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Abstract: This paper presents the design and implementation of Adaptive
Generalized Dynamic Inversion (AGDI) to track the position of a Linear
Flexible Joint Cart (LFJC) system along with vibration suppression of the
flexible joint. The proposed AGDI control law will be comprised of two
control elements. The baseline (continuous) control law is based on prin-
ciple of conventional GDI approach and is established by prescribing the
constraint dynamics of controlled state variables that reflect the control objec-
tives. The control law is realized by inverting the prescribed dynamics using
dynamically scaled Moore-Penrose generalized inversion. To boost the robust
attributes against system nonlinearities, parametric uncertainties and external
perturbations, a discontinuous control law will be augmented which is based
on the concept of sliding mode principle. In discontinuous control law, the
sliding mode gain is made adaptive in order to achieve improved tracking
performance and chattering reduction. The closed-loop stability of resultant
control law is established by introducing a positive define Lyapunov candidate
function such that semi-global asymptotic attitude tracking of LFJC sys-
tem is guaranteed. Rigorous computer simulations followed by experimental
investigation will be performed on Quanser’s LFJC system to authenticate
the feasibility of proposed control approach for its application to real world
problems.

Keywords: Adaptive control; generalized dynamic inversion; moore-penrose
generalized inverse; sliding mode control; lyapunov stability; semi-global
asymptotic stability

1 Introduction

This paper presents a controller design for position tracking of a classroom equipment for
mass-damper-spring quadratic systems called Linear Flexible Joint Cart (LFJC) system supplied
by [1]. Due to some non-parametric uncertainties, the controller must be designed with adaptive
mechanism. Adaptive controller designs remain an active field of research as systems nowadays
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were designed to be more complex. Parameter estimation techniques are the fundamental of adap-
tive control system and the way the estimated parameter is used determines their classification.
Adaptive control system can be classified either as direct method when the estimated parameters
are used directly in the controller, or indirect method when they were used only to calculate
required controller parameters or hybrid method which is a mix between the first two.

One of the most popular adaptive controllers is the Model Reference Adaptive Controller
(MRAC) which belongs to the direct adaptive control method. MRAC has a structure where
an additional control loop called adaptation loop is added to the normal feedback structure to
adapt to changes in the system dynamic as well as to compensate disturbances. Since its first
implementation in 1958, MRAC has evolved and some of recent works on the controller can be
found in [2–4].

One type of adaptive controller under the family of indirect method is Model Identification
Adaptive Control (MIAC). The working principle of MIAC is to optimize the performance of
a controller by identifying the system while it is running. This is very much similar to the
concept of Self-tuning Regulators (STR) [5], in fact, the term MIAC was proposed to solve the
interpretation issue of STR with another controller having similar concept called Self-optimizing
Adaptive Control (SOAC) [6]. An example of MIAC implementation on Unmanned Aerial Vehicle
(UAV) is discussed in [7].

The two controllers discussed earlier used single model as reference, there exist a type of
adaptive controller that uses large number of models as references called Multi-model Adaptive
Control (MMAC). Not all reference models will be used all the time though. At an instance,
only one model that is closest to the plant is chosen. Recent examples of MMAC implementation
include a Dynamic Positioning System for Quadrotor Helicopters and Simulator for Solid Oxide
Fuel Cell Gas Turbine Power Plants [8,9]. There are also some proposals for a two-layer switching
strategy in MMAC [10] and artificial intelligent (AI) based switching techniques such as fuzzy
logic [11] and neural networks [12].

The usage of AI based technique in adaptive control is tempting as it generally provides a
model free universal approximation. They were typically used together with classical controller
to enhance their robustness, adaptivity to changes, and improve non-linear model approximation.
Some examples are the adaptive fuzzy PID [13], adaptive fuzzy sliding mode [14], and neural adaptive
PID [15].

There is still an exhaustive list of types of adaptive controller yet to discussed in this
paper like gain scheduling, iterative learning control, adaptive pole placement, and extremum-seeking
controllers. A brief review on the state-of-the art adaptive control systems can be found in [16–18].

In this paper, an inversion based AGDI control approach is applied for linear position control
of LFJC system. A Moore-Penrose Generalized Inverse was used to parameterize the solution as
the inversion could results in infinite number of solutions as given in [19–21]. An additional term
based on Sliding Mode Controller (SMC) is included in the proposed controller as implemented
in [19]. In all these references, a constant sliding mode gain is used in the additional term for
its application to rotary servo cart and inverted pendulum systems. However, in this article, the
authors have extended the previous work by implementing the adaptive sliding mode gain in the
discontinuous control which adapts itself with respect to the changing environment for chattering
reduction and to achieve improved tracking performance. The article has presented very first
time the application of AGDI control on Quanser’s LFJC system and the performance has been
verified through both numerical simulations and experimental investigations. In Section 4, in-depth
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stability analysis of the controller has been presented to guarantee semi global asymptotic tracking
performance. Results from computer simulations and practical experiments will be discussed in
detail in Section 5. Finally, the paper is concluded in Section 6.

2 Mathematical Model of Linear Flexible Joint Cart System

An LFJC system as shown in Fig. 1 is a system of two carts sliding on a track with one of
the carts is driven by a DC motor. It can be modelled as a two mass-spring system as illustrated
in the schematic diagram in Fig. 2 where mc and mjc is the mass of the cart and the joint cart
respectively, while xc and xjc is their respected position. The position of the cart is measured using
a quadrature optical encoder. The linear force applied to the cart is denoted by Fc whereas the
spring linking the two carts has a constant denoted by Ks

Figure 1: Linear flexible joint cart system [1]

Figure 2: Schematic of LFJC

The differential equations of the system are given as:

ẍc = 1
Jeq

(−Ksxc+Ksxjc−Beqẋc+Fc) (1)

and

ẍjc = 1
mjc

(Ksxc−Ksxjc−Beqjc ẋjc) (2)

where Beq and Beqjc are the equivalent viscous damping of the servo system and the LFJC
respectively while Jeq is the equivalent moment of inertia. The linear force, Fc which is generated
by the servo motor can be described by the following equation:

Fc =
ηgKgKt
Rmrmp

(
−KgKmẋc

rmp
+ ηmVm

)
(3)

The servo motor parameters in [3] are as defined in [1]. We can re-write (1) and (2) in the
state-space form as in the following:

ẋ=Ax+Bu (4)
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and

y=Cx+Du (5)

where

A=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−Ks
Jeq

Ks
Jeq

−Beq
Jeq

0

Ks
mjc

− Ks
mjc

0 −Beqjc
mjc

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

B=

⎡
⎢⎢⎢⎢⎣

0
0
1
Jeq
0

⎤
⎥⎥⎥⎥⎦ (7)

C =
[
1 0 0 0
0 1 0 0

]
(8)

D=
[
0
0

]
(9)

while the state variables and control variable are as follows:

xT = [xc||xjc||ẋc||ẋjc] (10)

and

u=Vm (11)

3 Controller Design

To track the linear position of LFJC system, a controller is designed to have two loops as
shown in Fig. 3. In the outer loop, we employed an AGDI control law to provide position signal
commands while the inner loop will use the signals to generate the required voltage to move the
linear cart to its desired position.

3.1 GDI Control Law

⎡
⎢⎢⎣
ẍcd +

Ks
Jeq

xc− Ks
Jeq

xjc+
Beq
Jeq

ẋc− c1 eẋc −c2eẍc

ẍjcd −
Ks
mjc

xc+ Ks
mjc

xjc+
Beqjc
mjc

ẋjc− c3 eẋjc −c4 eẋjc

⎤
⎥⎥⎦=

⎡
⎣ 1
Jeq
0

⎤
⎦Vm (12)

By formulating constant time ordinary differential constraints, we begin our controller design:

ëxc = c1(t)ėxc + c2(t)exc (13)
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ëxjc = c1(t)ėxjc + c2(t)exjc (14)

where, ci(i= 1 to 4) are coefficients whose value should be selected appropriately in order for the
constraint differential equation to achieve asymptotic stability. The term exc = n1(xca −xcd )

2 in
(13) is an error function for the cart’s position where and d denotes the actual and desired values.
Similarly, the error function for the joint cart’s position in (14) is exjc = n2(xjca −xjcd )

2. n1 and n2
on the other hand are positive real valued constant.

Figure 3: Proposed controller architecture

To obtain the desired control action Vm, we utilize a dynamic inversion technique in which
the dynamic equation should be in the form of:

M =NVm (15)

From the system’s dynamic model in (6) and (7) and the constraint equations developed in
(13) and (14), we can realize (15) by writing:

Now, we can obviously solve Vm by bringing the term N in (12) to the left and therefore
invert it. This can’t be done using the ordinary way as N is not a square matrix. To solve this
issue, we apply a generalized method called the Moore-Penrose Generalized Inverse [18] as follows:

N+ = NT

NTN
(16)

However, there can exists infinite number of solutions for Vm, therefore by using the Greville
method, the solution is parameterized as in the following:

Vm =N+M+Pλ (17)

where λ is the null control and P is the null projection given by the following equation:

P= I −N+N (18)

Note that, the same control law is applied in both controller loops.
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3.2 Robust Controller Design
In order to make the controller more robust, a technique similar to SMC is employed to

augment the controller. For that, a set of sliding surface vector function for both outer and inner
controller loop is defined as in the following:

So=
[
Sxco
Sxjco

]
=

[
ėxco + c1 (t) exco + c2 (t)∫exco

dotexjco + c3 (t) exjco + c4 (t)∫ exjco

]
(19)

Si =
[
Sxci
Sxjci

]
=

[
ėxci + c1(t)exci + c2(t)∫ exci

dotexjci + c3(t)exjci + c4(t)∫ exjci

]
(20)

Therefore, the derivative of the vector functions are as follows:

Ṡo=
[
Ṡxco
Ṡxjco

]
=

[
ëxco + c1(t)ėxco + c2(t)exco
ëxjco + c1(t)ėxjco + c2(t)exjco

]
(21)

Ṡi =
[
Ṡxci
Ṡxjci

]
=

[
ëxci + c1(t)ėxci + c2(t)exci
ëxjci + c1(t)ėxjci + c2(t)exjci

]
(22)

Note that subscripts i and o is used to represent the inner and outer loop part of the
controller respectively. By setting the derivatives of the sliding functions as in (21) and (22) to 0,
the constraint dynamic equations in (13) and (14) can now realize its asymptotic stability. This
leads to the following definition:

Ṡ=NVm−M (23)

Finally, based on the sliding vector functions in (19) and (20) and considering the expression
in (17), our switching control law was derived based on the rate achieving law, yielding the
following:

Vmo
∗ =N+M +Poλo−CoN+ So

||So|| (24)

Vmi
∗ =N+M+Piλi−CiN+ Si

||Si|| (25)

where Co and Ci are the gains for both outer and inner loop of the controller. The adaptive
mechanism of these gains will be discussed in the next sub-chapter.

3.3 Adaptive Controller Design
The designed controller were made adaptive by introducing an update mechanism for the

gains in (24) and (25) which equations given as follows:

Co= ||Vmoeq
||TĈo+ ηo (26)

Ci = ||Vmieq
||TĈi+ ηi (27)
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where Vmoeq
and Vmieq

represent the nominal GDI controllers given by (24) and (25) respectively

while ηo and ηi ensure the reaching condition by bounding the disturbances. Ĉo and Ĉi are the
adaptive modulation gains which the update mechanism is given as:

˙̂Co= k1Ĉo+ k2εo||Vmoeq
||||So|| (28)

˙̂Ci = k3Ĉi+ k4εi||Vmieq
||||Si|| (29)

with k1, k2, k3, k4, and εo, εi are all constant positive scalar gains.

4 Stability Analysis

To guarantee stability of the controller, the error vectors exco , exjco , exci , exjci must be converge
finitely. For that, the value of Co and Ci must be carefully selected. By substituting equation in
(24) and (25) into (23), the following will be obtained:

Ṡo =N
(
N+M +Poλo−CoN+ So

||So||
)
−M (30)

Ṡi =N
(
N+M +Piλi−CiN+ Si

||Si||
)
−M (31)

Substitute P= I −N+N into (30) and (31) yields:

Ṡo = (πN − I)M −πNCo
So

||So|| (32)

Ṡi = (πN − I)M −πNCi
Si

||Si|| (33)

where πN =NN+ �= 1 and I is an identity matrix. Based on the expression in (16), we can conclude
that:

0< ||πN ||< 1 (34)

for all N �= 0, and

lim
t→∞πN = 0↔ lim

t→∞N = 0 (35)

Next, we intend to prove that the sliding mode dynamics Ṡ in (32) and (33) can achieve
asymptotically stability by performing Lyapunov stability analysis.

Let the positive definite Lyapunov energy function is defined as:

V = 1
2
STS (36)
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By substituting the (32) and (33) into the derivatives of Lyapunov function in (36) yields the
following:

V̇o= SoT
(

(πN − I)M −πNCo
So

||So||
)

(37)

V̇i = SiT
(

(πN − I)M −πNCi
Si

||Si||
)

(38)

According to the Lyapunov’s direct method, asymptotic stability stability of S can be
guaranteed when V̇ is negative definite therefore, Co and Ci must satisfies the following:

Co= ||Vmoeq
||TĈo+ ηo >

πN − 1
πN

|M| (39)

Ci = ||Vmieq
||TĈi+ ηi >

πN − 1
πN

|M| (40)

The sliding mode dynamics in (30) and (31) can be converged as the error vector e converge
which as a result implying the condition in (35). Therefore:

lim
e→0

πN − 1
πN

=−∞ (41)

It can be observed that from (41) that it is not possible to obtain SMC gains which guarantees
asymptotic stability. However, with suitable selection of the gains, we can let the controller to
achieve a semi global practical stability. Let us assess the outer loop controller case according to
the following theorem:

Theorem 1: for every real number πN
∗ ∈ (0, 1) there exists a real number ηo

∗ > 0 such that the
time derivative of V along the solution trajectories of the sliding mode dynamic given by (32) is
strictly negative for all πN > πN

∗ and ηo > ηo
∗

Proof : Define πN
∗ ∈ (0, 1) , while η0 is defined as in the following:

η0 =
πN

∗ − 1
πN∗ |M| (42)

It follows that ηo > ηo. whenever πN > πN
∗. Accordingly let Do be a neighbourhood of

(exc ,exjx=(0, 0), and choose sliding gain constant ηo
∗ such that

ηo
∗ >maxDoηo (43)

Then V̇o < 0 holds true along any closed loop trajectory that initiates within Do whener πN >

πn
∗ existence of a finite number ηo

∗ is guaranteed for any domain Do because M is globally
bound which eventually leads to globally bounded exc and exjc trajectories respectively.

Theorem 2: Consider the closed-loop dynamical system of the LFJC given by (6) and (7).
If the controlled voltage Vm given by (24) is applied, then the equilibrium point e = 0 of the
closde-loop dynamics is semi-globally practically stable.
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Proof : To prove Theorem 1, the matrix bound ||πN∗|| can be arbitrarily selected closer to zero
by choosing the gain such that V̇o < 0, whenever the specified condition πN ≥ πN

∗ is satisfied,
the bound holds along any closed-loop trajectory in the neighbourhood D of e= 0. In order for
an error state trajectory e to fall within the defined domain πN < πN

∗ in finite time and prevail
within that domain, it follows that reducing the value of ||πN∗|| arbitrarily closer to zero implies
driving the error vector e arbitrarily closer to zero and making it uniformly ultimately bounded,
i.e., making practically e stable. Moreover, because Do can be arbitrarily expanded by increasing
Co, then this practical stability is semi-global.

5 Results

To evaluate the performance of the designed controller, we perform numerical simulations
with step and sine wave input. The same scenario is then repeated in the practical experiment
on a real system. Two other controllers namely the GDI and Linear Quadratic Regulator (LQR)
were also developed and tested in both simulations and experiments to provide comparison to the
designed controller.

5.1 Simulation Results
The LFJC system is simulated based on the dynamic model given in (6–9) with the param-

eter’s value given in [1]. First, the system model is tested with 0.2 Hz square-wave input with
amplitude at 0.02 m. Results as shown in Fig. 4a demonstrates that the cart able to track the
reference input when the proposed controller is employed. This was achieved with minimum
oscillation as suggested by the results in Fig. 4b.

Figure 4: Simulation response of (a) xc and (b) xjc on square-wave input

Then, sine-wave is used with the same frequency and amplitude as in the previous simulation
and the results is as shown in Fig. 5. Here, the superiority of the proposed controller over GDI
and LQR are obvious. The proposed controller’s adaptivity is also evident especially for joint cart
position as shown in Fig. 5b where a little oscillation was only observed in the first 1.5 s it before
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smoothly follows the set-point. The superiority of AGDI over the other two controllers are further
proven by comparing their Integral Time Absolute Error (ITAE) as shown in Tabs. 1 and 2.

Figure 5: Simulation response of (a) xc and (b) xjc on sine-wave input

Table 1: ITAE measurement of xjc in simulation

Controller Square Sine

LQR 6.0151 5.8577
GDI 6.8580 5.3998
AGDI 5.9822 1.2352

Table 2: ITAE measurement of xc in simulation

Controller Square Sine

LQR 4.6260 5.2164
GDI 3.7727 4.7601
AGDI 3.3902 0.4368

The input voltage generated in response to the set-point is shown in Fig. 6. Despite a little
spike recorded in response to the square-wave set-point when the cart started to change its
position, the voltage input was well within the allowable limits.

5.2 Experimental Results
The same scenario as in the simulation is tested on a real equipment where the experimental

set-up is as shown in Fig. 7. The set-up consists of a Linear Flexible Joint Cart system as
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described in Section 2, an amplifier to provide sufficient power to the motor and sensors, and
DAQ board for transmitting control signals from Matlab interface to the system and receiving
measured data from the encoders.

Figure 6: Input voltage generated in response to (a) square-wave, (b) sine-wave set-point in
simulation

Figure 7: LFJC experimental set-up
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The experimental results for the proposed controller are shown in Fig. 8 for square-wave
reference input and in Fig. 9 for sine-wave reference input. It can be observed from the results that
the performance of all controllers was not as good as in the simulation especially with sine-wave
reference input. The proposed controller, however, performs the best compared to the other two
with LQR at the other end. This fact is backed by the ITAE measurement as shown in Tabs. 3
and 4.

Figure 8: Square wave cases (a) cart position vs. time (b) joint cart position vs. time (c) input
voltage vs. time
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Figure 9: Sine-wave cases (a) cart position vs. time (b) joint cart position vs. time (c) input voltage
vs. time

Table 3: ITAE measurement of xjc in experiment

Controller Square Sine

LQR 7.2477 7.1762
GDI 4.7188 4.4185
AGDI 4.8643 4.3898

Figs. 8c and 9c show the input voltage generated in response to the input reference during the
experiment. For square-wave set-point, it is similar to the one in simulation where voltage spike
followed by a little oscillation is recorded when the cart starts to move except that this time the
voltage spike produced by LQR was too high that it could harm the system. On the other hand,
the input voltage oscillates almost all the time in order for the cart to move continuously to track
the sine-wave input reference.
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Table 4: ITAE measurement of xc in experiment

Controller Square Sine

LQR 12.0810 15.5544
GDI 9.7485 15.1153
AGDI 8.1561 13.3835

6 Conclusion

A two-loops adaptive controller based on GDI has been successfully implemented in tracking
the linear position of LFJC system. The proposed AGDI control law contains two control
elements. Laws of Control established using a baseline (continuous) control law designed to reflect
control objectives. The baseline law derives from the conventional GDI approach and is based on
the rules for GDI. By applying Moore-Penrose generalized inversion to the prescribed dynamics,
the control law is established. The introduction of adaptation modulation gain has made the
controller able to adapt to changes in the system. The superiority of the proposed controller over
GDI and LQR was proven by the simulation and practical experimental results. However, there
are still room for improvements especially in minimizing the oscillation produced by the input
voltage due to the continuous movement of the cart.
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