room or detecting the simple movements or
behavior patterns of users.

2.2 Wearable-Based Monitoring
Wearable-based approaches attempt to directly measure the bio-signals and movement patterns

of users to detect and predict their conditions. In [14–16], fall detection systems with a wearable
band prototype equipped with accelerometers and gyroscope sensors were presented. The sensor
data measured by the device were transformed using various filtering methods and transmitted
to the fall detection system. However, gyroscope and accelerometer sensors are sensitive to noise,
and inertial measurement unit (IMU)-based approaches often struggle to find appropriate filtering
methods to guarantee acceptable performance. In contrast, [17,18] attempted to monitor the health
status of users by detecting an abnormal heart rate with an electrocardiogram (ECG) sensor.
In [14,19,20], the heart rate of users was monitored through a wearable wrist band equipped
with a set of sensors. If an abnormal status was detected, the system transmitted an alarm
signal or information to the emergency center through a mobile application [14,19] or displayed
the measured bio-signal on a thin-film transistor-liquid crystal display (TFT-LCD) screen [20].
Similarly, Arai [21] measured not only the heart rate but also blood pressure, oxygen saturation,
and body temperature to monitor user status. In Arai [21], a multi-modal system for measuring
various vital signs, including electroencephalography (EEG) and electromyography (EMG), was
proposed. Although various wearable systems have successfully detected the conditions and status
of users, they still suffered from the limitation that the user needs to wear sensor devices to
measure their bio-signals.

2.3 Head-Gaze Estimation
As stated in the Introduction, head-gaze is a proxy of user gaze direction computed based

on the head orientation of users, a useful indicator that does not require precise calibration to
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represent the interests and intentions of users [22]. Previous studies on the estimation of head-
gaze mainly focused on monitoring the status of users (e.g., whether the user is concentrating)
while driving [22–31]. These studies first divided the in-vehicle space into multiple zones (e.g.,
right mirror, rear-view mirror, and speed meter areas). Afterward, a single camera was installed
on the dashboard of a vehicle to capture RGB images of the driver’s face while looking at certain
in-vehicle zones. Finally, the authors of [23–27] trained a deep learning model and conventional
machine learning algorithms using the captured RGB images to estimate the head-gaze direction.
In addition, the authors of [28–30] collected the depth, infrared images, or 3D point cloud data
of a driver, which are not primarily affected by lighting conditions, to estimate the direction of
the driver’s head-gaze. In particular, [22,31] captured drivers in multiple views (i.e., frontal and
side-views) with an RGB or an infrared modality to monitor their attention while driving. For
example, the authors of [31] placed cameras in front and on top of the driver to capture the
facial features and mimic the driver’s view, respectively.

However, these methods still have several limitations; they only work in a limited environment
with a short-distance setup between the user and camera (e.g., in-vehicle) as well as in stable
lighting conditions. In addition, they usually require a large amount of data for training gaze
estimators; however, it is particularly difficult to collect dataset in the welfare and healthcare
domains. Therefore, it is considered that the existing methods based on head-gaze estimation are
not suitable for our target domain where various challenging issues remain.

A summary of the state-of-the-art is presented in Tab. 1. First, as shown in the table, vision-
based methods usually detect user’s movement patterns using images captured from cameras by
utilizing deep learning (DL) and machine learning (ML) approaches. These methods work effec-
tively for a long-distance setup between the measuring device and users; however, they only detect
a simple event, such as whether the user leaves the bed or not. Next, wearable-based methods
monitor the condition of users by measuring bio-signals (e.g., heart rate, blood pressure, EMG,
etc.) using various sensors attached to their bodies. Therefore, users are unavoidably asked to wear
sensing devices, resulting in an uncomfortable user experience. Finally, head-gaze-based methods
mainly monitor the user’s status (e.g., whether a user is concentrating while driving) using multi-
modal data captured from cameras. However, they also operate only in a limited environment,
such as an in-vehicle setup; hence, they are not suitable for the welfare and healthcare domain
where a more natural and wide interaction is required.

To sum up, state-of-the-art methods on user monitoring and interaction have several lim-
itations, such as the need to wear devices, detection of simple patterns, and short interaction
distance. In this paper, we introduce an indoor user monitoring and interaction system based
on the estimation of head-gaze direction using a multi-view multi-modal approach. In particular,
the proposed system tackles and overcomes the following limitation of previous works: 1) use of
multiple cameras to support a long interaction distance, 2) use of multi-modal data to handle
various lighting conditions, and 3) development of a deep learning pipeline to achieve robust
performance with less data. Finally, through various experiments we investigate the changes in the
overall performance of the system according to the view and modality configurations in various
challenging conditions.
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Table 1: Summary of the state-of-the-art approaches

Category Ref. Year Wearable Measuring
device

Measured
data

Measuring
distance

Number
of
cameras

Lighting
condition

Number
of
categories

Method

Vision [4] 2020 X Camera RGB Long 2 Normal 2 DL
[5] 1
[6] Depth Normal/

Dark
4 ML

[7] 2021 RGB Normal 2 DL
[8] 2017 3 Rule
[9] 2018 RGB/

Infra
2 Normal/

Dark
2 ML

[10] 2020 RGB 8 Normal DL
[11] 2018 3 10 –
[12] 2016 Depth 1 Normal/

Dark
4 DL

[13] 2020 Infra 5
Wearable [14] 2019 O Wrist

band
Bio-
signal

Attached
sensor

– – – –

[15] Thigh
band

2 ML

[16] 2020 Belt 2
[17] 2021 Sensor – –
[18] 2020
[19] 2019 Rule
[20] 2020 ML
[21] 2014 Rule

Head-gaze [22] 2019 X Camera Infra Short 2 Normal/
Dark

15 DL

[23] 2018 RGB 1 Normal 7
[24] 2020 8
[25] 2018 10
[26] 2020 7
[27] 10 ML
[28] 2019 RGB/

Depth/
Infra

Normal/
Dark

6 DL

[29] 3D
point
cloud/Infra

5 ML

[30] 2021 3D
point
cloud

4 6 DL

[31] 2020 RGB 2 Normal 12
Ours 2021 X Camera Depth/

Infra
Long 3 Normal/

Dark
27 DL

3 Data Collection

To simulate our target environment (e.g., a patient alone in a hospital room or an elderly
person alone in a nursing home), we set up our laboratory condition as shown in Fig. 4.

Details of our experimental setting are as follows:

• A single chair was located at the center of the room.
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• Three RGBD cameras were installed approximately 2 m from the front of the chair. The
cameras were located at the top left, top right, and center of the user’s front (hereafter, L-view,
R-view, and C-view, respectively). This setup allowed the participants to act naturally.

• For head-gaze estimation, we defined several zones in which each participant could gaze in
the room, as illustrated in Fig. 4. For this, we defined nine virtual grids for each wall (i.e., the
left side, right side, and front) around the participant; hence, a total of 27 grids were used as our
target class (i.e., directions of head-gaze). Each virtual grid was labeled using a number card for
easy reference.

• The lighting of the laboratory was set to dim while capturing user images to reflect the
nighttime condition of our target location. For this setup, an Intel Realsense camera was used
because it provides depth and infrared modalities that are largely unaffected by lighting conditions.

Figure 4: Example of the experimental setting

For the data collection task, we recruited ten university students (five males and five females)
aged between 20 and 27 years. The data collection procedure used in this study is as follows:

• After a participant arrived, the experimenter gave an overview of the experiment along with
a set of instructions regarding the entire procedure.

• The participant was asked to sit on a chair located at the center of the room.

• The participant was asked to naturally look at the grid randomly selected by the experi-
menter for 1 s. The participants were also allowed to move their body freely while gazing at a
specific grid. The cameras installed in the room captured the images of the participants using
the depth and infrared modalities. This task was repeated until all the grids were selected by the
experimenter.

• After completing the first phase (i.e., capturing images of the user for 27 grids) of the
experiment, the participant was given 5 min of break.

• After the break, the same task described in 3) was performed again. The experiment ended
after this task was completed.

The data collection experiment took 10–15 min on average, including the pre/post setup and
break between the phases for each participant. Fig. 5 shows the sample images of participant No.1
captured in three views with the depth and infrared modalities. As can be seen from the figure, the
participant can be identified from the images of both modalities despite the laboratory lighting
being set to dim. The captured images were used for training and testing the proposed multi-view
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multi-modal head-gaze estimation framework after a series of image pre-processing tasks. The
total number of images captured in the experiment was 97,200 (i.e., 30 frames × 27 grids × 3
views × 2 modalities × 10 subjects × 2 phases). We obtained the IRB approval (202009-HR-
004-02) from Kumoh National Institute of Technology to conduct the experiment with human
subjects. In the next section, we describe the overall architecture of the proposed method and how
the data from different views and modalities can be used for training and tuning deep learning
networks to estimate the head-gaze direction.

Figure 5: Example of images captured with the depth and infrared modalities

4 Head-Gaze Estimation

The overall architecture of the proposed approach is illustrated in Fig. 6. In this study,
we investigated how architectural changes affect the overall head-gaze performance. As depicted
in Fig. 6, we designed four different architectures based on how the number of views and/or
modalities incorporated to build an estimator. Specifically, we begin with the single-view gaze
estimator (Fig. 6a) as the basic module of our framework. The single-view gaze estimator was
used to predict the direction of the head-gaze using images captured in the front view (i.e., C-view)
with a single modality (i.e., depth or infrared only). The details of the image pre-processing and
the base network used in this estimator are described in Section 4.1. The multi-view estimator
depicted in Fig. 6b is an extension of the single-view estimator in terms of view. In this estimator,
a set of images captured from different views is used to estimate the head-gaze direction. For
example, a combination of images captured in the left and right views (i.e., L-view and R-view)
can be used, rather than only front view (i.e., C-view) images. On the other hand, the multi-modal
estimator depicted in Fig. 6c is an extension of the single-view estimator in terms of modality.
In this estimator, a set of images captured with multiple modalities (i.e., both depth and infrared
modalities) is used, rather than only single-modal images. Finally, the multi-view multi-modal
estimator is an extended version of the single-view estimator in terms of view and modality. In
this estimator, the images captured in multiple views with multiple modalities are exploited to
predict the head-gaze direction.

Tab. 2 summarizes the configurations of each estimator. There can be multiple variations
in each estimator category according to the type of modality and view used. First, the single-
view estimator can use either depth or infrared images; thus, two types of networks exist. The
multi-view estimator can use four different combinations of views (i.e., C + L, C + R, L +
R, and C + L + R views); however, it only takes either depth or infrared images, resulting in
eight different types of networks. Similarly, the multi-modal estimator has a single configuration
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(i.e., single-view with depth + infrared modalities), whereas the multi-view multi-modal estima-
tor can have four different network types (i.e., CL/CR/LR/CLR-views with depth + infrared
modalities). The following sections describe the details of each estimator architecture.

Figure 6: Overall network architecture of our proposed method: (a) Single-view estimator, (b)
Multi-view estimator, (c) Multi-modal estimator, and (d) Multi-view multi-modal estimator

4.1 Single-View Estimator
In the single-view estimator architecture, we used a state-of-the-art CNN model called Effi-

cientNet [36], which achieved a top-1 accuracy of 84.3% on the ImageNet classification task, as
our base feature extractor. The authors of the EfficientNet presented a novel scaling method that
uniformly scales all dimensions of depth, width, and resolution of the baseline network using a
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compound coefficient. According to the different configurations of scaling factors, EfficientNet can
have different architectures, ranging from EfficientNetB0 (smallest) to EfficientNet-B7 (largest).
For example, the B7 network architecture has approximately 13 times more parameters than
the B0 network architecture. In our framework, the EfficientNet-B0 model was used as a base
feature extractor and the input size of the model was adjusted according to the resolution of
our data (i.e., from 224 × 224 to 64 × 64). Tab. 3 presents the details of the architecture of the
EfficientNet-B0 model used in this study. More details regarding the EfficientNet architecture can
be found in Tan et al. [36].

Table 2: Configuration of each head-gaze estimator category

Modal

View Depth Infrared Depth + Infrared

C Single-view estimator Multi-modal estimator
CL Multi-view estimator Multi-view Multi-modal estimator
CR
LR
CLR

Note: In the view column, the letters denote the 1) center view (C), 2) center and left-top view (CL), 3) center and right-top view (CR), 4)
left-top and right-top view (LR), and 5) center, left-top, and right-top view (CLR).

Table 3: Architecture of the EfficientNet-B0 model

Index Operation Resolution # of channels # of layers

1 Conv 3 × 3 64 × 64 32 1
2 MBConv1, 3 × 3 32 × 32 16 1
3 MBConv6, 3 × 3 32 × 32 24 2
4 MBConv6, 5 × 5 16 × 16 40 2
5 MBConv6, 3 × 3 8 × 8 80 3
6 MBConv6, 5 × 5 4 × 4 112 3
7 MBConv6, 5 × 5 4 × 4 192 4
8 MBConv6, 3 × 3 2 × 2 320 1
9 Conv 1 × 1 & Pooling & FC 2 × 2 1280 1

The network architecture for the single-view head-gaze estimation can be summarized as
follows. As shown in Fig. 6a, we added a global max-pooling layer, a fully connected layer with
256 nodes, and the final fully-connected layer with a softmax function after the last layer of
the pre-trained EfficientNet-B0. We then fine-tuned this model for head-gaze estimation on our
collected dataset. We cropped the face region to a size of 64 × 64 from the collected images.
The cropped images were fed to the pre-trained EfficientNet-B0 model. Therefore, using the given
input image, the single-view head-gaze estimator predicts the area of interest of the user from 27
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possible areas. In this study, we exploited two image modalities (i.e., depth and infrared images)
to configure two different types of single-view estimators (i.e., infrared-based and depth-based
estimators). The multi-view, multi-modal, and multi-view multi-modal architectures, which will
be discussed in the following sections, are extensions of this module; therefore, they use the
single-view estimator as their basic building block.

4.2 Multi-View Estimator
As mentioned in Section 4, the multi-view estimator is an extension of the single-view estima-

tor in terms of view. In the multi-view estimator, the images captured from different views are fed
to each single-view estimator, as shown in Fig. 6b. For example, if the images from three different
views (i.e., center, left, and right views) are exploited for head-gaze estimation, three different types
of single-view estimators (i.e., center, left, and right views) are generated. Subsequently, we extract
the 256-dimensional image features from each estimator with a different perspective (i.e., view)
and concatenate them into a single feature vector with a size of 256 × N views. The concatenated
features are then passed through the last classification layer for the final head-gaze estimation. In
this study, three different types of views were used; thus, four different combinations of views (i.e.,
center + left, center + right, left + right, and center + left + right) are available, as shown in
Tab. 2. Therefore, in the multi-view estimator architecture, we have eight different configurations
(i.e., 4 views × 2 image modalities).

4.3 Multi-Modal Estimator
Similar to the multi-view estimator, the multi-modal estimator is an extension of the single-

view estimator in terms of modality, as shown in Fig. 6c. The architecture of the multi-modal
estimator differs according to the fusion of different modalities, as shown in Fig. 7. In this study,
we utilized two multi-modal fusion approaches for a single-view estimator setup: i) data-level
approach and ii) feature-level approach. In the data-level approach (DIdata, hereafter), the captured
infrared and depth images are fused by element-wise multiplication before being fed to the deep
learning network, which is similar to the process used in Yaghoubi et al. [37]. The fused image
has the same resolution as the original depth and infrared images; therefore, it can be fed to the
single-view estimator network for the final head-gaze estimation without significant architectural
changes. An example of this approach is shown in Fig. 7a. In contrast to the data-level fusion
method, the feature-level fusion approach (DIfeature, hereafter) concatenates the intermediate CNN
features of each modality, similar to the approach used in Krafka et al. [32]. As shown in Fig. 7b,
the images captured using the depth and infrared modalities are fed to each single-view estimator.
Afterward, the 256-dimensional CNN features extracted from each estimator are concatenated into
a single feature vector with dimensions of 256 × 2 modalities. This concatenated feature is finally
fed to the last prediction layer to classify the head-gaze direction. In this study, only the depth
and infrared modalities are used, resulting in only two different types of multi-modal estimators
available (i.e., data-level and feature-level fusion estimators based on depth and infrared images).

4.4 Multi-View Multi-Modal Estimator
In this architecture, the images captured in multiple views (i.e., center, left, and right views)

with multiple modalities (i.e., both depth and infrared modalities) are used together for head-
gaze estimation. The example architecture of the multi-view multi-modal estimator is illustrated
in Fig. 6d. For this architecture, we need to consider the following: i) how to fuse data from
different views and ii) how to fuse data with different modalities in the multi-view setup.
For multi-view fusion, we simply applied the same approach used in the multi-view estimator
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(Section 4.2). In other words, we concatenate the intermediate CNN features from each view into
a single feature vector for the final head-gaze estimation. The characteristics of the intermediate
CNN features from each view depend on how the data with different modalities in each view are
fused. For multi-modal fusion in the multi-view setup, we utilized the fusion methods discussed
in Section 4.3 (i.e., the data-level and feature-level fusion approaches) and an additional approach
called modal-wise fusion. The differences between the fusion methods are shown in Fig. 8.

Figure 7: Illustration of multi-modal fusion methods (a) Data-level (b) Feature-level

Figure 8: Illustration of multi-view multi-modal fusion methods (a) Data-level (b) Feature-level
(c) Modal-wise

The data-level and feature-level fusion approaches used in this architecture are similar to those
used in the multi-modal estimator (Section 4.3), except for the number of views considered.
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First, the data-level fusion method combines the images captured with depth and infrared
modalities in the same view by element-wise multiplication. An example of the data-level fusion
approach is shown in Fig. 8a. As can be seen in the figure, the images captured in the C-view
with depth and infrared modalities are multiplied before being fed to the single-view estimator.
Similarly, the images captured in the L-view with both modalities are also combined at the data-
level. Afterward, each fused image is fed to the single-view estimator for each view to produce
an intermediate CNN feature with 256-dimensions. Finally, the intermediate features from the
different views are concatenated (i.e., multi-view fusion) and fed to the last classification layer to
estimate the final head-gaze direction.

Second, the feature-level fusion method concatenates intermediate CNN features with different
modalities from the same view. An example of feature-level fusion is shown in Fig. 8b. For
example, the images captured with different modalities in each view are first passed through the
single-view estimator for each modality. Then, each single-view estimator produces an intermediate
CNN feature with 256-dimensions for each modality. Subsequently, these intermediate CNN fea-
tures are concatenated into a single vector with a size of 256 (nodes) × 2 (modalities) dimensions
for each view. Finally, the intermediate features from the different views are concatenated (i.e.,
multi-view fusion) and fed to the last classification layer to estimate the final head-gaze direction.

Finally, we added a modal-wise fusion method (DImodal, hereafter) that concatenates the inter-
mediate CNN features of the same modality from different views. An example of this approach
is illustrated in Fig. 8c. In contrast to feature-level fusion, which combines data with different
modalities in the same view, the modal-wise approach combines data from different views with the
same modality. For example, the depth and infrared images captured in different views (e.g., C-
view and L-view) are first fed to single-view estimators. Afterward, the intermediate CNN features
from each estimator are collected and concatenated based on the modality. Therefore, a single
vector with a size of 256 (nodes) × N (views) dimensions is generated for each modality. Finally,
the intermediate features from different modalities are concatenated and fed to the last classifier
layer for the final head-gaze estimation.

As stated earlier, four different combinations of views (i.e., center + left, center + right, left
+ right, and center + left + right) are utilized in this study. Therefore, we obtain four different
network configurations for each data fusion approach in the multi-view multi-modal estimator
architecture. In the next section, we analyze how the use of single/multiple views and modalities
affects the performance of head-gaze estimation according to the configuration of the estimators.

5 Experiments

In this section, various experiments were conducted to answer the following research
questions.

•Which modality performs well in both single-view and multi-view approaches?

As mentioned in Section 1, we investigate which image modality would be effective in single-
view and multi-view approaches. This observation will provide answers regarding which modality
is more suitable for head-gaze estimation under challenging conditions.

• Does the multi-view approach yield better performance than the single-view approach?

Conventionally, it is often observed that the multi-view approach achieves a better perfor-
mance than the single-view approach for vision-based tasks. Accordingly, we investigate whether
this observation is also applicable to our target domain, where various challenging conditions,
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such as 1) the indoor environment, 2) various lighting conditions, and 3) a limited amount of
data exist.

• Does the multi-modal approach perform better than the single-modal approach?

Similar to the use of multiple views, it is often assumed that the multi-modal approach
performs better than the single-modal approach. We examine whether this assumption is applicable
to the proposed multi-view multi-modal approach.

The experiments were performed on a high-end server equipped with a single NVIDIA RTX
2080 Ti GPU, 128 GB RAM, and an Intel i9-10900X CPU. We used the Keras framework with
a TensorFlow backend to implement the proposed method. The network was trained with a
batch size of 5 and an Adam optimizer with a learning rate of 1e-3. We also applied the early
stopping strategy, in which the training procedure is stopped when the validation performance
(e.g., validation loss or validation accuracy) is not improved for N consecutive epochs. In addition,
to simulate our target environment (e.g., an elderly person living alone in a nursing home) where
obtaining training images is extremely limited and challenging, we only used four frames for each
grid per person (approximately 6k images in total) when training our estimation framework. All
the experiments in this section shared the same experimental settings.

5.1 Performance of Single-Modal Estimators
In this section, we provide and analyze the experimental results to answer the first research

question based on a single-modal setup. To do this, we examine the performance of single-
view and multi-view estimators based on either the depth or infrared modality. The classification
accuracy of the estimators is summarized in Tab. 4.

Table 4: Classification accuracy of the single-modal approach according to view-combination
(unit: %)

View

Modal C CL CR LR CLR

Depth 31.9 38.8 37.9 35.6 37
Infrared 44.5 48.3 51.9 48.6 53.6
Diff(%p) 12.6 9.5 14 13 16.6

First, it should be noted that the proposed approach did not yield remarkable performance in
terms of classification accuracy despite the use of a deep learning network that achieves state-of-
the-art performance in image classification tasks. In all the experiments, we observed a minimum
classification accuracy of 21.7% and maximum classification accuracy of 57.4%; which do not
meet the requirements for practical application. This indicates that the tasks conducted in this
study are significantly challenging; however, the performance of the estimators can be improved.
Throughout the experiments and discussion sections, we present an analysis of the use of multi-
view multi-modal approaches to improve the performance of head-gaze estimation in our target
domain.

With respect to our research question, we can see from Tab. 4, the depth-modality esti-
mator produced a classification accuracy of 36.24% on average, ranging from 31.9% to 37%.
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On the other hand, the classification accuracy of the infrared-modality estimator ranged from
44.5% to 53.6%, 49.38% on average. This result indicates that the single-modal estimator with
infrared modality yields a higher classification accuracy than the single-modal estimator with
depth modality, with an average performance gain of 13.14%p. Specifically, the performance
differences between the single-modal estimators ranged from 9.5% to 16.6% according to the
view configurations (i.e., C, CL, CR, LR, and CLR views). In addition, it can be observed that
the performance differences between both modalities tend to increase as the number of views
increases. Specifically, the performance difference between the modalities in the CLR-view setup
is 16.6%p, which is approximately 1.3 times higher than that in the C-view setup (i.e., 12.6%p).
Interestingly, the depth-modal estimator with CLR-view (i.e., the classification accuracy of 37%)
performed worse than the infrared-modal estimator with C-view (i.e., a classification accuracy
of 44.5%). This implies that the images captured with depth modality lack useful information
about head-gaze estimation compared to those captured with infrared modality in a single-view,
even if used in a multi-view configuration. The reason for this performance difference can be
inferred from Fig. 5. As shown in the figure, the depth images are generally used to represent the
distance between the camera and user; therefore, we can infer that depth images were not useful
for capturing important information for head-gaze estimation. In contrast, infrared images have
distinct features (i.e., face shape and head-gaze orientation) that represent the user’s appearance;
thus, networks using infrared images would yield a better performance. From these results, we can
conclude that the networks trained with infrared images can perform better than those trained
with depth images for both the single-view and multi-view approaches.

5.2 Comparison of the Performance Between Single-View and Multi-View Estimators
In this section, we investigate the effectiveness of the multi-view approach on head-gaze

estimation to answer the second research question. For this investigation, we examined the
performance of single-modal and multi-modal estimators with different view configurations.

5.2.1 Single-Modal Estimators
First, we discuss the performance differences in the single-modal estimator with depth modal-

ity according to the number of views. As shown in Tab. 4, the depth-modality estimator achieved
the lowest performance with a classification accuracy of 31.9% for a single-view (i.e., C-view).
The classification accuracy was improved to 37.4%, on average, with a double-view (i.e., C +
L, C + R, and L + R views), which is 5.5%p higher than that of the single-view approach.
However, there were no significant performance differences between networks using the double-
view approach (35.6%–38.8%). Especially when adopting the C + L-view setup, the single-modal
estimator with depth modality achieved the best performance with an accuracy of 38.8%. On the
other hand, the classification accuracy of the depth-modality estimator with a triple-view setup
was 37%, which is 5.1%p higher than that of the estimator with the single-view setup. However, we
found no significant differences in performance improvement between the double-view and triple-
view setups. Consequently, we can confirm that the performance of the depth estimator improves
when adopting the multi-view approach rather than the single-view approach.

Second, we analyze the performance differences in the single-modal estimator with infrared
modality according to the number of views. In contrast to the performance of the depth-modality
estimator, the infrared-modality estimator achieved the best classification accuracy of 53.6% with
a triple-view configuration. Specifically, the classification accuracy of the triple-view setup was
4%p and 9.1%p higher than that of the double-view (average accuracy of 49.6%), and single-view
(44.5%) approaches, respectively. Owing to the use of double views, a performance improvement
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of 5.1%p was also observed in comparison to the single-view approach. From this result, we can
conclude that the performance of the single-modal estimator with infrared modality improves as
the number of views increases.

Fig. 9 depicts the confusion matrices for the single-modal estimators with single-view and
multi-view setups. First, the depth-modality estimator with the C-view produced a lot of errors, as
shown in the first column of Fig. 9a. Similarly, the infrared-modality estimator with the C-view
also produced several errors even though it achieved a better performance than the depth-modality
estimator (refer to the first column of Fig. 9b). From these results, we can infer that the single-
modal networks mainly have difficulties in head-gaze estimation for the grids (gaze zone) in front
of the user. We believe this comes from the tendency that the participants hardly move their
heads when gazing at the grids in front of them. However, it was noticeable that the single-modal
estimators benefitted from adopting the multi-view configuration. Specifically, we can see that the
performance of the depth-modality estimator slightly improved when the multi-view configuration
(i.e., double-view and triple-view setups) was used (See Fig. 9a). Similarly, as shown in Fig. 9b, the
confusion matrices indicate that the infrared-modal estimator also produces better classification
results as the number of views increases. Interestingly, the infrared-modality estimator performed
better than the depth-modality estimator in all scenarios, regardless of the view configuration, and
achieved the best classification results with a triple-view setup.

Figure 9: Confusion matrix of single-modal estimators according to view setups (a) Depth-
modality estimator, (b) Infrared-modality estimator

5.2.2 Multi-Modal Estimators
Next, we examine the performance differences in multi-modal approaches according to the

number of views. As mentioned in Sections 4.3 and 4.4, we applied three methods to combine
the heterogeneous modalities of images, i.e., 1) data-level, 2) feature-level, and 3) modal-wise
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approaches. Tab. 5 summarizes the classification accuracy of the multi-modal approach according
to the combination of views.

Table 5: Classification accuracy of multi-modal approaches according to view-combination
(unit: %)

View

Modal C CL CR LR CLR

DIdata 21.7 51.2 53.7 54.9 54.5
DIfeature 46.8 49.2 55.3 49.3 57.4
DImodal 48.5 52.3 51.1 55.8
Average 34.3 51.7 55.9

First, similar to the single-modal estimator, multi-modal estimators with a single-view setup
achieved the worst classification accuracy of 34.3% on average (21.7% for DIdata and 46.8% for
DIfeature and DImodal). Note that the modal-wise fusion method (DImodal) combines data with the
same modality before feeding them to the network, which indicates that it works equally with
the feature-level fusion method (DIfeature) in a single-view setup. Interestingly, we can see that
the multi-modal estimator with a data-level fusion approach (DIdata) produced even worse per-
formance (21.7%) than the single-modal estimators (31.9% for the depth estimator and 44.5% for
the infrared estimator) in the single-view setup (C-view). This implies that the feature-level fusion
method is more effective than the data-level approach when adopting a multi-modal estimator
with a single-view configuration.

On the other hand, the performance of multi-modal networks with a double-view setup was
improved to 51.7% on average, which was 17.4%p higher than that of the single-view setup.
Finally, the triple-view approach achieved the best classification accuracy of 55.9% on average,
which resulted in an average performance improvement of 4.2%p compared to the double-view
approaches, and 21.6%p on average compared to the single-view approach. From these results,
we can find that the classification performance of the multi-modal estimator improves as the
number of views increases. However, we could not find an optimal fusion method that works
best for all view configurations. The multi-modal estimator with a feature-level fusion approach
(DIfeature) generally performed well in single-view and triple-view setups. On the other hand, the
multi-modal estimator with a data-level fusion method (DIdata) significantly benefitted from the
use of a multi-view setup, thereby achieving the best performance on average (i.e., 53.3%) in a
double-view setup.

More specifically, the multi-view setup resulted in a significant performance improvement
of 31.9%p compared to the single-view setup. However, there were no performance differences
between the double-view and triple-view setups. Fig. 10 shows the confusion matrices for the
multi-modal estimators with the data-level fusion method according to the single-view and triple-
view setup. As shown in the figure, the DIdata for the C-view produced a lot of errors for most
of the head-gaze direction area. However, when adopting the CLR-view setup, we can see that
the classification error is significantly decreased.

From the experimental results discussed in this section, we can conclude that the multi-view
approaches perform better than single-view approaches, regardless of the modality used.
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Figure 10: Confusion matrix of multi-modal estimators with data-level fusion according to view
setups

5.3 Comparison of the Performance Between Single-Modal and Multi-Modal Estimators
In this section, we examine the performance differences between the single-modal and multi-

modal estimators to answer the last research question. Fig. 11 summarizes the classification
accuracy of both multi-modal and single-modal estimators according to the view configuration.
As described in the previous section, the modal-wise fusion method works equally with feature-
level fusion in the case of the single-view configuration; therefore, we present the performance of
DIfeature only for a single-view configuration.

First, we investigate the performance differences in each estimator for single-view configura-
tion (i.e., C-view). As shown in the figure, we can see that the multi-modal estimator with DIfeature
outperformed the single-modality estimators. Specifically, the DIfeature exhibited a performance
improvement of 14.9%p and 2.3%p, respectively, in comparison to the depth-modality estimator
and the infrared-modality estimator.

Figure 11: Classification accuracy of head-gaze estimators according to the configuration of views

However, the performance of the multi-modal estimator with DIdata was decreased signifi-
cantly compared with that of the single-modal estimators. For example, the classification accuracy
of DIdata was 21.7%, which was 10.2%p and 22.8%p lower than that of the single-modal
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estimators with depth and infrared modalities, respectively. Next, we analyze the performance
differences between the single-modal and multi-modal estimators for a double-view configuration.
Similar to the results of the single-view configuration, the multi-modal estimators improved the
performance by 14.3%p and 2.1%p on average compared with the single-modality estimator with
depth and infrared modality, respectively. In particular, the multi-modal estimator with data-
level fusion was found to be the most useful, resulting in the highest performance improvement
of 15.8%p. In addition, we can observe that there are no significant differences between the
performances of the multi-modal estimators with the double-view setup. Finally, we compared the
performances of the estimators according to changes in the modality in the triple-view configura-
tion. As shown in Fig. 11, we found that the classification accuracy of multi-modal approaches
was 18.9%p higher on average than that of the depth-modality estimator. In addition, the multi-
modal estimators showed a performance improvement of approximately 2%p on average compared
to the infrared-modality estimator.

To sum up, Fig. 11 clearly depicts that the multi-modal approaches outperform the single-
modality estimators. Consequently, multi-modal estimators outperformed the single-modal estima-
tors regardless of the view setup except for the case of DIdata with C-view.

6 Discussions

In the previous section, we compared the performance of the head-gaze estimators in terms
of classification accuracy. However, the efficiency of a system must also be considered to ensure
reasonable performance in real-life scenarios. Therefore, in this section, therefore, we discuss
the performance differences between the multi-modal and single-modal approaches in terms of
efficiency, such as the number of trainable parameters, training time, and inference time.

6.1 Number of Training Parameters
First, we examined the number of training parameters required for each head-gaze estimation

architecture. Tab. 6 summarizes the number of training parameters for each approach. As shown
in the table, we can see that the number of training parameters increased with the number of
views. For example, the number of training parameters of the network using depth images with
the CLR-view setup (i.e., 1 M) is approximately three times greater than that of the same network
with the C-view setup (i.e., 330 K). We can observe the same pattern in all modality combinations.
Interestingly, the number of training parameters required for DIdata is the same as the number of
parameters required for the single-modal approaches. As described in Section 4.4, the infrared and
depth images are fused at the data level in the DIdata approach; therefore, the number of single-
view estimators is identical to that of single-modal approaches. However, because DIfeature and
DImodal exploit the intermediate CNN features for each modality, more networks and prediction
layers are required, thereby resulting in an increased number of parameters. Specifically, it can
be observed that the networks with DIfeature and DImodal require approximately 2 times more
parameters than the others.

6.2 Training Time
Generally, it is known that an increase in the number of parameters leads to an increase in

the training and inference time of deep learning networks. Therefore, we analyzed the effect of
differences in network architecture on training and inference time.

First, the per-epoch training time (unit: sec) of all approaches is shown in the right column of
Tab. 7. Similar to the previous analysis on the number of training parameters, we found that the
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training time per epoch is proportional to the size of the network model. For example, the single-
epoch training takes 30 s for the single-view single-modal approaches, whereas it takes 50 to 70 s
when adopting the multi-view single-modal approaches. This tendency was also observed in multi-
modal approaches. As can be seen in the table, multi-view multi-modal approaches take 82 to
110 s for single-epoch training, which is 1.6–2.2 times longer than that of single-view multi-modal
approaches.

Table 6: Number of training parameters for each method

View

Modal C CL CR LR CLR

Depth 330 K 670 K 670 K 670 K 1 M
Infrared 330 K 670 K 670 K 670 K 1 M
DIdata 330 K 670 K 670 K 670 K 1 M
DIfeature 670 K 1.3 M 1.3 M 1.3 M 2 M
DImodal 1.3 M 1.3 M 1.3 M 2 M

Table 7: Training time for each method

Total training time (unit: min) Training time per epoch (unit: sec)

C CL CR LR CLR C CL CR LR CLR

Depth 6.3 13.6 11 11 14 29 51 51 51 70
Infrared 10.6 12 13.6 12.8 14.5 29 51 51 51 67
DIdata 2.5 7.5 10 7.5 19.5 30 50 50 50 69
DIfeature 12 15 19 23.2 23.8 51 82 82 82 110
DImodal 17.7 15 17.5 25.4 82 82 81 109

In addition, a similar pattern was observed with respect to the total training time required
for models. The left column of Tab. 7 shows the total training time required for each model. As
can be seen in the table, the number of training parameters significantly affected the total training
time. For example, we found that the models with DIfeature and DImodal, which have the largest
number of trainable parameters, took the longest time to train in all cases. Specifically, the training
time of the multi-modal approaches with DIfeature and DImodal were 24.6 min on average for the
triple-view setup, which is 1.5 times longer compared with that of the single-modal estimators
(16 min on average). Through these results, we found that, although the use of multiple views
and multiple modalities can lead to a longer training time but can improve the performance of
head-gaze direction. Accordingly, we can conclude that there exists a trade-off between training
efficiency and accuracy.

Next, the inference efficiency of all approaches in terms of the frame per second (FPS) is
listed in Tab. 8. Similar to the training time, we can see that the inference time is also proportional
to the size of the network model. Specifically, single-modal approaches and the DIdata approach
can handle approximately twice as many frames as multi-modal approaches while estimating the
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user’s head-gaze direction. On the other hand, we observed that the multi-modal networks with
a large number of parameters (i.e., DIfeature and DImodal with CLR-view) could perform at over
60 FPS which is a requirement for real-time applications. Based on these results, we expect that
multi-view multi-modal head-gaze estimators can be applied to practical and real-time scenarios.

Table 8: Efficiency of inference for each method (unit: FPS)

View

Modal C CL CR LR CLR

Depth 238 139 140 139 101
Infrared 241 140 140 139 104
DIdata 231 142 142 143 103
DIfeature 138 85 85 86 63
DImodal 85 86 86 63

In this section, we analyzed the performance of each head-gaze estimator architecture in terms
of training and inference efficiency. Through various experiments, we found that 1) the multi-
modal networks with a multi-view setup (in particular, CLR-view) require more time for training
and inferencing since they have a larger and heavier architecture, and 2) there exists a trade-
off between accuracy and efficiency. For example, we observed that, although the classification
accuracy of each head-gaze estimator improved as the number of views (i.e., camera) increased,
the time needed to train the networks also increased. Similarly, multi-modal approaches produced
better classification accuracy but required more time for training networks than single-modal
approaches. Therefore, the architecture of deep learning-based head-gaze estimation must be
designed with careful consideration of the target environmental conditions. Finally, we expect that
our analysis of multi-view multi-modal head-gaze estimation under challenging conditions can
facilitate the development of practical solutions and further research.

7 Conclusions and Future Work

In this paper, we proposed a head-gaze estimation system based on a multi-view multi-modal
approach for monitoring and interacting with a user in an indoor environment. The proposed
approach captures the users from multiple views using cameras with depth and infrared modalities
for head-gaze estimation under the following challenging conditions: 1) indoor interaction should
be considered, 2) various lighting conditions must be handled, and 3) only a limited data size is
available. To address these requirements, configured four different types of head-gaze estimators
based on the use of view and modality. In particular, we applied three modal fusion approaches
(i.e., data-level, feature-level, and modal-wise) to fuse data with different modalities in multi-modal
estimators.

To demonstrate the differences in the classification accuracy of the proposed approach accord-
ing to view and modality configurations, we performed various experiments and analyzed the
results. Through the experimental results, we found that the infrared modality provides more
useful features than the depth modality. It was also observed that the classification accuracy of
the head-gaze estimators is improved when adopting the multi-view approaches than the single-
view approach. Finally, the multi-modal estimators outperformed the single-modality estimators
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except for some cases (e.g., DIdata for C-view). In other words, we can conclude that multi-view
multi-modal estimators are generally superior for head-gaze estimation in our target domain. In
terms of training efficiency, we found that multi-view, multi-modal approaches generally have
more training parameters than single-view, single-modal approaches. In addition, we could see
that the training and inference times per epoch were proportional to the number of parameters.
In summary, we can conclude that there exists a trade-off between accuracy and efficiency;
therefore, the architecture of deep learning-based head-gaze estimation must be designed with
careful consideration of the conditions of the target environment.

Although our study provides various analyses on head-gaze estimation under challenging
conditions, we encountered some limitations that need to be addressed in the future.

First, the experiments conducted in this study had the following restrictions: 1) only a single
subject could participate in the experiment; 2) the participant should sit on the chair in the
room although they were allowed to move their body naturally during the task; and 3) a set of
predefined areas (e.g., 27 gaze zones) for indoor gaze estimation was assumed. In future research,
we plan to extend our protocol to 1) allow multiple subjects to participate in the experiment, 2)
encourage them to perform various activities (e.g., walking and jumping) during the task, and 3)
achieve object-level head-gaze prediction, thereby realizing more practical scenarios.

Second, we validated the effect of exploiting multiple views (up to three views) on head-gaze
estimation for a single user. To achieve successful head-gaze estimation under the aforemen-
tioned conditions, we will attempt to utilize more views to obtain more informative data and
revise our head-gaze estimation models. In addition, we plan to study domain adaptation using
self-supervised learning approaches to improve the performance of head-gaze estimation in our
domain. Various approaches have been developed to address human-computer interaction (HCI)
tasks, such as pose estimation [38], gesture recognition [39], and movement/behavior detection [40],
using images or video clips. Although these approaches have different characteristics compared
to gaze estimation, they are generally based on user body movements. Therefore, we will study
a method to learn the feature representation from these tasks using self-supervised learning
approaches [41–43] and investigate how they can be adapted to the field of gaze estimation.

Third, our proposed method mainly focused on head-gaze estimation for indoor environments,
such as welfare and healthcare facilities. In our future work, we aim to extend our study to work
with robust and stable performance under outdoor conditions and virtual reality (VR)/augmented
reality (AR) applications in addition to other indoor environments. For this, we plan to optimize
the architecture of the proposed framework in terms of the model size, with a network pruning
method [44] or knowledge distillation techniques [45] to realize practical real-time applications. We
expect that our extended multi-view multi-modal approach can improve the performance of con-
ventional head-gaze estimation methods using the VR/AR setup [46] and VR/AR head-mounted
devices equipped with commercial eye-trackers [47].
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