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Abstract: An exponential growth in advanced technologies has resulted in
the exploration of Ocean spaces. It has paved the way for new opportunities
that can address questions relevant to diversity, uniqueness, and difficulty of
marine life. Underwater Wireless Sensor Networks (UWSNs) are widely used
to leverage such opportunities while these networks include a set of vehicles
and sensors to monitor the environmental conditions. In this scenario, it is
fascinating to design an automated fish detection technique with the help
of underwater videos and computer vision techniques so as to estimate and
monitor fish biomass in water bodies. Several models have been developed
earlier for fish detection. However, they lack robustness to accommodate
considerable differences in scenes owing to poor luminosity, fish orientation,
structure of seabed, aquatic plantmovement in the background and distinctive
shapes and texture of fishes from different genus. With this motivation, the
current research article introduces an Intelligent Deep Learning based Auto-
mated Fish Detection model for UWSN, named IDLAFD-UWSN model.
The presented IDLAFD-UWSN model aims at automatic detection of fishes
from underwater videos, particularly in blurred and crowded environments.
IDLAFD-UWSN model makes use of Mask Region Convolutional Neural
Network (Mask RCNN) with Capsule Network as a baseline model for fish
detection. Besides, in order to train Mask RCNN, background subtraction
process using GaussianMixture Model (GMM) model is applied. This model
makes use of motion details of fishes in video which consequently integrates
the outcome with actual image for the generation of fish-dependent candi-
date regions. Finally, Wavelet Kernel Extreme Learning Machine (WKELM)
model is utilized as a classifier model. The performance of the proposed
IDLAFD-UWSN model was tested against benchmark underwater video
dataset and the experimental results achieved by IDLAFD-UWSN model
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were promising in comparison with other state-of-the-art methods under dif-
ferent aspects with the maximum accuracy of 98% and 97% on the applied
blurred and crowded datasets respectively.

Keywords: Aquaculture; background subtraction; deep learning; fish
detection; marine surveillance; underwater sensor networks

1 Introduction

Water covers 75% of earth’s surface in the form of different water bodies such as canals,
oceans, rivers, and seas. Most of the expensive resources are present in these water bodies and it
should be investigated to explore further. Technological advancements, made in the recent years,
have managed the likelihood of performing underwater exploration with the help of sensors at
every level. Consequently, Underwater Sensor Network (UWSN) is one such advanced technique
that enables underwater exploration. Being a network of independent sensor nodes [1,2], UWSN
is a combination of wireless techniques with minuscule micromechanical sensors that are loaded
with smart computation, smart sensing and communication capability. The sensor nodes in UWSN
are spatially distributed under water to capture information on water-relevant features such as
pressure, quality, and temperature. The sensed data is then processed using different applications
for human benefits.

Underwater transmission is mostly performed by a group of nodes that transfers the infor-
mation to buoyant gateway nodes. These gateway nodes in turn transmit the information to
nearby coastal monitor-and-control stations, which are otherwise known as remote stations [3]. In
general, UWSN acoustic transmitters are utilized for transmission since the acoustic waves can
travel longer distances and is utilized for data transmission across numerous kilometers. UWSN
is used for in a broad range of applications; marine atmosphere observation for commercial
research purposes; coastline security for underwater pollution observation in water-based disaster
prevention; and to benefit the water-based sport personnel. UWSN yields significant result for
challenging applications [4]. Though UWSN applications are stimulating, on the other hand, it
is demanding as well. The purpose of UWSN is to exist during uncertain situations of water
atmosphere that can create severe limitations in the deployment and design of these networks.

In recent years, tracking and underwater tracking detection have become an attractive research
field [5]. Tracking is a complex procedure that aims at determining the condition (such as accel-
eration, position, and velocity) of one or more quickly-moving targets and nearby the actual
condition, by utilizing the presented measurement gathered from several sensors. This information
is crucial in war atmosphere for two main causes. Initially, it is employed to prevent itself from
the attackers while the next is to destroy the adversary. To a certain extent, the accuracy of the
collected data could decide the failure/success of a war. A substantial number of studies has
examined the challenges faced in target tracking in terrestrial atmosphere. In these studies, the
system depends upon different kinds of sensors which could be applied for detecting and tracking
the target.

In literature [6], it is mentioned that the acoustic sensors are used in detecting and tracking
the target by deciding the power of the attained acoustic signal that exceeds the predetermined
threshold. Subsequently, the vibration is utilized to distinguish the target with distinct weight
and speed. Here, the method [7] utilizes the seismic and passive infrared sensor features for
identification and classification of animals, creatures, vehicles, and humans. Magnetometers are
utilized in the detection of metallic target as it achieves better accuracy. A target tracking method
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combining Radio Frequency Identification (RFID) and Wireless Sensor Networks (WSN) was
developed in the literature [8,9]. Correspondingly, the researchers [10] proposed a person tracking
technique based on luminosity sensor. However, the target required should be armed with a
light source, which is impossible in most of the cases. Contrasting the above-mentioned sensors,
the study conducted earlier [11] utilized sensor-provided video images for tracking and target
detection.

The current research article designs an Intelligent Deep Learning (DL)-based Automated
Fish Detection model for UWSN, named IDLAFD-UWSN model. In background subtraction
phase of the presented model, Gaussian Mixture Model (GMM) model is utilized. Besides, the
presented IDLAFD-UWSN model makes use of Mask Region Convolutional Neural Network
(Mask RCNN) with Capsule Network as a baseline model for fish detection. At last, Wavelet
Kernel Extreme Learning Machine (WKELM) model is utilized as a classifier model. The pro-
posed IDLAFD-UWSN model was validated using benchmark underwater video dataset and the
simulation outcomes were inspected under distinct dimensions.

The remaining sections of the paper are organized as follows. Section 2 explains the processes
involved in automated fish detection and tracking. Then, Section 3 reviews the existing fish
detection methods whereas the proposed IDLAFD-UWSN model is discussed under Section 4.
The experimental validation process is detailed in Section 5 while the conclusion is drawn in
Section 6.

2 Background Information: Automated Fish Detection and Tracking

In order to ensure effective marine monitoring, it is mandatory to estimate fish biomass and
its abundancy through population sampling in water bodies such as rivers, oceans, and lakes. It
monitors the behavior of distinct fish species by altering environmental situations. This task gains
significance particularly in those regions where specific fish species are on the verge of extinction
or being threatened for life due to industrial pollution, habitation loss and alteration, commercial
overfishing, deforestation, and climate change [12]. The manual process of capturing videos under
water is expensive, labor-intensive, prone to fatigue error, and time-consuming one. One of the
major problems experienced in automated recognition of fish is high variations in underwater
atmosphere due to background confusion, water clarity, dynamic lighting condition, etc.

Generally, automated fish sampling is conducted through three main processes: (1) Fish recog-
nition that distinguishes fish from non-fish objects in underwater videos. Non-fish objects include
aquatic plants, coral reefs, sessile invertebrates, seagrass beds, and common background. (2) The
second process is the classification of fish species in which the species of every identified fish is
recognized and classified from a predefined pool of distinct species [13]. (3) The final process is
fish biomass measurement which is performed by length-to-biomass regression techniques. Several
techniques are in use to perform fish recognition and subsequently determine their biomass by
utilizing image and video processing techniques. Though DL-based fish species classifier has
attained high accuracy, the process of vision-based automated fish recognition in unrestricted
underwater videos is yet to be widely studied. Because most of the efforts taken earlier results
in smaller datasets with a restricted variation from atmosphere. Thus, it is significant to decide
the strength and efficiency of a system using a huge dataset that possesses high number of
environmental variations.
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3 Existing Automated Fish Detection Methods

The current section reviews state-of-the-art automated fish detection techniques. Hsiao
et al. [14] proposed a method that utilizes motion-based fish recognition in video. This technique
encompass background subtraction too by demonstrating the background pixel in video frames by
GMM. Though GMM is trained, it considers only the succeeding frames of video that lack fish
samples. An equivalent method was presented on covariance model of foreground and background
(fish samples) in video frames by texture and color features of the fish. DL method has been
utilized recently to resolve fish-related works. Sung et al. [15] presented a significant task for
fish detection in underwater images with the help of CNN while the study considered a total
of 93 images containing fish samples. The method was trained on raw fish images to considered
texture and color data for detection and localization of the fish samples in image. In this method,
modified R-CNN method was used for locating and detecting the fish samples in the image with
combined network architecture.

Qin et al. [16] presented a new architecture based on a modest cascaded deep network to
recognize the movements of live fish. Siddiqui et al. [17] presented a pre-trained CNN with linear
SVM classification for the classification of fish species present in usual underwater video images.
The researchers proposed a specific cross-layer pooling method that integrates the feature from two
distinct layers of a pre-trained CNN to improve discriminate capacity. The combined features were
accepted to have a linear SVM for ultimate classification. A cross-layer pooling pipeline improved
the calculation that excluded the likelihood of real-world computation. With the involvement of
another species, the study achieved a classification accuracy of 89.0%. The classification accuracy
for 16 fish species was 94.3%. To infer, this value is highly beneficial compared to existing
methods’ outcomes on fish species recognition processes. The investigation recommended the use
of pre-trained network for classification process with no external classification. Kutlu et al. [18]
employed DBN for classification of three classes of Triglidae family with high accuracy rate. The
morphometric feature was initially extracted by 13 landmarks. Later, the DBN method was utilized
for classification process. In spite of achieving high classification accuracy, the presented technique
had a drawback i.e., it demands the extraction of advanced morphometric feature. In order to
enhance the efficiency of this process, various studies have been conducted earlier.

Sun et al. [19] employed single image super resolution technique to create superior resolution
images from low-resolution images. In this study, linear SVM was utilized at last for fish recog-
nition. An unsupervised underwater fish detection method was presented by Zhang et al. [20].
This study utilized motion flow segmentation and selective search models to create a combined
proposal region. Later, CNN method was utilized in the classification of entire presented instance
to calculate the confidence. Additionally, Modified NonMaximum Suppression (MNMS) was also
applied for finding the unique regions per object to reduce false classifications in detection.
The results showed that the proposed method helped in the detection of fish from poor-quality
underwater images with high accuracy. In addition, several classes of fishes have been identified
in the areas of biology, medicine, biomedical research, genomics, and food technology. Among
these, Zebrafish (Danio rerio) is a significant vertebrate that suits the bio-medical investigations,
thanks to its transparency at the beginning, increased growth, and shorter generation time.
Ishaq et al. [21] utilized a pre-trained CNN method for precise high throughput classification of
whole-body zebrafish deformation, that occurs as a result of drug-induced neuronal harm i.e.,
camptothecin. The research specified that DL method is significant in distinguishing different wild
type morphology and phenotypes under drug treatment. Salman et al. [22] developed an integrated
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framework with RCNN model, background subtraction and optical flow to detect the moving
fishes in free underwater environment.

4 The Proposed Model

The overall system architecture of the presented IDLAFD-UWSN model is shown in Fig. 1.
According to the figure, the proposed IDLAFD-UWSN model involves three major processes
namely, background subtraction, fish detection, and fish classification. At first, GMM-based back-
ground subtraction technique is executed by defining the still pixels of video frames. It denotes
a set of pixel values that are relevant to a range of seabed features, aquatic plants, and coral
reefs. The foreground object is segmented from the backdrop based on the movement in the scene
that does not match with the background. Secondly, MaskRCNN with CapsNet model is used to
differentiate every candidate region in video frames from fish to non-fish objects. Lastly, WKELM
model is applied in the classification of objects in underwater video into fish and non-fish classes.

Figure 1: The overall working process of IDLAFD-UWSN model

4.1 Dataset Used
The presented model was tested using Fish4Knowledge with Complex Scenes (FCS) database.

It is mainly created from a huge fish dataset known as Fish4Knowledge. With more than 700,000
underwater videos in unrestricted condition, the Fish4Knowledge database is a result of data
collection for about 5 years that intended to monitor the marine ecosystem of coral reef in
Taiwan [23]. It is a well-known area for large fish biodiversity environment in the globe with
no less than 3,000 fish species. The database encompasses seven sets of elected videos, captured
in standard underwater conditions with complex changeability in scenes. Thus, the ecological
differences pose significant challenges to identify the fish as listed herewith.

• Blurred, including three poor contrast blur videos.
• Complex background includes three videos with rich seabed providing a maximum degree
of backdrop confusion.

• Crowded, in which a set of three videos is present with maximum density of fish movement
in all video frames. This poses particular challenges to detect fishes under the existence of
occluding objects.
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• Dynamic background, where two videos are given with rich texture of coral reefs backdrop
and movable plants.

• Luminosity variation includes two videos with abrupt luminosity variations, because of the
surface wave action. It generates false positives during identification process, owing to the
movement of light beam.

• In Camouflage foreground, two videos are selected which show the camouflaging issue of
fish detection in the existence of texture and colorful backdrop.

• Hybrid, where a pair of videos is chosen to demonstrate the integration of previously-
defined conditions of changeability.

This database is primary developed for fish-related tasks such as detection, classification, etc.
So, the ground truth images exist for every moving fish on a frame-by-frame basis in every video.
A set of 1,328 fish annotations is presented in FCS database as illustrated in Fig. 2.

Figure 2: Sample test images from FCS database

4.2 GMM-Based Background Subtraction
GMM is one of the common methods used for modeling foreground and background condi-

tions of the pixel. It has the capacity to perform general calculation as they could fit in all the
density functions, when they possess sufficient combination. Here, It represents the frame of video
t and p, the deliberate pixel coordinates (i, j)—and xpt denotes its RGB values in frame It. The
instant values of this specific pixel, in time, are then implemented by:{
xp1, · · · ,xpt

}= {It (i, j) : 1≤ t≤T} (1)
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where T denotes the counts of the frame. GMM is related to pixel p in RGB color space at frame
t and it consists of K-weighted Gaussian function:

f (x)=
K∑
k=1
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)
(2)
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To simplify the estimation, covariance matrix is always considered as diagonal.

�
p
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p
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2
I (4)

where I represents the identity matrix sized, 3 × 3.Thus, the R,G,B pixel levels are considered
to be autonomous with equivalent difference. Though this might not be accurate, the statement
avoids costly matrix inversion with regards to precision method.

4.2.1 GMM Initialization
This is an elective phase where the model employs EM (Expectation-Maximization) technique

on a video portion; however, it could initiate an individual model for each pixel (of weight 1),
that beings from the level of initial frame.

4.2.2 Mode Labeling
Every Gaussian mode is categorized as Background/Foreground. This crucial link is attained

from a basic rule i.e., higher the precision and frequent modes, more possible to model the
background colors [24]. Particularly, K modes are arranged based on their priority level, wk

σk
. The

initial KB mode is later considered as background. The value of KB is defined by a threshold,
Tb ∈ [0, 1]:

KB = argmin
K∑
k=1

wk,t >Tb (5)

4.2.3 Pixel Labeling
This step arranges the pixels. In all the techniques, a pixel is allocated to a class of nearest

mode center in limitation.∥∥∥xpt −μ
p
k,t

∥∥∥≤ kpσ
p
k,t (6)
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where kp represents the constant coefficient which must be adjusted for every video. When no
other modes fulfill this limitation, low priority mode is substituted by a novel Gaussian which is
placed on the present intensity, xpt , with previous difference weights.

4.2.4 Updating GMM
An update function is given herewith.

When a mode i is efficaciously chosen, the GMM variables are then upgraded to reinforce
this mode.

wi,t+1 = (1−α)wi,t+α (7)

μi,t+1 = (1−ρ)μi,t+ρ ·xpt+1 (8)

σ 2
i,t+1 = (1−ρ) σ 2

i,t+ρ
∥∥xpt+1−μi,t+1

∥∥2 (9)

\wj,t+1 = (1−α)wj,t,∀j �= j (10)

where α represents a constant learning rate and ρ = α.f (xpt+1,μi,σi).

Or else, the latter allocation is substituted by a novel Gaussian mode.

4.3 Mask RCNN Based Fish Detection
Mask R-CNN model is popular in several object detection tasks. It includes three components

namely, CNN-based feature extraction, Region Proposal Network (RPN) and Parallel prediction
network. At first, CNN model is applied in feature extraction from the input images. Secondly,
RPN makes use of anchors under various scales and aspect ratios to glide on the feature maps
so as to generate the generating region proposal. Thirdly, three branches from parallel prediction
network with two FC layers are involved for bounding box classification and regression while
FCN is involved to predict the object masks. Principally, baseline network is found to be a major
model for Deep Neural Networks (DNN) namely, CapNet, GoogLeNet, and ResNet. In this
study, MaskRCNN with CapsNet model are used whereas the CapsNet is utilized as the backbone
network for feature extraction. This scenario results in effective reduction of gradient vanishing
and reduced training with no increase in model parameters.

CapsNet method is one of the latest studies in this research domain. The key element of
CapsNet is a capsule that comprises of a set of organized neurons. The length of capsule is
decided based on invariance, whereas the number of features is present to reconstruct the image
measurement of equivariance. The orientation of vector denotes its variables, i.e., data features
are maintained in the image.

When a standard NN requires extra layers to increase accuracy and details, with CapsNet,
an individual layer can nest with other layers. The capsules efficiently denote distinct kinds of
visual data which are known as instantiation variables and some of the examples are as follows
integration of size, orientation, and position. Fig. 3 depicts the process involved in CapsNet
model. The output of capsule represents the vector that could be transmitted to the above layer
to match its suitable parent [25]. The output of capsule i is assumed to be ui whereas conversion
matrix Wij is employed to capsule the output so as to predict the parent capsule j by converting

ui to predict the vector Ûj|i.
Ûj|i=Wijui (11)
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Figure 3: CapsNet process

where Ûj|i denotes the predictive vector of output of jth capsule in high level. This value is
calculated by capsule i in below layer whereas Wij represents the weight matrix which should
learn in backward pass. The variable sj denotes the weighted amount of entire set of predictive
vectors uj|i. Here, cij represents the coupling coefficient, estimated by dynamic routing procedure
that helps in the determination of degree of confirmation between the capsules in below layer and
parent capsules. This connection is not designed by ‘max pooling’ of regular CNN. In contrast
to max pooling, the entire details of the data are maintained. So, it increases the effectiveness by
image overlapping. The dimension of capsules raises the hierarchy to ascend.

An activation function named ‘squashing’, shrinks the last output vector to 0, when it is
smaller whereas when it is larger, it becomes unit vector and generates the capsule length. The
activity vector vj can be estimated by succeeding nonlinear squashing function.

vj = ||sj||2
1+ sj||2

sj
||sj|| (12)

cij is calculated as softmax of bij. The coupling coefficient is determined by the degree of
conformation between capsule and parent capsules.

cij =
exp

(
bij

)
∑

k exp (bik)
(13)

bij represents similar scores considered for likeliness and characteristics, instead of likeliness in
neurons.

bij = bij+ Ûj|ivj (14)

The primary network extracts low-level features such as edges whereas the upper network
extracts the top-level features that denote the target class. In order to use the features effectively
at every stage, Mask RCNN model extends the baseline network to Feature Pyramid Network
(FPN). This network exploits both intrinsic layers and multi-scaling characteristics of CNN to
derive meaningful features in the detection of objects. The aim of RPN lies in the prediction of
set of region proposals in an effective way [26]. During RPN training, the anchor with maximum
Intersection over Union (IoU) overlapping is used while the ground truth boxes are utilized as
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positive classes. Further, the anchor with IoU<0.3 are considered as negative classes. Here, IoU
is determined as follows.

IoU= Detection Outcome ∩Ground Truth
Detection Outcome ∪Ground Truth

(15)

Here, detection outcome designates the predicted box and ground truth specifies the ground
truth box. RPN fine-tunes the region proposals based on the attained regression details and dis-
cards the region proposals that overlap with image boundaries. At last, based on Non-Maximum
Suppression (NMS), around 2000 proposal regions are kept for every image.

The region proposal, produced by RPNs, necessitates RoIAlign to adjust the dimensions
for satisfying multibranch prediction network. RoIAlign utilizes bilinear interpolation rather than
rounding function in RoIPool for faster R-CNN so as to extract the respective features of all-
region proposals in feature map. When training the model, the loss function is determined for
Mask RCNN model for all the proposals as given below.

L=Lcls +Lbox +Lmask, (16)

where Lcls, Lbox, and Lmask denote classification, regression, and segmentation losses; a definite
computation of classification and regression losses is represented herewith.

Lcls+Lbox =
1
Ncls

∑
i

Lcls
(
pi,p∗i

)+λ
1

Nbox

∑
i

Lbox
(
ti, t∗i

)
, (17)

where i specifies the anchor index, pi signifies the predicted probability of anchor i, ti denotes four
coordinate variables of the box, and t∗i stands for coordinate variables of ground truth box with
respect to positive anchor. When the anchor is positive, p∗i becomes 1; else, p∗i becomes 0. This
technique can be optimized through minimization of loss function.

4.4 WKELM Based Classification
At this stage, WKELM model is applied to categorize the objects under fish or non-fish

entities. WKELM model combines the benefits of distinct kernel functions and integrates the
wavelet analysis with kernel extreme learning machine. The weighted ELM method is presented
to manage the instances that are unbalanced in probabilities’ distribution while this technique
acts excellent. Besides, the weighted WKELM technique establishes the weighted model-to-cost
function so as to obtain the same result as weighted ELM [27]. KELM method derives from the
ELM technique, and the weighted cost function is written as follows.

minLELM = C
2
‖β‖2+ W

2
‖T—HV‖2 (18)

β =
{
HT

(
CI +WHHT

)−l
WT , N <L(

CI +HTWH
)−l

HTWT , N ≥L
(19)

In KELM method, the output is written as follows

y=

⎡
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k
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where K refers to kernel matrix, W implies the weighted matrix, and C denotes the regularization
parameter.

5 Performance Validation

The experimental validation of the presented IDLAFD-UWSN model was performed with
two testbeds from FCS dataset, namely, Blurred and Crowded. Both the testbeds comprised of a
set of 5,756 frames with a duration of 3.83 minutes. Fig. 4 showcases the visualization images of
IDLAFD-UWSN model.

Tab. 1 shows the results for accuracy analysis of the proposed IDLAFD-UWSN model upon
blurred video. From the figure, it is evident that the presented IDLAFD-UWSN model detects
multiple targets effectively. For instance, on the test frame 134, IDLAFD-UWSN model detected
targ_1, targ_2, and targ_3 with an accuracy of 0.96, 0.99, and 0.98 respectively. In addition, on the
test frame 160, the presented IDLAFD-UWSN model detected the targets such as targ_1, targ_2,
and targ_3 whereas its accuracy values were 0.99, 0.99, and 0.99 correspondingly. Moreover, on
the test frame 173, IDLAFD-UWSN model detected targ_1 and targ_2 with an accuracy of 0.98
and 0.99 respectively. Also, on test frame 193, IDLAFD-UWSN model detected targ_1, targ_2,
and targ_3 while its accuracy values being 0.99, 0.99, and 0.99 respectively. Additionally, on the
test frame 203, IDLAFD-UWSN model detected targ_1, targ_2, and targ_3 with accuracy values
such as 0.98, 0.99, and 0.99 correspondingly.

Figure 4: Visualization Images of IDLAFD-UWSN Model

Besides, on the test frame 565, the proposed IDLAFD-UWSN model achieved 0.99, 0.99, and
0.99 accuracy for the targets, targ_1, targ_2, and targ_3 respectively. In addition to the above, on
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the test frame 1009, IDLAFD-UWSN model found the targets such as targ_1, targ_2, and targ_3
while the accuracy values were 0.99, 0.99, and 0.99 respectively.

Table 1: Accuracy of the proposed IDLAFD-UWSN method on target per frame in blurred video

Frame Number Target_1 Target_2 Target_3

043 0.99 – –
113 0.99 0.99 –
134 0.96 0.99 0.98
136 0.99 – –
160 0.99 0.99 0.99
163 0.99 0.99 –
166 0.99 0.99 –
173 0.98 0.99 –
181 0.96 0.99 –
188 0.99 0.99 –
193 0.99 0.99 0.99
196 0.99 0.99 –
197 0.99 0.99 –
203 0.98 0.99 0.99
217 0.99 0.99 –
243 0.90 0.99 –
250 0.99 0.99 –
565 0.99 0.99 0.99
778 0.95 0.99 –
1009 0.99 0.99 0.99

Tab. 2 shows the results of accuracy analysis attained by IDLAFD-UWSN model on crowded
video testbed. From the figure, it is evident that the presented IDLAFD-UWSN model detected
multiple targets effectively. For instance, on the test frame 019, the IDLAFD-UWSN model
detected the targets such as targ_1, targ_2, targ_3, targ_4, targ_5, targ_6, targ_7, and targ_8 with
an accuracy of 0.98, 0.98, 0.98, 0.98, 0.99, 0.98, 0.99, and 0.98 correspondingly. In the meantime,
on the test frame 036, IDLAFD-UWSN model detected the targets such as targ_1, targ_2, targ_3,
targ_4, and targ_5 while its accuracy values were 0.98, 0.87, 0.99, 0.96, and 0.99 correspondingly.
At the same time, on the test frame 160, IDLAFD-UWSN model detected the targets such as
targ_1, targ_2, targ_3, targ_4, and targ_5 with an accuracy of 0.96, 0.96, 0.99, 0.93, and 0.99
respectively.

Meanwhile, on the test frame 221, the proposed IDLAFD-UWSN model detected targ_1,
targ_2, targ_3, and targ_4 while its accuracy values were 0.99, 0.95, 0.99, and 0.99 respectively.
Afterwards, on the test frame 435, IDLAFD-UWSN model achieved the accuracy of 0.99, 0.78,
and 0.97 for the targets, targ_1, targ_2, and targ_3 correspondingly. Followed by, on the test frame
1217, IDLAFD-UWSN model detected the targets such as targ_1, targ_2, targ_3, targ_4, targ_5,
and targ_6 while its accuracy values were 0.99, 0.93, 0.96, 0.99, 0.99, and 0.99 correspondingly.
Simultaneously, on the test frame 1506, IDLAFD-UWSN model detected the targets such as
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targ_1, targ_2, targ_3, targ_4, and targ_5 with an accuracy of 0.97, 0.99, 0.99, 0.99, and 0.99
respectively.

Tab. 3 shows an extensive comparison of the proposed IDLAFD-UWSN model against recent
state-of-the-art techniques.

Table 2: Accuracy of target per frame in crowded video

Frame Target_1 Target_2 Target_3 Target_4 Target_5 Target_6 Target_7 Target_8

010 0.99 0.99 0.99 0.99 0.99 0.99 0.99 –
019 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98
024 0.95 0.98 0.98 0.99 0.99 0.99 0.99 –
036 0.98 0.87 0.99 0.96 0.99 – – –
054 0.99 0.82 0.99 0.99 – – – –
136 0.93 0.99 0.96 0.87 0.98 0.99 – –
160 0.96 0.96 0.99 0.93 0.99 – – –
175 0.99 0.95 0.96 0.96 0.99 – – –
188 0.99 0.99 0.93 0.99 0.99 0.99 – –
221 0.99 0.95 0.99 0.99 – – – –
259 0.98 0.99 – – – – – –
286 0.99 0.98 0.99 – – – – –
312 0.99 0.99 – – – – – –
435 0.99 0.78 0.97 – – – – –
541 0.94 0.98 0.94 – – – – –
1202 0.89 0.99 0.99 0.99 0.99 0.99 – –
1217 0.99 0.93 0.96 0.99 0.99 0.99 – –
1226 0.99 0.99 0.99 0.93 0.99 0.98 0.99
1410 0.99 0.99 0.95 0.99 0.95 0.99 – 0.99
1506 0.97 0.99 0.99 0.99 0.99 – – –

Fig. 5 shows the results of the accuracy analysis accomplished by IDLAFD-UWSN model
and other existing methods on blurred and crowded testbeds. When analyzing the detection
performance of IDLAFD-UWSN model in terms of accuracy on blurred video testbed, it is
inferred that SCEA and ML-BKG models achieved ineffectual outcomes since its accuracy values
were 71% and 72.94% correspondingly. Next, EIGEN technique attempted to attain slightly
enhanced results with an accuracy of 82.89%, whereas FLDA, VIBE, and Hybrid system models
demonstrated moderately closer accuracy values such as 86%, 86.35%, and 86.76% respectively.
Simultaneously, FLDA-TM model exhibited a manageable performance with an accuracy of 88%.
Though KDE and TKDE models showcased competitive results with its accuracy values being
91.73% and 93.78%, the presented IDLAFD-UWSN model accomplished the maximum accuracy
of 98%. Similarly, when analyzing the detection performance of IDLAFD-UWSN model with
respect to accuracy on crowded video testbed, it is inferred that SCEA and EIGEN models
achieved ineffectual outcomes since its accuracy values were 70% and 75.82% correspondingly.
Next, FLDA approach attempted to achieve somewhat improved outcomes with an accuracy of
80%. While, ML-BKG, Hybrid system, and KDE techniques exhibited moderately closer accuracy
values such as 80.13%, 84.27%, and 84.83% respectively. Concurrently, VIBE model exhibited a
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manageable performance with an accuracy of 85.37%. Though TKDE and FLDA-TM models
showcased competitive results with its accuracy values being 85.90% and 89%, the presented
IDLAFD-UWSN model achieved the maximum accuracy of 97%.

Table 3: Comparative analysis of the proposed IDLAFD-UWSN method against existing methods
with respect to accuracy and F-score on the applied dataset

Methods Accuracy F-score

Blurred Crowded Blurred Crowded

IDLAFD-UWSN 98.00 97.00 96.00 97.00
KDE 91.73 84.83 92.56 82.46
ML-BKG 72.94 80.13 70.26 79.81
EIGEN 82.89 75.82 81.71 73.87
VIBE 86.35 85.37 85.13 84.64
TKDE 93.78 85.90 93.25 84.19
Hybrid system 86.76 84.27 86.76 84.27
FLDA-TM 88.00 89.00 87.32 88.76
FLDA 86.00 80.00 85.78 80.12
SCEA 71.00 70.00 72.65 69.63

Figure 5: Accuracy analysis of IDLAFD-UWSN model against existing techniques

Fig. 6 examines the F-score analysis results achieved by IDLAFD-UWSN technique and
existing models on blurred and crowded testbeds. When investigating the detection performance of
IDLAFD-UWSN model with respect to F-score on blurred video, it is understood that ML-BKG
and SCEA models achieved ineffectual outcomes with F-score values such as 70.26% and 72.65%
respectively. Then, EIGEN model attempted to attain slightly enhanced results with an F-score
of 81.71%, whereas VIBE, FLDA, and Hybrid system models demonstrated moderately closer
F-score values being 85.13%, 85.78%, and 86.76% correspondingly. Similarly, FLDA-TM model
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exhibited a manageable performance with an F-score of 87.32%. Though KDE and TKDE models
showcased competitive results i.e., F-score values such as 92.56% and 93.25%, the presented
IDLAFD-UWSN model produced the maximum F-score of 98%.

Finally, when assessing the detection performance of the proposed IDLAFD-UWSN model
in terms of F-score on crowded video testbed, the results conclude that SCEA and EIGEN
models achieved ineffectual outcomes since its F-score values were 69.63% and 73.87% respectively.
Afterward, ML-BKG model attained somewhat enhanced results with an F-score of 79.81%,
whereas FLDA, KDE, and TKDE approaches demonstrated moderately-closer F-score values
being 80.12%, 82.46%, and 84.19% respectively. At the same time, Hybrid system model exhibited
a manageable performance with an F-score of 84.27%. VIBE and FLDA-TM models show-
cased competitive outcomes while its F-score values were 84.64% and 88.76%. The proposed
IDLAFD-UWSN model outperformed all the existing models and produced the highest F-score
of 97%.

Figure 6: F-Score analysis of IDLAFD-UWSN model against existing techniques

From the above-discussed tables and figures, it is obvious that the presented IDLAFD-
UWSN model accomplished promising results under blurred and crowded environments too. The
improved performance is due to the inclusion of GMM-based background subtraction, MaskR-
CNN with CapsNet-based fish detection, and WKELM-based fish classification. Therefore, it can
be employed as an effective fish detection tool in marine environment.

6 Conclusion

The current research article presented a novel IDLAFD-UWSN model for automated fish
detection and classification in underwater environments. The presented IDLAFD-UWSN model
aims at automatic detection of fishes from underwater videos, particularly in blurred and crowded
environments. The presented IDLAFD-UWSN model operates on three stages namely, GMM-
based background subtraction, MaskRCNN with CapsNet-based fish detection, and WKELM-
based fish classification. MaskRCNN with CapsNet model distinguishes the candidate regions in
video frame from fish to non-fish objects. Lastly, fish and non-fish objects are classified with the
help of WKELM model. An extensive experimental analysis was conducted on benchmark dataset
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while the results of the analysis achieved by IDLAFD-UWSN model were promising with the
maximum accuracy of 98% and 97% on the applied blurred and crowded datasets respectively. As
a part of future extension, the presented IDLAFD-UWSN model can be implemented in real-time
UWSN to automatically monitor the behavior of fishes and other aquatic creatures.
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