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Abstract: Optimization plays an effective role in various disciplines of science
and engineering. Optimization problems should either be optimized using
the appropriate method (i.e., minimization or maximization). Optimization
algorithms are one of the efficient and effective methods in providing quasi-
optimal solutions for these type of problems. In this study, a new algorithm
called the Mutated Leader Algorithm (MLA) is presented. The main idea in
the proposed MLA is to update the members of the algorithm population in
the search space based on the guidance of a mutated leader. In addition to
information about the best member of the population, the mutated leader also
contains information about the worst member of the population, as well as
other normal members of the population. The proposed MLA is mathemat-
ically modeled for implementation on optimization problems. A standard set
consisting of twenty-three objective functions of different types of unimodal,
fixed-dimensional multimodal, and high-dimensional multimodal is used to
evaluate the ability of the proposed algorithm in optimization.Also, the results
obtained from theMLA are compared with eight well-known algorithms. The
results of optimization of objective functions show that the proposed MLA
has a high ability to solve various optimization problems. Also, the analysis
and comparison of the performance of the proposed MLA against the eight
compared algorithms indicates the superiority of the proposed algorithm and
ability to provide more suitable quasi-optimal solutions.

Keywords: Optimization; metaheuristics; leader; benchmark; objective
function

1 Introduction

Nowadays, by enhancing information technology, various number of optimization problems
arises in several fields such as bioinformatics, operation research, geophysics, and engineering
etc [1,2]. Hence, optimization has become a fundamental issue that plays a remarkable role in
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a wide range of programs and daily life. The simple concept of optimization is a method for
obtaining the favorable solution for a problem by optimizing (i.e., minimizing or maximizing)
a function in terms of some variables. In general, optimization problems consist of three main
parts, including objective function, constraints, and optimization variables [3]. Generally, methods
for solving optimization problems can be divided into two categories, included deterministic and
stochastic methods [4].

Deterministic methods, which are gradient-based methods and depending on the nature of
the equations and variables, i.e., Simplex, Branch, Bound, Non-linear methods, etc. Determin-
istic algorithms are able to precisely find the optimal solutions, but they are not suitable for
complicated and intractable problems, and their responding time grows exponentially in such com-
plicated problems [5]. Unfortunately, most real-life optimization problems include large solution
space, non-convex, and non-linear objective functions and constraints. Such optimization problems
classified as NP-hard problems and have high computational complexity that couldn’t be solved
in a polynomial time and complicated in nature. Should be noted that mathematical methods
are only effective in solving small-scale problems, and not efficient and cost-effective for solving
complex problems [5,6]. To tackle this problem, various approximation methods were proposed by
the researchers that able to obtain an acceptable solution in a sensible time.

Compared to the gradient-based methods, they are less likely to be trapped in local optima,
the gradient of the objective function is not required and can be used in high-complex and high-
dimensional problems. Other main advantages of these algorithms can be mentioned as:

Being severely robust, having a high chance to find global or a near-optimum within a reason-
able time, being easy to implement, and being well suitable for the discrete type of optimization
problems. The big disadvantage related to these algorithms is high computational complexity, week
constraint-handling capability, problem-specific parameter tuning, and limited problem size [7].

These stochastic methods can be categorized into two general groups: heuristics and meta-
heuristics. The base of stochastic methods is repetition, in which they first generate an initial pop-
ulation and in each iteration of the algorithm, they improve their solution until the convergence
criterion satisfied [8].

Two major drawbacks of the heuristic algorithms are (1) Stuck with a high probability of
local optimum and (2) Severe weakness in practical applications for complex and high dimensional
problems [9]. Metaheuristic algorithms are presented to overcome these shortcomings associated
with heuristic algorithms. The point about stochastic methods and optimization algorithms is
that optimization algorithms do not guarantee the proposed solution as a global optimal solu-
tion. However, the solutions obtained from the optimization algorithms are close to the global
optimal and are therefore called quasi-optimal. For this reason, various optimization algorithms
are introduced by scientists to provide better quasi-optimal solutions to optimization problems.
In this regard, optimization algorithms are applied in various fields in the literature such as
energy [10–13], protection [14], electrical engineering [15–20], and energy carriers [21,22] to achieve
the optimal solution.

The contribution and innovative of this study are in introducing a new optimization algorithm
called Mutated Leader Algorithm (MLA) in order to solve various optimization problems. Using
the mutated leader to update the position of the algorithm population in the search space
is the main idea of the proposed MLA. In addition to information about the best member of
the population, the mutated leader also contains information about the worst member of the
population, as well as ordinary members of the population. The proposed MLA is mathematically
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modeled and evaluated on a standard set consisting of twenty-three standard objective functions.
In addition, the performance of the MLA in solving these objective functions is compared with
eight well-known algorithms.

The rest of the article is organized in such a way that in Section 2, a study on optimization
algorithms is presented. The proposed MLA is introduced in Section 3. Simulation studies are
presented in Section 4. Finally, conclusions and several suggestions for further studies are provided
in Section 5.

2 Background

The development of metaheuristic algorithms (such as Particle Swarm Optimization
(PSO) [23], Genetic Algorithm (GA) [24], and Gravitation Search Algorithm (GSA) [25]) has
attracted more attention from researchers and more emphasis has given to the development of
these algorithms. The advantages of metaheuristics algorithms can be mentioned as simplicity
and flexibility, avoidance of local optimization, high performance, derivation-free mechanism, and
simplicity by nature. Metaheuristic algorithms are basically inspired by real-world phenomena and
simple principles in nature to find desired solutions for optimization problems by simulating bio-
logical phenomena or physical rules. There are two main categories for Metaheuristic algorithms:
evolutionary-based methods and swarm-based techniques. Generally, swarm-based techniques sim-
ulate physical phenomena and use mathematical methodologies. On the other hand, 2 originate
from the natural process of biological evolution. evolutionary-based methods originate from the
process of biological evolution in nature. These methods have attracted more attention from
many researchers in the last decades their capability to rapidly explore the feasible space and
independence from the nature of the problem.

Based on inspiration source, which is known as one of the most popular classification criteria,
optimization algorithms can be categorized into four general categories as (i) swarm-based (SB),
(ii) evolutionary-based (EB), (iii) physics-based (PB), and (iv) game-based (GB) methods.

2.1 Physics-Based Algorithms
Physics-based algorithms are a type of algorithm that is inspired by existing physical laws

and simulates them. For instance, Simulated Annealing (SA) is inspired by the process of gradual
heating and refining of metals [26]. Specifically, SA is the metaheuristic algorithm to approximate
global solutions in a large search space defined for an optimization problem. This method fre-
quently employed for problems with discrete search space (namely the traveling salesman problem).
For problems where finding an approximate global optimum is more significant than obtaining an
exact local solution within a specified time, SA may be preferred in comparison to accurate algo-
rithms such as branch and bound or gradient descent and so on. Spring Search Algorithm (SSA)
is inspired by Hooke’s law [27]. This algorithm can be utilized to solve single-objective constrained
optimization problems. The weights that are connected by springs are considered as the search
agents of this algorithm in the search space of problem, which according to Hooke’s law, the force
of these springs (or equivalently search agents), is proportional to the length of each spring. GSA
simulated the law of gravity, mass interactions and motion. A set of masses that interact with
each other based on Newtonian gravity force and the laws of motion are considered as searcher
agents in this algorithm. This force leads to a global movement of all agents towards objects with
weighty masses. Accordingly, masses collaborate using a directly gravitational force. Small World
Optimization Algorithm (SWOA) [28], Designed by small-world phenomenon process, Curved
Space Optimization (CSO) [29] based on principles of general relativity theory, Ray Optimization
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(RO) [30] algorithm, Black Hole (BH) [31], Momentum Search Algorithm (MSA) [32], Artificial
Chemical Reaction Optimization Algorithm (ACROA) [33], Charged System Search (CSS) [34],
Galaxy-based Search Algorithm (GbSA) [35], and Magnetic Optimization Algorithm (MOA) [36]
are other examples of this type of algorithms.

2.2 Evolution-Based Algorithms
Evolution-based algorithms are one more type of optimization algorithms that utilize mecha-

nisms inspired by biological evolution, such as mutation, reproduction, selection, and recombina-
tion. Algorithms such as GA, Biogeography-based Optimizer (BBO) [37], Differential Evolution
(DE) [38], Evolution Strategy (ES) [39], and Genetic Programming (GP) [40] are belong to
this group. For instance, GA is one of the well-known evolutionary-based metaheuristic algo-
rithms. This algorithm is inspired by the natural selection process. GA commonly utilized to
generate high-quality answers to optimization problems relying on biologically inspired operators
namely, mutation, selection, crossover, and so on. BBO is generally employed to optimize multi-
dimensional functions, but it does not apply the gradient of the function, which means that it
does not need the function to be differentiable as required by classic optimization algorithms
(namely newton and gradient descent algorithms). Hence, BBO can be used on discontinuous
functions. Evolutionary Strategy (EA) is inspired by natural selection deals with a division of
population-based optimization algorithms. According to natural selection theory individuals with
characteristics useful to their survival are able to live through generations and transfer the good
features to the next generation.

2.3 Swarm -Based Algorithms
Swarm-based algorithms are another type of optimization algorithm that is the collective

intelligence behavior of self-organized and decentralized systems, e.g., artificial groups of sim-
ple agents. These algorithms are Inspired by normal processes of plant cycles, insect activities,
and animals’ social behavior. Examples of Swarm-based algorithms include PSO, Ant Colony
Optimization (ACO) [41], Emperor Penguin Optimizer (EPO) [42], Teaching-Learning-Based
Optimization (TLBO) [43], Grey Wolf Optimizer (GWO) [44], Following Optimization Algo-
rithm (FOA) [45], Group Mean-Based Optimizer (GMBO) [46], Donkey Theorem Optimization
(DTO) [47], Tunicate Swarm Algorithm (TSA) [48], Marine Predators Algorithm (MPA) [49], and
Whale Optimization Algorithm (WOA) [50].

For Example, PSO and ACO are inspired by the social movement of the birds and moving
ants in order to select the shortest route, respectively. The GWO algorithm simulates the hunting
and the leadership hierarchy mechanism of grey wolves in nature. In this regard, four types of
grey wolves (namely alpha, beta, delta, and omega) are used to simulate the leadership hierarchy.
After that, the three important stages of hunting (i.e., searching, encircling, and attacking to the
hunt) are implemented. More specifically, PSO is a meta-heuristic global optimization algorithm
based on swarm intelligence. It comes from the investigation on the fish flock and bird move-
ment behavior. This algorithm is frequently used and quickly developed because of its simple
implementation and few particles needed to be setting. TLBO includes two main phases: Teacher
Phase and Learner Phase, and the mean value of the population was used to update the solution.
TLBO algorithm is based on the teaching-learning process in a classroom. In fact, this algorithm
is inspired by the effect of a teacher on the performance of learners in a class. EPO is inspired by
the social flock behavior of emperor penguins to survive successfully in the depth of the Antarctic
winter. this algorithm can be used for both constrained and unconstrained optimization problems.
The important steps of EPO are to generate the huddle boundary, compute temperature around
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the huddle, calculate the distance, and find the effective mover. TSA is a novel metaheuristic
algorithm, inspired by the swarm behavior of tunicate during the navigation and foraging process
to survive in the depth of the ocean. This method can be used for solving non-linear constrained
optimizing problems. WOA mimics the social behavior of humpback whales. This algorithm is
based on the bubble-net hunting strategy.

2.4 Game-Based Algorithms
Game-based algorithms were established based on simulating the various individual and group

game rules to be used effectively in solving optimization problems. For instance, orientation
search algorithm, Hide Objects Game Optimization (HOGO) [51], and Football Game-Based
Optimization (FGBO) [52] as an example of Game-based algorithms can be mentioned. More
precisely, the Orientation Search Algorithm (OSA) is designed taking into account the law of the
orientation game. With this rule, players move on the playing field (i.e., search space) according
to the path suggested by the referee [53]. FGBO is developed based on simulating the policies and
actions of clubs in the football league and population should be updated in four steps: 1) holding
the league, 2) training the clubs, 3) transferring the players, and 4) relegation and promotion of
the clubs.

3 Mutated Leader Algorithm (MLA)

In this section, the proposed Mutated Leader Algorithm (MLA) is introduced and its mathe-
matical model is presented for use in solving optimization problems. MLA is a population-based
method that in a repetition-based process is able to suggest appropriate quasi-optimal solutions
to optimization problems. In MLA, a number of random solutions to an optimization problem
are first proposed. These solutions are then updated under the guidance of mutated leaders in the
search space. After the iterations are over, the MLA offers the best possible solution as a solution
to the problem. In designing and modeling the proposed MLA, the following items have been
considered:

Each member of the population is actually a vector whose values determine the values of the
problem variables.

The member of the population that provides the most appropriate value for the objective
function is the best member of the population.

The member of the population that presents the worst value of the objective function is the
worst member of the population.

The members of the population in MLA are identified using a matrix called the population
matrix in Eq. (1).

X =

⎡
⎢⎢⎢⎢⎢⎣

X1
...
Xi
...
XN

⎤
⎥⎥⎥⎥⎥⎦
N×m

=

⎡
⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,d · · · x1,m
...

. . .
... . . .

...
xi,1 · · · xi,d · · · xi,m
... . . .

...
. . .

...
xN,1 · · ·xN,d · · ·xN,m

⎤
⎥⎥⎥⎥⎥⎦
N×m

, (1)

where X is the population matrix of MLA, Xi is the ith population member, N is the number of
population members, m is the number of variables, xi,d is the dth variable value suggested by the
ith population member.
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The objective function of the optimization problem can be calculated based on the values
suggested by each member of the population. Therefore, the values obtained for the objective
function are determined using a vector called the objective function vector in Eq. (2).

F =

⎡
⎢⎢⎢⎢⎢⎣

f1
...
fi
...
fN

⎤
⎥⎥⎥⎥⎥⎦
N×1

=

⎡
⎢⎢⎢⎢⎢⎣

F(X1)
...

F(Xi)
...

F(XN)

⎤
⎥⎥⎥⎥⎥⎦
N×1

, (2)

where F is the objective function vector and fi is the objective function value of the ith population
member.

In each iteration of the algorithm, after calculating the objective function based on population
members, the best and worst members of the population are identified. In MLA, a mutated leader
is used to update each member of the population. The mutated leader is actually a solution
vector whose elements are randomly selected from the best member of the population, the worst
member of the population, and other normal members of the population. The mutated leader is
constructed for each member of the population and in each iteration of the algorithm based on
the mentioned concepts using Eq. (3).

MLi :mli,d =
⎧⎨
⎩

xbestd , p≤Pb;
xworstd , Pb < p≤Pb+Pw;

xk,d , else,
(3)

whereMLi is the mutated leader to guide the ith population member in search space and mli,d
is the its dth dimension. xbest is the best population member, xworst is the worst population
member, xk,d is the dth dimension of the kth population member which is selected randomly, p
is a random number with a normal distribution in the range [0− 1], Pb is the probability of the
best member being elected, and Pw is the probability of the worst member being elected as the
dth dimension of mutated leader.

In each iteration of the algorithm, a mutated leader is created for each member of the
population. After designing the mutated leader, each member of the population is updated in
the search space based on the guidance of their own leader. This concept is simulated using
Eqs. (4)–(6).

Xnew
i : xnewi,d =

{
xi,d + r× (mli,d − I × xi,d), FML

i < Fi;
xi,d + r× (xi,d − I ×mli,d), else,

(4)

Xi =
{
Xnew
i , Fnewi < Fi;
Xi, else,

(5)

I = round(1+ rand), (6)

where Xnew
i is the new status of the ith population member, xnewi,d is the its dth dimension, and

Fnewi is its objective function value. r is a random number with a normal distribution in the range

[0− 1], and FML
i is the objective function value of mutated leader for the ith population member. I

is a random number, which can be 1 or 2, it is used to create random operators in the algorithm
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update process. The number 1 leads to normal movement and the number 2 increases the speed
of the population member in scanning the search space.

After all members of the population have been updated, the algorithm enters the next itera-
tion. Again, the best member and the worst member are updated based on the new values of the
objective function, and then the mutated leaders are created according to Eq. (3). The members
of the population are also updated according to Eqs. (4)–(6). This process is repeated until the
end of the algorithm execution. After the full implementation of the MLA, the best proposed
solution for the considered optimization problem is presented. The pseudo-code of the proposed
MLA is presented in Algorithm 1 and its flowchart is shown in Fig. 1.

Algorithm 1: Pseudo-code of MLA
Start MLA.

1. Input optimization problem information.
2. Set N and T .
3. Create initial population matrix.
4. Evaluate objective function.
5. For iteration = 1:T
6. Update xbest and xworst
7. For i = 1:N
8. Create mutated leader MLi using Eq. (3).
9. Calculate Xnew

i using Eq. (4) and Eq. (6).
10. Update Xi using Eq. (5).
11. end
12. Save best obtained solution.
13. end
14. Output the best obtained solution using MLA.
End MLA.

4 Simulation Studies

In this section, simulation studies and performance analysis of the proposed MLA in solving
optimization problems and quasi-optimal solutions are presented. The capability of the proposed
MLA is tested on a standard set of twenty-three objective functions of different types of func-
tions. Information about these standard functions is given in Appendix A in Tabs. A1–A3. Also,
the results of the proposed algorithm are compared with the performance of eight optimization
algorithms including Particle Swarm Optimization (PSO) [23], Genetic Algorithm (GA) [24],
Gravitation Search Algorithm (GSA) [25], Teaching-Learning-Based Optimization (TLBO) [43],
Grey Wolf Optimizer (GWO) [44], Tunicate Swarm Algorithm (TSA) [48], Whale Optimization
Algorithm (WOA) [50], and Marine Predators Algorithm (MPA) [49]. At this stage, each of
the optimization algorithms is simulated for 20 independent runs which the stop condition for
iterations is reaching the number of iterations of the algorithm to 1000 per run. The results of
the implementation of optimization algorithms on the objective functions are reported using the
two criteria of the average of the obtained best solutions (ave) and the standard deviation of the
obtained best solutions (std).
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Start MLA

Input information of optimization problem:
Variables, constraints, and objective function.

Set number of population (N) and iterations (T).

Create initial population.

Evaluate initial population.

Update xbest and xworst.

Create using Eq. (3).

End MLA

Output: print best solution.

No

Calculate using Eq. (4) and Eq. (6)

Update using Eq. (5).

Yes

i==N?

t==T?

Yes
No

i=i+1

t=t+1

Figure 1: Flowchart of MLA

4.1 Evaluation of Unimodal Functions
The first group of functions considered to evaluate the performance of the proposed algo-

rithm is of the type of unimodal functions, including seven functions F1 to F7. The results
of optimization of F1 to F7 objective functions using the proposed MLA and eight compared
algorithms are presented in Tab. 1. The proposed MLA is the best optimizer for the objective
functions of F1, F2, F3, F4, F5, F6, and F7 by providing more appropriate solutions than the eight
compared algorithms. In addition, MLA is able to provide the global optimal solution for F6.
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Comparison of the performance of optimization algorithms indicates that the proposed MLA has
a high ability to solve unimodal optimization problems.

Table 1: Evaluation results of unimodal objective functions

MLA MPA TSA WOA GWO TLBO GSA PSO GA

F1 Ave 7.6E-260 3.2715E-21 7.71E-38 2.1741E-09 1.09E-58 8.3373E-60 2.0255E-17 1.7740E-05 13.2405
std 0 4.6153E-21 7.00E-21 7.3985E-25 5.1413E-74 4.9436E-76 1.1369E-32 6.4396E-21 4.7664E-15

F2 Ave 2.2E-142 1.57E-12 8.48E-39 0.5462 1.2952E-34 7.1704E-35 2.3702E-08 0.3411 2.4794
std 1.1E-155 1.42E-12 5.92E-41 1.7377E-16 1.9127E-50 6.6936E-50 5.1789E-24 7.4476E-17 2.2342E-15

F3 Ave 4.01E-40 0.0864 1.15E-21 1.7634E-08 7.4091E-15 2.7531E-15 279.3439 589.4920 1536.8963
std 2.25E-46 0.1444 6.70E-21 1.0357E-23 5.6446E-30 2.6459E-31 1.2075E-13 7.1179E-13 6.6095E-13

F4 Ave 5E-102 2.6E-08 1.33E-23 2.9009E-05 1.2599E-14 9.4199E-15 3.2547E-09 3.9634 2.0942
std 7.3E-114 9.25E-09 1.15E-22 1.2121E-20 1.0583E-29 2.1167E-30 2.0346E-24 1.9860E-16 2.2342E-15

F5 Ave 27.05356 46.049 28.8615 41.7767 29.8607 146.4564 36.10695 50.26245 310.4273
std 4.77E-15 0.4219 4.76E-03 2.5421E-14 6.95E-13 1.9065E-14 3.0982E-14 1.5888E-14 2.0972E-13

F6 Ave 0 0.398 7.10E-21 1.6085E-09 0.6423 0.4435 0 20.25 14.55
std 0 0.1914 1.12E-25 4.6240E-25 6.2063E-17 4.2203E-16 0 0 3.1776E-15

F7 Ave 0.000593 0.0018 3.72E-03 0.0205 0.0008 0.0017 0.0206 0.1134 5.6799E-03
std 2.42E-21 0.0010 5.09E-05 1.5515E-18 7.2730E-20 3.87896E-19 2.7152E-18 4.3444E-17 7.7579E-19

4.2 Evaluation of High-Dimensional Functions
The second group of objective functions intended for analyzing the performance of the

proposed MLA is selected from high-dimensional multimodal type, including six functions F8 to
F13. The results of the implementation of the MLA and eight compared algorithms on these
objective functions are presented in Tab. 2. MLA is the best optimizer for the objective functions
F8, F10, and F12. In addition, the proposed MLA is able to provide the global optimal solution for
F9 and F11. The analysis of the obtained results shows that the proposed MLA has an acceptable
ability to optimize high-dimensional multimodal functions.

Table 2: Evaluation results of high-dimensional multimodal objective functions

MLA MPA TSA WOA GWO TLBO GSA PSO GA

F8 Ave −9715.13 -3594.16321 −5740.3388 −1663.9782 −5885.1172 −7408.6107 −2849.0724 −6908.6558 −8184.4142
std 4.68E-12 811.32651 41.5 716.3492 467.5138 513.5784 264.3516 625.6248 833.2165

F9 Ave 0 140.1238 5.70E-03 4.2011 8.5265E-15 10.2485 16.2675 57.0613 62.4114
std 3.72E-16 26.3124 1.46E-03 4.3692E-15 5.6446E-30 5.5608E-15 3.1776E-15 6.3552E-15 2.5421E-14

F10 Ave 4.44E-15 9.6987E-12 9.80E-14 0.3293 1.7053E-14 0.2757 3.5673E-09 2.1546 3.2218
std 0 6.1325E-12 4.51E-12 1.9860E-16 2.7517E-29 2.5641E-15 3.6992E-25 7.9441E-16 5.1636E-15

F11 Ave 0 0 1.00E-07 0.1189 0.0037 0.6082 3.7375 0.0462 1.2302
std 0 0 7.46E-07 8.9991E-17 1.2606E-18 1.9860E-16 2.7804E-15 3.1031E-18 8.4406E-16

F12 Ave 0.01863 0.0851 0.0368 1.7414 0.0372 0.0203 0.0362 0.4806 0.0470
std 5.43E-18 0.0052 1.5461E-02 8.1347E-12 4.3444E-17 7.7579E-19 6.2063E-18 1.8619E-16 4.6547E-18

F13 Ave 0.684909 0.4901 2.9575 0.3456 0.5763 0.3293 0.0020 0.5084 1.2085
std 8.19E-16 0.1932 1.5682E-12 3.25391E-12 2.4825E-16 2.1101E-16 4.2617E-14 4.9650E-17 3.2272E-16
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4.3 Evaluation of Fixed-Dimensional Functions
The third group of objective functions is selected from fixed-dimensional multimodal type

to evaluate the capability of optimization algorithms, including ten functions F14 to F23. The
results of optimization of these objective functions using the proposed MLA and eight compared
algorithms are presented in Tab. 3. The proposed MLA is the best optimizer for F15 and F16 func-
tions and in other objective functions it has provided quasi-optimal solutions with less standard
deviation. Comparison of the performance of the proposed MLA against the eight mentioned
algorithms shows that the MLA has a high ability to solve multi-model problems and is more
competitive than similar algorithms.

Table 3: Evaluation results of fixed-dimensional multimodal objective functions

MLA MPA TSA WOA GWO TLBO GSA PSO GA

F14 Ave 0.99800 0.9980 1.9923 0.9980 3.7408 2.2721 3.5913 2.1735 0.9986
std 3.48E-16 4.2735E-16 2.6548E-07 9.4336E-16 6.4545E-15 1.9860E-16 7.9441E-16 7.9441E-16 1.5640E-15

F15 Ave 0.00030 0.0030 0.0004 0.0049 0.0063 0.0033 0.0024 0.0535 5.3952E-02
std 9.7E-20 4.0951E-15 9.0125E−04 3.4910E-18 1.1636E-18 1.2218E-17 2.9092E-19 3.8789E-19 7.0791E-18

F16 Ave −1.03163 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
std 1.49E-15 4.4652E-16 2.6514E-16 9.9301E-16 3.9720E-16 1.4398E-15 5.9580E-16 3.4755E-16 7.9441E-16

F17 Ave 0.3978 0.3979 0.3991 0.4047 0.3978 0.3978 0.3978 0.7854 0.4369
std 4.97E-18 9.1235E-15 2.1596E-16 2.4825E-17 8.6888E-17 7.4476E-17 9.9301E-17 4.9650E-17 4.9650E-17

F18 Ave 3 3 3 3 3.0000 3.0009 3 3 4.3592
std 1.99E-16 1.9584E-15 2.6528E-15 5.6984E-15 2.0853E-15 1.5888E-15 6.9511E-16 3.6741E-15 5.9580E-16

F19 Ave −3.86278 −3.8627 −3.8066 −3.8627 −3.8621 −3.8609 −3.8627 −3.8627 −3.85434
std 9.53E-15 4.2428E-15 2.6357E-15 3.1916E-15 2.4825E-15 7.3483E-15 8.3413E-15 8.9371E-15 9.9301E-17

F20 Ave −3.322 −3.3211 −3.3206 −3.2424 −3.2523 −3.2014 −3.0396 −3.2619 −2.8239
std 9.93E-17 1.1421E-11 5.6918E-15 7.9441E-16 2.1846E-15 1.7874E-15 2.1846E-14 2.9790E-16 3.97205E-16

F21 Ave −10.1532 −10.1532 −5.5021 −7.4016 −9.6452 −9.1746 −5.1486 −5.3891 −4.3040
std 2.38E-16 2.5361E-11 5.4615E-13 2.3819E-11 6.5538E-15 8.5399E-15 2.9790E-16 1.4895E-15 1.5888E-15

F22 Ave −10.4029 −10.4029 −5.0625 −8.8165 −10.4025 −10.0389 −9.0239 −7.6323 −5.1174
std 5.96E-16 2.8154E-11 8.4637E-14 6.7524E-15 1.9860E-15 1.5292E-14 1.6484E-12 1.5888E-15 1.2909E-15

F23 Ave −10.5364 −10.5364 −10.3613 −10.0003 −10.1302 −9.2905 −8.9045 −6.1648 −6.5621
std 8.74E-16 3.9861E-11 7.6492E-12 9.1357E-15 4.5678E-15 1.1916E-15 7.1497E-14 2.7804E-15 3.8727E-15

4.4 Statistical Analysis
Presenting the results of implementation of optimization algorithms on optimization problems

using two criteria of the average of the best solutions obtained and their standard deviation pro-
vides valuable information about the capabilities and quality of optimization algorithms. However,
it is possible that even with a very low probability, the superiority of an algorithm occurred by
chance. Therefore, in this subsection, in order to further analyze the performance of optimization
algorithms, a statistical analysis on the results obtained from them is presented. In this regard,
Wilcoxon rank sum test, which is a non-parametric statistical test, is used to specify whether
the results obtained by the proposed MLA are different from compared eight algorithms in a
statistically significant way.

A p-value indicates whether the performance difference of the given algorithm is statistically
significant or not. The results of the statistical test obtained from the Wilcoxon rank sum test
are reported in Tab. 4. Based on the analysis of the results presented in Tab. 4, it is clear that
the proposed MLA in cases where the p-value is less than 0.05 is statistically different from the
compared algorithm.



CMC, 2022, vol.70, no.3 5641

Table 4: Obtained results from the Wilcoxon rank sum test (p ≥ 0.05)

Compared algorithms Unimodal High-multimodal Fixed-multimodal

MLA vs. MPA 0.015625 0.3125 0.0625
MLA vs. TSA 0.015625 0.03125 0.003906
MLA vs. WOA 0.015625 0.15625 0.007813
MLA vs. GWO 0.015625 0.3125 0.007813
MLA vs. TLBO 0.015625 0.15625 0.003906
MLA vs. GSA 0.03125 0.15625 0.007813
MLA vs. PSO 0.015625 0.09375 0.003906
MLA vs. GA 0.015625 0.03125 0.001953

4.5 Sensitivity Analysis
In this subsection, the sensitivity analysis of the proposed MLA to two parameters of

maximum number of iterations and number of population members is discussed.

In the first stage, in order to analyze the sensitivity of the proposed MLA to the maximum
number of iterations, the MLA in independent performances for the number of iterations of 100,
500, 800, and 1000 is implemented on twenty-three objective functions F1 to F23. The results of
this simulation for different number of iterations and different functions are reported in Tab. 5.
Based on the results obtained from this analysis, it is clear that with increasing the maximum
number of iterations, the proposed MLA converges to more appropriate solutions and the values
of the objective functions are reduced.

Table 5: Results of the algorithm sensitivity analysis to the maximum number of iterations

Objective function Maximum number of iterations

100 500 800 1000

F1 6.00E-09 7.74E-100 4.40E-205 7.6E-260
F2 3.49E-06 3.58E-56 5.08E-113 2.2E-142
F3 480.5555 1.44E-07 2.08E-28 4.01E-40
F4 0.004132 3.13E-39 2.13E-79 5E-102
F5 28.65352 27.87766 27.87319 27.05356
F6 0 0 0 0
F7 0.015142 0.004397 0.003891 0.000593
F8 −4686.93 −8592.75 −86423.2 −9715.13
F9 0.011295 0 0 0
F10 1.30E-05 4.44E-15 4.44E-15 4.44E-15
F11 9.31E-08 0 0 0
F12 0.217418 0.071869 0.022839 0.01863
F13 1.32191 1.126135 1.080669 0.684909
F14 1.992031 0.998004 0.99800 0.99800

(Continued)
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Table 5: continued

Objective function Maximum number of iterations

100 500 800 1000

F15 0.000603 0.000543 0.00030 0.00030
F16 −1.03163 −1.03163 −1.03163 −1.03163
F17 0.397887 0.397887 0.3978 0.3978
F18 3 3 3 3
F19 −3.86278 −3.86278 −3.86278 −3.86278
F20 −3.20164 −3.2031 −3.322 −3.322
F21 −10.1432 −5.05346 −10.1532 −10.1532
F22 −10.4026 −10.4029 −10.4029 −10.4029
F23 −10.5316 −10.5364 −10.5364 −10.5364

In the second stage, in order to analyze the sensitivity of the proposed MLA to the number
of population members, the proposed algorithm in independent performances for different pop-
ulations with 20, 30, 50, and 80 members is implemented on twenty-three objective functions F1
to F23. The results of the sensitivity analysis of the MLA to the number of population members
are presented in Tab. 6. What can be deduced from the simulation results of this analysis is that
as the population members increase, the values of the objective functions decrease.

Table 6: Results of the algorithm sensitivity analysis to the number of population members

Objective function Number of population members

20 30 50 80

F1 1.46E-240 2.20E-255 7.6E-260 4.31E-262
F2 2.93E-140 4.30E-141 2.2E-142 4.63E-146
F3 8.27E-29 4.14E-36 4.01E-40 2.03E-45
F4 2.63E-100 9.23E-101 5E-102 8.06E-105
F5 28.89621 28.12965 27.05356 26.93898
F6 0 0 0 0
F7 0.010739 0.005518 0.000593 0.000205
F8 −7050.88 −9143.84 −9715.13 −9846.61
F9 0 0 0 0
F10 4.44E-15 4.44E-15 4.44E-15 4.44E-15
F11 0 0 0 0
F12 0.409512 0.127906 0.01863 0.010133
F13 2.390453 1.227692 0.684909 0.413402
F14 0.998004 0.998004 0.99800 0.99800
F15 0.000652 0.000495 0.00030 0.00030
F16 -1.03163 −1.03163 −1.03163 −1.03163

(Continued)
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Table 6: continued

Objective function Number of population members

20 30 50 80

F17 0.397887 0.397887 0.3978 0.3978
F18 3 3 3 3
F19 −3.86278 −3.86278 −3.86278 −3.86278
F20 −3.31275 −3.322 −3.322 −3.322
F21 −10.1532 −10.1532 −10.1532 −10.1532
F22 −10.395 −10.4027 −10.4029 −10.4029
F23 −10.5294 −10.5298 −10.5364 −10.5364

5 Conclusions and Future Studies

Numerous optimization problems in science must be solved using appropriate methods.
Optimization algorithms is one of the problem-solving methods from the group of stochastic
methods that is able to provide appropriate solutions to optimization problems. In this paper,
a new optimization algorithm called Mutated Leader Algorithm (MLA) was introduced and
designed to solve optimization problems. Updating and guiding members of the population in the
problem-solving space based on mutated leaders was the main idea in the proposed MLA design.
The proposed MLA was mathematically modeled and its ability to solve optimization problems
on twenty-three standard objective functions of various types was evaluated. Also, the results
obtained from the MLA were compared with the results of eight algorithms named Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching
Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algo-
rithm (WOA), Marine Predators Algorithm (MPA), and Tunicate Swarm Algorithm (TSA). The
optimization results showed the high ability of the proposed MLA to solve optimization problems.
Also, analysis and comparison of the performance of the mentioned optimization algorithms
against the MLA, showed that the proposed algorithm has a better performance and is much
more competitive than similar algorithms.

For further study in the future, the authors offer several suggestions, including the design the
binary and multi-objective versions of proposed MLA. In addition, the use of MLA in solving
optimization problems in various fields as well as real life problems are other suggestions for
future studies.
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Appendix A. Objective functions

Information and details about the twenty-three standard objective functions used in the
simulation section are given in Tabs. A1–A3.

Table A1: Unimodal objective functions

F1(x)=
m∑
i=1

x2i [−100, 100]m

F2(x)=
m∑
i=1

|xi| +
m∏
i=1

|xi| [−10, 10]m

F3(x)=
m∑
i=1

(
i∑

j=1
xi

)2

[−100, 100]m

F4(x)=max{|xi| , 1≤ i≤m } [−100, 100]m

F5(x)=
m−1∑
i=1

[100(xi+1−x2i )
2+ (xi − 1)2)] [−30, 30]m

F6(x)=
m∑
i=1

([xi+ 0.5])2 [−100, 100]m

F7(x)=
m∑
i=1

ix4i + random(0, 1) [−1.28, 1.28]m

Table A2: High-dimensional objective functions

F8(x)=
m∑
i=1

−xi sin
(√|xi|

)
[−500, 500]m

F9(x)=
m∑
i=1

[ x2i − 10 cos(2πxi)+ 10]

[−5.12, 5.12]m

F10(x)=
−20 exp

(
−0.2

√
1
m

m∑
i=1

x2i

)
−

exp
(

1
m

m∑
i=1

cos(2πxi)
)
+ 20+ e

[−32, 32]m

F11(x)=
1

4000

m∑
i=1

x2i −
m∏
i=1

cos
(
xi√
i

)
+ 1

[−600, 600]m

(Continued)



5648 CMC, 2022, vol.70, no.3

Table A2: Continued

F12(x)=
π
m

{
10 sin(πy1)+

m∑
i=1

(yi− 1)2[1+ 10sin2(πyi+1)]+ (yn− 1)2
}
+

m∑
i=1

u(xi, 10, 100, 4)

u(xi,a, i,n)=⎧⎨
⎩
k(xi − a)n , xi >−a;
0, −a< xi < a
k(−xi − a)n, xi <−a,

;

[−50, 50]m

F13(x)=
0.1

{
sin2(3πx1)+

m∑
i=1

(xi− 1)2[1+ sin2(3πxi+ 1)]+ (xn− 1)2[1+ sin2(2πxm)]
}
+

m∑
i=1

u(xi, 5, 100, 4)

[−50, 50]m

Table A3: Fixed-dimensional objective functions

F14(x)=(
1

500 +
25∑
j=1

1
j+∑2

i=1 (xi−aij)6

)−1
[−65.53, 65.53]2

F15(x)=
11∑
i=1

[
ai− x1(b2i+bix2)

b2i+bix3+x4

]2
[−5, 5]4

F16(x)= 4x21− 2.1x41+ 1
3x

6
1+

x1x2− 4x22 + 4x42

[−5, 5]2

F17(x)=(
x2 − 5.1

4π2x
2
1 + 5

π
x1− 6

)2+
10
(
1− 1

8π

)
cosx1 + 10

[−5, 10]× [0, 15]

F18(x)=
[1+ (x1+x2 + 1)2(19− 14x1+ 3x21 − 14x2+ 6x1x2 + 3x22)]×
[30+ (2x1− 3x2)2× (18− 32x1+ 12x21+ 48x2− 36x1x2 + 27x22)]

[−5, 5]2

F19(x)=
−

4∑
i=1

ciexp

(
−

3∑
j=1

aij(xj −Pij)2
) [0, 1]3

F20(x)=
−

4∑
i=1

ciexp

(
−

6∑
j=1

aij(xj −Pij)2
) [0, 1]6

(Continued)
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Table A3: Continued

F21(x)=
−

5∑
i=1

[(X − ai)(X − ai)T + 6ci]−1

[0, 10]4

F22(x)=
−

7∑
i=1

[(X − ai)(X − ai)T + 6ci]−1

[0, 10]4

F23(x)=
−

10∑
i=1

[(X − ai)(X − ai)T + 6ci]−1

[0, 10]4


