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Abstract: This paper investigates a polygonal finite element (PFE) to solve a
two-dimensional (2D) incompressible steady fluid problem in a cavity square.
It is a well-known standard benchmark (i.e., lid-driven cavity flow)-to evaluate
the numerical methods in solving fluid problems controlled by the Navier–
Stokes (N–S) equation system. The approximation solutions provided in this
research are based on our developed equal-order mixed PFE, called Pe1Pe1.
It is an exciting development based on constructing the mixed scheme method
of two equal-order discretisation spaces for both fluid pressure and velocity
fields of flows and our proposed stabilisation technique. In this research, to
handle the nonlinear problem of N-S, the Picard iteration scheme is applied.
Our proposed method’s performance and convergence are validated by several
simulations coded by commercial software, i.e., MATLAB. For this research,
the benchmark is executed with variousReynolds numbers up to themaximum
Re= 1000. All results then numerously compared to available sources in the
literature.

Keywords: Lid-driven cavity; incompressible; steady; Navier–Stokes
equations; polygonal finite element method

1 Introduction

This research, instead of using widely used numerical approaches such as the finite differ-
ence method (FDMfinite volume method (FVM)), finite element method (FEM), e.g., [1–3], etc.,
proposes an advanced PFE method (PFEM) to solve the 2D lid-driven cavity problem controlled
by the incompressible steady N-S equations. As known, PFEM is a robust numerical method
offering a wide range of distinguished advantages, especially flexibility and the benefit of Voronoi
algorithms to generate meshes with arbitrary element shapes [4,5]. Furthermore, PFEM offers
better accuracy without the need for a sizeable overall mesh scale compared to its triangular and
quadrilateral counterparts [6,7]. It means that PFEs can provide better solutions than triangular
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and quadrilateral elements [7,8]. However, the fact is that developments of PFEM in the fluid field
is still too modest compared to the enormous potential of the method. The most current research
of PFEM for fluid analysis, hitherto, was only given by Talischi et al. [6] in 2014, see and then is
our research in 2019, see [9–12]. However, such research only focuses on the performance, stability
and convergence of the PFEs for incompressible steady Stokes problems. Therefore, this research
aims to use our recently developed PFE to solve 2D incompressible steady N-S cavity problems.

As that goal, this study adopts the equal-order mixed PFE, named Pe1Pe1. The primary
advantage of our developed element is the computational ability for fluid flows on all kinds of
mesh families, e.g., triangular, quadrilateral, hexagonal, random and centroidal Voronoi meshes. It
is constructed by the mixed scheme between two equal-order discretisation spaces for both fluid
pressure and velocity fields of flows. In this research, Wachspress basis shape functions are utilised
to represent the approximation spaces of velocity and pressure fields. Furthermore, this research
executes our novel stabilisation technique to eliminate the instability of the equal-order mixed
scheme [9–12]. It is an innovation of the local polynomial pressure projection method introduced
by Bochev et al. [13] in 2004. It automatically adapts the local stabilisation term for each arbitrary
shape of element on a polygonal mesh. Our advanced stabilisation method adds a term to penalise
pressure deviations from the ‘consistent’ polynomial order. And it helps to avoid the residual terms
of the penalty method to maintain the symmetry of the numerical system.

As mentioned, this research employs a well-known benchmark (i.e., lid-driven cavity flow)-a
classical standard to evaluate the numerical methods in solving the N-S equations. This bench-
mark’s main advantage is the simplicity of the geometry, leading to applying numerical methods
on this flow in terms of coding is relatively easy and straightforward. Despite its simple geometry,
the driven cavity flow occupies a rich fluid physics flow [14,15]. The cavity problem is early and
widely utilised by many researchers, e.g., Ghia et al. [16]; Botella et al. [14]; Bruneau et al. [17],
etc. This study, hence, applies the 2D lid-driven cavity benchmark with various Reynolds numbers
(i.e., Re= 100, 400 and 1000) to assess the performance of our developed PFE (i.e., Pe1Pe1, [10])
in solving the incompressible steady N-S equations. The solutions of this study are compared with
the highly accurate benchmark solutions found in the literature.

N–S equations, as known, are a system of the nonlinear term of convection problems [18].
Nonlinear equations cannot, in general, be solved analytically [19,20]. Thus, in this case, nonlinear
equations must be handled by iteration progress. The concept behind such iteration techniques
starts at an arbitrary point–the closest possible point to the solution sought–and gradually reach
the solution through a series of sequent tests [19,21,22]. Because of the advantages of the Picard
iteration method (i.e., a huge ball of convergence [23–25], efficiency and simplicity [26], etc.),
Picard is chosen to handle the nonlinear term in N-S equations in this study. In addition, to
take advantage of the PFEM, the mesh generation algorithms and Voronoi diagrams’ properties
[4–6] are utilised. Besides, the Wachspress coordinates [27,28] are also adopted. In addition, the
advanced techniques developed in [5,7,29], which handle the bottleneck of generating quality
polygonal meshes, are applied.

The paper is organised as follows: Section 2 presents the incompressible steady N-S flow
problems. In Section 3, we illustrate the iteration progress to solve the N-S equation system’s
nonlinear problem. Then, Section 4 presents the mixed discretisation scheme. Section 5 shows the
numerical tests’ results. Finally, the conclusions and future works are given in Section 6.
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2 Incompressible Navier–Stokes Equations

As known, the steady-state N-S equation system for incompressible fluid flow is generally
written as following [25,30,31]:

∇p− ν∇2u+ u · ∇u= f (1)

∇ · u= 0 (2)

where ν is a given positive constant called the fluid kinematic viscosity; f is the forcing term; u and
p are the fluid velocity in H1 (�) and the modified pressure (after dividing by water density ρ) of
the fluid in L2 (�), respectively. Then, the given domain � has the following boundary conditions
(�= �D ∩�N in which �D is the Dirichlet boundary and �N is the Neumann boundary):

u=w on �D, (3)

ν
∂u
∂n

− np= s on �N , (4)

where n and ∂u/∂n are the outward-pointing normal vector and directional derivative in the
normal vector direction, respectively. For more simplification, body force vector f is set to zero
with a little loss of generality. In this case, the conservation term of body force (gravity force) is
the gradient of a scalar field, that is, f =−∇�, and thus it can be incorporated into the system
by redefining the pressure (p→ p+�). Then, by choosing the test spaces:

H1 =
{
u ∈H1 (�)2 |u=w on �D

}
, (5)

H1
0 =

{
v∈H1 (�)2 |v= 0 on �D

}
, (6)

where H1 is the standard Sobolev space. The standard weak formulations of Eqs. (1) and (2)
become [25,30,31]:

ν

∫
�

∇u : ∇vd�+
∫
�

(u · ∇u) · vd�−
∫
�

p (∇ · v)d�= 0 ∀v∈H1
0, (7)

∫
�

q(∇ · u)d�= 0 ∀q ∈L2
0, (8)

where v and q are test functions; ν
∫
�
∇u : ∇vd� is diffusive term;

∫
� (u · ∇u) ·vd� is the convective

term what is the nonlinear term of convection, which is identified by a trilinear form ς : H1
0 ×

H1
0×H1

0 →R as:

ς (z;u, v)=
∫
�

(z · ∇u) · vd�. (9)

where z is a given function in V0 that is the subspace of divergence-free velocities as:

V0 : =
{
z ∈H1

0;∇ · z= 0 in �
}
. (10)

Then, determine the bilinear form az (., .) : V0×V0 →R through:

az (u, v) : = ν
∫
�

∇u : ∇v+ ς (z;u, v) . (11)
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The fundamental feature is the skew-symmetric of convection term: ς (z;u, v)=−ς(z; v,u) over
V0. It means that ς(z;u,u)= 0 and so we have [25,32,33]:

az (u,u)= ν ‖∇u‖2 ∀u ∈V0. (12)

So, the continuity becomes:

ς (z;u, v)≤� ‖∇z‖‖∇u‖‖∇v‖ . (13)

The experience shows that the well-posedness of the weak formulations of N–S systems is
a complicated problem because of the nonlinearity. To explain it, we define u : = u1 − u2 and
p : = p1− p2 where (u1,p1) and (u2,p2) represent distinct solutions, that is:

ς (u1;u1, v)− ς (u2;u2, v) 	= ς (u1− u2;u1− u2, v) . (14)

It means that it is impossible to apply the homogeneous problem to establish uniqueness for
Eqs. (7) and (8). To ensure the uniqueness of the weak solution, it can base on well-posedness
conditions between the forcing function f and boundary data w as [25,34]:

‖f‖∗ ≤ sup
v ∈V0

(f, v)
‖∇v‖ . (15)

Alternatively, a well-known condition for uniqueness is [33]:

‖f‖∗ =
ν2

�∗
(16)

where �∗ is the best potential constant from Eq. (13). It firms that a unique weak solution exists
when the viscosity parameter is large enough.

3 Nonlinear Iterations

To solve N–S equations, we need a linearised process to deal with the nonlinear prob-
lem at every computation step. So, we first need an “initial guess” that commonly is the
solution of the corresponding Stokes problem (u0,p0) ∈ H1 × L2(�). A sequence of iterates
(u0,p0), (u1,p1), (u2,p2),…∈H1×L2(�), then, is computed to find the convergent solution. Newton
method is the first natural approach for the iteration process. This method applies a given
iterate (uk,pk) into Eqs. (7) and (8). It thereby creates a pair of nonlinear residuals Rk (v) and
rk (q) [25,33,34]:

Rk =
∫
�

pk (∇ · v)d�− ν
∫
�

∇uk : ∇vd�− ς (uk;uk, v)∀v∈H1
0, (17)

rk =−
∫
�

q (∇ · uk)d� ∀q ∈L2
0 (�) . (18)

The solution of Eqs. (7) and (8) at the kth iteration that is u= uk+δuk and p= pk+δpk leads
to the correction terms δuk ∈H1

0 and δpk ∈L2
0 (�) satisfying:

D (uk, δuk, v)+ ν
∫
�

∇δuk : ∇vd�−
∫
�

δpk (∇ · v)d�=Rk (v)∀v∈H1
0, (19)
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∫
�

q (∇ · δuk)d�= rk (q)∀q ∈L2
0 (�) . (20)

where D(u, δu, v), is the difference in the nonlinear terms, D (u, δu, v)= ς (δu; δu, v)+ ς (δu;u, v)+
ς(u; δu, v). Expanding D(uk, δuk, v) and dropping the quadratic term ς(δuk; δuk, v) in Eqs. (19) and
(20) produces a linear problem. Then, the corrected terms δuk ∈H1

0 and δpk ∈ L2
0(�) satisfy [25,

33,34]:

ς (δuk;uk, v)+ ς (uk; δuk, v)+ ν
∫
�

∇δuk : ∇vd�−
∫
�

δpk (∇ · v)d�=Rk (v)∀v∈H1
0, (21)

∫
�

q (∇ · δuk)d�= rk (q)∀q ∈ L2
0(�). (22)

The solution of Eqs. (21) and (22) is the so-called Newton correction. The previous iterate
is updated by uk+1 = uk+ δuk, pk+1 = pk+ δpk to find the sequent iterate. The consistency of the
iteration process is ensured by substituting uk = u and pk = p into the update formula provided
that the right-hand side of Eqs. (21) and (22) is zero only when δuk = 0 and δpk = 0.

The second approach of linearisation is the Picard method. It bases on the dropping of the
quadratic term ς(δuk; δuk, v) and the linear term ς(δuk;uk, v) in Eqs. (19) and (20). Thus, instead
of Eqs. (21) and (22), we have an alternative linear system to find δuk ∈ H1

0 and δpk ∈ L2
0(�)

as [25,33,34]:

ς (uk; δuk, v)+ ν
∫
�

∇δuk : ∇vd�−
∫
�

δpk (∇.v)d�=Rk (v)∀v∈H1
0, (23)

∫
�

q (∇.δuk)d�= rk(q)∀q ∈L2
0 (�) . (24)

4 Polygonal Mixed Finite Discretisation

A discretisation based on two finite spaces Mh ⊂ L2
0(�) and Xh ⊂ H1

0 to approximate fluid
pressure and velocity, respectively, independently leads to the mixed finite element method termi-
nology. Specifically, for the given spaces of velocity, Xh, and pressure, Mh, the discretisation now
becomes finding ph ∈Mh and uh ∈Xh so that:

ν

∫
�

∇uh : ∇vhd�+
∫
�

(uh · ∇uh) · vhd�−
∫
�

ph (∇ · vh)d�=
∫
�

f · vh∀vh ∈Xh, (25)

∫
�

qh(∇ · uh)d�= 0 ∀qh ∈Mh. (26)

Based on the Newton iteration, find the correction terms δuh ∈Xh and δph ∈Mh to give the
finite-dimensional analogue of Eqs. (21) and (22) as:

ς (δuh;uh, vh)+ ς (uh; δuh, vh)+ ν
∫
�

∇δuh : ∇vhd�−
∫
�

δph (∇ · v)d�=Rk (vh)∀vh ∈Xh, (27)

∫
�

qh(∇ · δuh)d�= rk(qh)∀qh ∈Mh. (28)
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Here, Rk(vh) and rk(qh) are the nonlinear residuals associated with the discrete formulation
of Eqs. (25) and (26), respectively. If the term ς(δuh;uh, vh) is dropped, it is the discrete analogue
of the Picard update.

To state the approximated solution, we introduce a set of vector-valued basis functions
{φj}−for velocity and a set of pressure basis functions {ψk} for pressure as:

uh=
nu∑
j=1

ujφj +
nu+n∂∑
j=1+nu

ujφj, δuh=
nu∑
j=1

Δujφj, (29)

ph=
np∑
k=1

pkψk, δph=
np∑
k=1

Δpkψk. (30)

In which, as mentioned, the polygonal basis shape functions for both velocity and pressure
field in this research are constructed by Wachspress coordinates as:

φei =
ϕi

ψ
= ϕ̃i∑nne

j=1 ϕ̃i
with ϕ̃i = det (pi−1,pi) (31)

and their gradients are:

∇φei = φei

⎡
⎣ϑi− nne∑

j=1

φej ϑj

⎤
⎦ where ϑi = pi−1+ pi (32)

where, nne is the number vertices of a polygon �e in the mesh Ih (� = ∑ne
e=1�e ≈ Ih); pi (x) is

defined as:

pi (x)= ni
hi (x)

(33)

in which hi (x) denote the perpendicular distance of the interior point v to the edge ei of the
polygon; ni is the outward unit normal vector to the edge ei = [xi,xi+1] with counterclockwise
ordering vertices indexed cyclically xn+1 = x1 of the polygon [9,10,28,32].

Substituting Eqs. (29) and (30) into Eqs. (27) and (28) gives a system of linear equations as:[
νA+N+W BT

B 0

][
Δu
Δp

]
=

[
f
g

]
(34)

Here, A is the vector-Laplacian matrix, B is the divergence matrix. Besides, N is the vector-
convection matrix, and W is the Newton derivative matrix, defined as follow:

A= [
aij

]
,aij =

∫
�

∇φi : ∇φid� ∀i, j= 1, . . . ,nu, (35)

B= [
bkj

]
,bkj =−

∫
�

ψk∇ ·φ jd� ∀k= 1, . . . ,np. (36)

N= [
nij

]
,nij =

∫
�

(
uh · ∇φj

) ·φid�, (37)
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W= [
wij

]
,wij =

∫
�

(
φj · ∇uh

) ·φ id�, (38)

The right-hand side vectors in Eq. (34) are the nonlinear residuals associated with the current
discrete solution estimates uh and ph, expanded via Eqs. (29) and (30):

f = [fi] , fi =
∫
�

f ·φid�−
∫
�

uh · ∇uhφid�− ν
∫
�

∇uh : ∇φid�+
∫
�

ph
(∇ ·φi

)
d�, (39)

g= [gk] ,gk =
∫
�

ψk(∇ · uh)d�. (40)

For Picard iteration, by omitting the Newton derivative matrix, the mixed finite discretisation
system of Eqs. (27) and (28) becomes:[
νA+N BT

B 0

][
Δu
Δp

]
=

[
f
g

]
(41)

Because of the efficiency and simplicity, the Picard iterative scheme is applied in this research
to handle the nonlinear term in N-S equations. In case of unstable problems, we need to eliminate
the zero block in the system Eq. (34) as well as the system Eq. (41) by a stabilisation matrix to
get stable results. Therefore, the stabilised analogue of the system Eq. (41) is [11,25]:[
νA+N BT

B − 1
ν
C

] [
u
p

]
=

[
f
g

]
. (42)

Here, C is the stabilisation matrix provided by c (·, ·) : Mh×Mh → R. The local stabilisation
matrix, ce, of elements becomes [9,10]:

ce (qh,ph)=
1
ν

∫
�e

(
qh−

∏
qh

)(
ph−

∏
ph

)
d�=

nne∑
i,j=1

1
ν
qi

∫
�e

(
ψi− 1

nne

)(
ψj− 1

nne

)
d� qj, (43)

for all �e ∈ Ih. In which the basis functions ψi and ψj does not vanish on the element �e. Thus,
the global stabilisation matrix C can be assembled from contribution matrices ce by:

C=Ane
e=1

∑nne
i,j=1

1
ν

∫
�e

(
ψi− 1

nne

)(
ψj − 1

nne

)
d�, (44)

where A is the assembly operator, e is the eth element, ne is the total number of the elements in
the domain Ih.

5 Numerical Tests

As mentioned, this research applies the equal-order PFE, e.g., Pe1Pe1, to analyse the extensive
well-known lid-driven cavity flow (see Fig. 1) of incompressible steady N-S flows. The detail
of this benchmark is that its domain is a unit square � = (0, 1)2 (m). The boundary condi-
tion of velocity along the estuary of the cavity (0≤ x≤ 1 (m) ,y= 1(m)) are ux = −1(m/s) and
uy = 0. Besides, the no-flow (zero velocity) conditions are applied on the left, right and bottom

boundaries, see Fig. 1. The fluid density is ρ = 1
(
kg/m3

)
. For validation, various literature,

i.e., [14–17,35–39], of the lid-driven cavity flow is collected to make detailed comparisons for our
results. Then, to test our advanced method with different Reynolds numbers up to Re= 1000, six
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progressively finer hexagonal meshes with a total of 4046, 16491, 36977, 66102, 14841 and 262075
elements are created, respectively.

Figure 1: Left-lid-driven Cavity Domain; Right-A sample of hexagonal mesh

The initial results of this paper are presented in Fig. 2, indicating the velocity contours at the
different Re of the cavity problem. As the initial observation, at the higher Re the positive contour
centre of ux tend to reach to the bottom of the cavity. For the vertical velocity, the tendency is
that the centres try to get lower and closer to the cavity walls. The next focus is the generation of
the secondary contours at the cavity corners of simulations at the high Re, i.e., 1000, see Fig. 2.
As fluid viscosity reduces, there is less resistance to fluid movement, which may explain those
tendencies. Alternatively, as Re increases, the convection term becomes more prominent, resulting
in more contour vortexes (see Eq. (42)).

For more profound validation, the velocities components (i.e., ux and uy) on the cavity
centrelines (i.e., xc-vertical centreline and yc-horizontal one, respectively) are compared to the
relevant literature, see Fig. 3. As seen in the figure, the entire agreement of our results to those
of other studies, such as Ghia et al. [16], Botella et al. [14], Bruneau et al. [17], Erturk et al. [15],
is apparent. For further details, see Tab. 1 of velocity values at reference points on the cavity
centrelines, affirming our proposed method’s excellent performance. Like the table, the result
of our proposed technique is very comparable to those seen in the literature, especially Ghia
et al. [16]. For instance, the velocities at the domain’s centre point (0.5, 0.5) vary only by 1%–4%
from the literature. Thus, an excellent or even marginally improved solution is provided. Following
that, the extrema velocities on the centrelines are compared (see Fig. 4). Our recent results clearly
mirrored those of Ghia et al. [16], Bottela et al. [14], Vanka [36] as well as Bruneau et al. [38].

Tab. 2 contains more information about the apparent proof for the convergence and precision
of the new approach in this study. Moreover, our models computed on increasingly finer meshes
steadily exceed the reference and convergence solution, as seen in Fig. 4 and Tab. 2. Furthermore,
readers will see that our new results are greater than Ghia et al. [16] and Vanka [36], i.e., the
results of umin

y and umax
x , respectively.
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Figure 2: Contours of velocity fields (Left–Re = 100; Middle - Re = 400; Right–Re = 1000). (a)
Horizontal velocity field, ux. (b) Vertical velocity field, uy

The subsequent validation provided in this research is the results of fluid pressure. These
results are firstly presented in Figs. 5 and 6 In which, Fig. 5 depicts the fluid pressures on the
entire cavity using contour plots. These results indicate that as Re rises, the pressure primary
contour’s centre moves closer to the centre of cavity. As seen in Fig. 5, the rise also causes more
secondary pressure contours to surround primary ones. Besides, the singularity of pressure at the
cavity’s top corners (0, 1) and (1, 1) is noteworthy. It occurs as a function of the abrupt change
in velocity at those corners. References [40,41] explains this rule in terms of saddle-point theory.



4226 CMC, 2022, vol.70, no.3

Figure 3: Velocity on the cavity centerlines. (a) ux–vertical velocity. (b) uy–horizontal velocity

The indications of pressure on the cavity centrelines are then seen in Fig. 6 to allow a detailed
comparison with the literature. As the figure, it is evident that the current pressure results, i.e.,
the pressure at Re = 1000 is completely close to the reference solution, i.e., Bottela et al. [14],
Bruneau et al. [17]. Tab. 3 reveals seventeen points of pressure on the cavity centrelines for a more
detailed comparison. The pressure results on several different progressively finer meshes are given
in this table to show that our proposed solution is convergent. The results in the table convince the
comparatively strong convergence of our recent method. It can be seen that our pressure results
give an excellent fitting to the reference results in [14,17] (the disparity is about 3.7%). As known,
the error of the other methods, for example, FDM to [16], typically is 4% [14]. Hence, it can be
confirmed that our recent polygonal method provided an excellent solution for both velocity and
pressure. It is crucial evidence of the new technique’s performance in solving 2D incompressible
steady N-S problems. The only concern is that there is not enough comparison data for pressures
at other Re, such as 100 and 400, resulting in poor validity. However, it makes a significant
contribution in terms of providing further reference data for future research. In other words,
this study adds to the body of knowledge about fluid pressure by using previously unpublished
evidence, such as the pressure of a lid-driven cavity flow at Re= 100 and 400, as in Tab. 3.

All the above results already exhibited a perfect convergence as well as the precision of
velocity and pressure. Thus, the remaining part is to illustrate another result of streamlines. The
first streamlines regarding the lid-driven cavity flow at Re = 100 are seen in Fig. 7a. As can
be seen from this figure, the current streamlines are identical to Ghia et al. [16]. Furthermore,
Figs. 7b and 7c provide a more in-depth analysis of the streamline effects by displaying all of the
vortex centre properties (i.e., location, intensity). Besides, Tab. 4 displays the values of such data.
It is concrete proof for this validation. In terms of the figure and table, it is easy to firm that the
streamlines result completely match [16,35–38]. In addition, the convergence of the streamlines is
also verified (see Tab. 4).
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Figure 4: Locations of extrema velocities on the cavity centerlines (left-umax
x (m/s); middle-umax

y
and right-umin

y ) (a) Re= 100 (b) Re= 400 (c) Re= 1000

Besides, the streamlined results of the lid-driven cavity simulation at Re = 400 are the
subject of the following evaluation. They are illustrated in Fig. 8 and Tab. 5. They validate
our recent results’ great matches to [16,35,36,42], as well as the enhanced polygonal method’s
good convergence and accuracy. The formation of another secondary vortex in the cavity’s right
bottom corner, as seen in Fig. 8, is then of particular interest. As known, the flow at the bottom
corners of the cavity is almost fragile (close to zero). The generation of secondary vortexes is
supported by reduced friction force as the Reynolds number (viscosity) increases. It also explains
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the appearance of the tertiary vortices of the following simulation at Re= 1000 (see Fig. 9). They
are incredibly close to the bottom corners of the cavity where the intensity of vortices is entirely
trivial (extremely close to zero, see Tab. 6). The intensities of left and right tertiary vortex, in
particular, approximate 8.9×10−8 and 5.02×10−8

, respectively. The accuracy of our current results
is also identified in Fig. 9, which shows the closeness of the current vortex centres to the reference
ones. Tab. 6 then indicates how the intensities and positions of vortex centres are close to those
in [14,16,17,35–38].

Figure 5: Fluid pressure contours (a) Re= 100. (b) Re= 400. (c) Re= 1000.

Figure 6: Fluid pressure on cavity centrelines. (a) Fluid pressure on the vertical centerline. (b)
Fluid pressure on the horizontal centerline
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Figure 7: Streamline results of the cavity flow at Re= 100. (a) Streamlines of the cavity flow. (b)
Centre locations of the primary vortex (PV). (c) Centre locations of the left secondary vortex
(LSV)

In conclusion, all the above results reveal that the present polygonal method is entirely
good enough to deal with the 2D incompressible steady flows of lid-driven cavity benchmark.
It is reinforced by numerous extensive comparisons to previously published research that used
various highly precise techniques. For example, Botella et al. [14] in 1998 used the highly accurate
Chebyshev collocation method associated with the subtraction method of the leading terms of the
asymptotic expansion to obtain a highly accurate spectral solution with a maximum of grid mesh
of N = 160 (polynomial degree). Erturk et al. [15] 2005 applied FDM and spectral method to
provide a high spatial accuracy solution of driven cavity flow. Bruneau et al. [17] in 2006 utilised
the finite difference discretisation and the multigrid solver with a cell-by-cell relaxation procedure.
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Figure 8: Streamline results of the cavity flow at Re= 400. (a) Streamlines of the cavity flow. (b)
Centre locations of the primary vortex (PV). (c) Centre locations of the left secondary vortex
(LSV). (d) Centre locations of the right secondary vortex (RSV)
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Figure 9: Streamline results of the cavity flow at Re= 1000. (a) Streamlines of the cavity flow. (b)
Centre locations of PV. (c) Centre locations of LSV. (d) Centre locations of the right secondary
vortex (RSV). (e) Centre locations of the left tertiary vortex (LTV). (f) Centre locations of the
right tertiary vortex (RTV)

6 Conclusion

To summarise, this research’s commitment to designing new PFEM to solve 2D incompress-
ible steady fluid flows controlled by N-S equations is practical. This contribution is focused on
the development of a mixed-order equal-order system. This idea then applies Wachspress basis
shape functions associated with our advanced stabilisation technique to generate the equal-order
mixed PFE, called Pe1Pe1 [10]. Furthermore, in this article, we successfully address the Picard
iteration technique for our proposed PFE to deal with the nonlinear convection term of N-S
equations. This paper incorporates a widely mathematical benchmark to evaluate the accuracy and
performance of our developed PFE. It is the lid-driven cavity benchmark executed to measure
the efficiency of numerical methods in solving N-S problems. Our established method shows an
excellent agreement with the highly accurate solutions found in the literature regarding current
research solutions. It means that the efficacy of our proposed technique for solving incompressible
steady N-S fluid flows has been proven without any reasonable doubt.

Furthermore, the production of higher-order PFEs is a high-potential direction for future
research in this field. For example, Rand et al. [43] suggest a novel quadratic serendipity shape
function in 2014, a solid foundation for this direction. Alternatively, the Taylor–Hood elements,
as described in [44], could be a good start. Additionally, extending our proposed PFEs to compu-
tations for transient fluid flow problems is a significant strategic work of this study. The proposed
method’s application to 3D problems is, therefore, a priority task. Other promising ideas for future
research are free surface and fluid-structure interaction problems. In addition, in recent years,
Deep Neural Networks (DNNs) developments are becoming a mathematical option to solve the
partial differential equations (PDEs) of different phenomena in science and engineering [45,46].
Thus, the efficiency of DNNs is an exciting direction for this research.
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Appendix A.

Table 1: The velocity on centrelines of the cavity

No. xc(m) uy (m/s)

Present [16] [14] [17]

Re= 100 400 1000 100 400 1000 1000 1000

1. 1 −1 −1 −1 −1 −1 −1 −1 −1
2. 0.9766 −0.8434 −0.7587 −0.6593 −0.8412 −0.7584 −0.6593 −0.6644 –
3. 0.9688 −0.7918 −0.6851 −0.5750 −0.7887 −0.6844 −0.5749 −0.5808 −0.5803
4. 0.9609 −0.7405 −0.6177 −0.5105 −0.7372 −0.6176 −0.5112 −0.5169 –
5. 0.9531 −0.6912 −0.5592 −0.4653 −0.6872 −0.5589 −0.4660 −0.4723 −0.4724
6. 0.8516 −0.2378 −0.2893 −0.3314 −0.2315 −0.2909 −0.3330 −0.3372 –
7. 0.7344 −0.0062 −0.1620 −0.1862 −0.0033 −0.1626 −0.1872 −0.1887 −0.1886
8. 0.6172 0.1357 −0.0219 −0.0568 0.1364 −0.0214 −0.0570 −0.0570 –
9. 0.5 0.2060 0.1132 0.0601 0.2058 0.1148 0.0608 0.0621 0.0621
10. 0.4531 0.2111 0.1692 0.1054 0.2109 0.1712 0.1065 0.1082 –
11. 0.2813 0.1566 0.3248 0.2749 0.1566 0.3273 0.2781 0.2804 0.2804
12. 0.1719 0.1014 0.2417 0.3812 0.1015 0.2430 0.3829 0.3886 –
13. 0.1016 0.0643 0.1456 0.2957 0.0643 0.1461 0.2973 0.3005 0.3003
14. 0.0703 0.0466 0.1031 0.2202 0.0478 0.1034 0.2222 0.2229 –
15. 0.0625 0.0420 0.0924 0.2000 0.0419 0.0927 0.2020 0.2023 0.2023
16. 0.0547 0.0372 0.0817 0.1794 0.0372 0.0819 0.1811 0.1813 –
17. 0 0 0 0 0 0 0 0 0

No. xc(m) uy (m/s)

Present [16] [14] [17]

Re= 100 400 1000 100 400 1000 1000 1000

1. 0 0 0 0 0 0 0 0 0
2. 0.0312 −0.0624 −0.1247 −0.2243 −0.0591 −0.1215 −0.2139 −0.2279 –
3. 0.0391 −0.0782 −0.1608 −0.2886 −0.0739 −0.1566 −0.2767 −0.2937 −0.2933
4. 0.0469 −0.0936 −0.1971 −0.3489 −0.0886 −0.1925 −0.3371 −0.3553 –
5. 0.0547 −0.1087 −0.2332 −0.4028 −0.1031 −0.2285 −0.3919 −0.4104 −0.4102
6. 0.0937 −0.1769 −0.3863 −0.5178 −0.1691 – −0.5155 −0.5264 –
7. 0.1406 −0.2329 −0.4496 −0.4201 −0.2245 −0.4499 −0.4267 −0.4265 −0.4263
8. 0.1953 −0.2522 −0.3822 −0.3145 −0.2453 −0.3860 −0.3197 −0.3202 –
9. 0.5 0.0569 0.0519 0.0255 0.0545 0.0519 0.0253 0.0258 0.0258
10. 0.7656 0.1773 0.2996 0.3193 0.1753 0.3017 0.3224 0.3254 –
11. 0.7734 0.1771 0.3000 0.3277 0.1751 0.3020 0.3308 0.3340 0.3340
12. 0.8437 0.1625 0.2798 0.3689 0.1608 0.2812 0.3710 0.3769 –
13. 0.9062 0.1246 0.2285 0.3256 0.1232 0.2297 0.3263 0.3330 0.3329
14. 0.9219 0.1101 0.2080 0.3029 0.1089 0.2092 0.3035 0.3099 –
15. 0.9297 0.1020 0.1959 0.2895 0.1009 0.1971 0.2901 0.2963 0.2962
16. 0.9375 0.0934 0.1824 0.2742 0.0923 0.1836 0.2749 0.2807 –
17. 1 0 0 0 0 0 0 0 0
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Table 2: Extrema velocities on cavity centrelines

No. Literature Grid umaxx ymax umaxy xmax uminy xmin

Re= 100

1. Present Mesh1 0.201945 0.4492 0.169989 0.7642 −0.247819 0.1869
Mesh2 0.208208 0.4539 0.174993 0.7596 −0.251122 0.1871
Mesh3 0.210175 0.4581 0.176549 0.7596 −0.252089 0.1887
Mesh4 0.211140 0.4582 0.177315 0.7633 −0.252523 0.1884

2. [16] 129 × 129 0.21090 0.4531 0.17527 0.7656 −0.24533 0.1953
3. [14] N = 96 0.214042 0.4581 0.179573 0.7630 −0.253803 0.1896
4. [36] 321 × 321 0.213 0.4578 – – – –
5. [39] 64 × 64 0.21315 – 0.17896 – −0.25339 –
6. [38] 129 × 129 0.2106 0.4531 0.1786 0.7656 −0.2521 0.1875

Re= 400

1. The Mesh3 0.317125 0.2793 0.292389 0.7758 −0.441574 0.1371
present Mesh4 0.320451 0.2782 0.295676 0.7754 −0.445152 0.1376
work Mesh5 0.323471 0.2793 0.298633 0.7758 −0.448356 0.1371

Mesh6 0.324841 0.2794 0.299992 0.7741 −0.449829 0.1373
2. [16] 275 × 275 0.32726 0.2813 0.30203 0.7734 −0.44993 0.1406
3. [36] 321 × 321 0.327 0.2797 – – – –
4. [39] 128 × 128 0.32603 – 0.30119 – −0.45095 –

Re= 1000

1. Present Mesh3 0.362515 0.1731 0.349010 0.8435 −0.497791 0.0920
Mesh4 0.370880 0.1695 0.357910 0.8430 −0.506473 0.0893
Mesh5 0.378067 0.1704 0.365605 0.8403 −0.514768 0.0904
Mesh6 0.381175 0.1723 0.368972 0.8420 −0.518209 0.0900

2. [16] 275 × 275 0.38289 0.1719 0.37095 0.8437 −0.5155 0.0937
3. [14] N = 160 0.388570 0.1717 0.376945 0.8422 −0.527077 0.0908
4. [36] 321 × 321 0.387 0.1734 – – – –
5. [39] 128 × 128 0.3805 – 0.36884 – −0.51727 –

Extrapolation 0.38855 – 0.37705 – −0.5269 –
6. [15] 601 × 601 0.3869 0.180 0.3756 0.85 −0.5263 0.09
7. [38] 256 × 256 0.3764 0.1602 0.3665 0.8477 −0.5208 0.0898
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Table 3: The pressure on centrelines of the cavity

No. yc(m) p (Pa) xc (m) p (Pa)

Present [14] [17] Present [14] [17]

100 400 1000 1000 1000 100 400 1000 1000 1000

1. 1 −0.0228 0.0399 0.0512 0.0530 0.0530 0 0.0230 0.0682 0.0744 0.0775 0.0774
2. 0.9766 −0.0256 0.0386 0.0503 0.0520 – 0.0312 0.0274 0.0706 0.0758 0.0788 –
3. 0.9688 −0.0267 0.0380 0.0498 0.0515 0.0515 0.0391 0.0283 0.0711 0.0756 0.0787 0.0787
4. 0.9609 −0.0277 0.0373 0.0493 0.0509 – 0.0469 0.0292 0.0713 0.0751 0.0781 –
5. 0.9531 −0.0288 0.0366 0.0487 0.0503 0.0503 0.0547 0.0300 0.0715 0.0742 0.0772 0.0771
6. 0.8516 −0.0431 0.0236 0.0339 0.0349 – 0.0937 0.0332 0.0686 0.0633 0.0658 –
7. 0.7344 −0.0464 0.0036 0.0119 0.0121 0.0121 0.1406 0.0339 0.0560 0.0471 0.0490 0.0490
8. 0.6172 −0.0289 −0.0069 −0.0007 −0.0008 – 0.1953 0.0298 0.0365 0.0332 0.0346 –
9. 0.5 0 0 0 0 0 0.5 0 0 0 0 0
10. 0.4531 0.0107 0.0084 0.0042 0.0044 – 0.7656 0.0142 0.0573 0.0433 0.0448 –
11. 0.2813 0.0339 0.0647 0.0387 0.0404 0.0404 0.7734 0.0146 0.0592 0.0457 0.0473 0.0473
12. 0.1719 0.0382 0.0927 0.0788 0.0819 – 0.8437 0.0173 0.0729 0.0671 0.0695 –
13. 0.1016 0.0390 0.0986 0.1002 0.1042 0.1044 0.9062 0.0192 0.0796 0.0814 0.0844 0.0844
14. 0.0703 0.0391 0.0994 0.1044 0.1086 – 0.9219 0.0198 0.0805 0.0836 0.0867 –
15. 0.0625 0.0392 0.0995 0.1051 0.1092 0.1092 0.9297 0.0200 0.0809 0.0845 0.0877 0.0876
16. 0.0547 0.0392 0.0996 0.1055 0.1097 – 0.9375 0.0203 0.0812 0.0853 0.0884 –
17. 0 0.0392 0.0998 0.1064 0.1106 0.1106 1 0.0231 0.0824 0.0872 0.0905 0.0904

Table 4: Vortex intensity at Re= 100; (x,y) refers to the centroid vortex location

No. Literature Grid ψ x (m) y (m) ψ x (m) y (m)

Primary vortex Left secondary vortex

1. Present Mesh1 0.101272 0.3864 0.7375 – – –
Mesh2 0.102495 0.3869 0.7368 −4.702923 × 10−6 0.0421 0.0575
Mesh3 0.102869 0.3872 0.7365 −7.266630 × 10−6 0.0494 0.0594
Mesh4 0.103040 0.3873 0.7365 −8.424197 × 10−6 0.0506 0.0595

2. [16] 129 × 129 0.103423 0.3828 0.7344 −1.25374 × 10−5 0.0547 0.0625
3. [35] 122 × 122 0.10330 0.3834 0.74167 −0.1320 × 10−4 0.05833 0.0500
4. [36] 321 × 321 0.1034 0.3812 0.7375 −1.14 × 10−5 0.0625 0.0563
5. [37] 129 × 129 0.1033 0.3828 0.7343 −1.25 × 10−5 0.0547 0.0625
6. [42] 257 × 257 0.10330 – – – – –
7. [38] 129 × 129 0.1026 0.3828 0.7344 129 × 129 −0.123 × 10−4 0.0547
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Table 5: Vortex intensity at Re= 400; (x,y) refers to the centroid vortex location

No. Literature Grid ψ x (m) y (m) ψ x (m) y (m)

Primary vortex Left secondary vortex

1. Present Mesh3 0.110953 0.4442 0.6057 −5.774201 × 10−4 0.1109 0.1204
Mesh4 0.111869 0.4444 0.6057 −5.941821 × 10−4 0.1114 0.1206
Mesh5 0.112674 0.4452 0.6054 −6.105965 × 10−4 0.1118 0.1208
Mesh6 0.113034 0.4453 0.6055 −6.186388 × 10−4 0.1121 0.1209

2. [16] 275 × 275 0.113909 0.4453 0.6055 −6.42352 × 10−4 0.1094 0.1250
3. [35] 142 × 142 0.11297 0.44286 0.60714 −6.440 × 10−4 0.11429 0.1143
4. [36] 321 × 321 0.1136 0.4437 0.6000 −6.45 × 10−4 0.1188 0.1125
5. [42] – 0.11389 – – – – –

Right secondary vortex

1. Present Mesh3 −6.620602 × 10−6 0.9538 0.0389
Mesh4 −8.321801 × 10−6 0.9533 0.0399
Mesh5 −1.043541 × 10−5 0.9504 0.0445
Mesh6 −1.134066 × 10−5 0.9502 0.0450

2. [16] 275 × 275 −1.41951 × 10−5 0.9492 0.0469
3. [35] 142 × 142 −1.4500 × 10−5 0.9500 0.04286
4. [36] 321 × 321 −1.46 × 10−5 0.9500 0.0500

Table 6: Vortex intensity at Re= 1000; (x,y) refers to the centroid vortex location

No. Literature Grid ψ x (m) y (m) ψ x (m) y (m)

Primary vortex Left secondary vortex

1. Present Mesh3 0.1106814 0.4677 0.5657 −1.556015 × 10−3 0.1322 0.1116
Mesh4 0.1135207 0.4681 0.5655 −1.605652 × 10−3 0.1328 0.1118
Mesh5 0.1159187 0.4686 0.5654 −1.652288 × 10−3 0.1333 0.1119
Mesh6 0.1169134 0.4687 0.5653 −1.672579 × 10−3 0.1336 0.1119

2. [16] 275 × 275 0.117929 0.4687 0.5625 −1.75102 × 10−3 0.1406 0.1094
3. [14] N = 160 0.1189366 0.4692 0.5652 −1.729717 × 10−3 0.1360 0.1118
4. [17] 1024 × 1024 0.11892 0.46875 0.56543 −1.7292 × 10−3 0.13574 0.11230
5. [35] 141 × 141 0.11603 0.47143 0.56429 −1.700 × 10−3 0.13571 0.10714
6. [36] 321 × 321 0.1173 0.4562 0.5625 −1.74 × 10−3 0.1375 0.1063
7. [37] 129 × 129 0.1157 0.4688 0.5625 −1.63 × 10−3 0.1329 0.1171
8. [42] 257 × 257 0.118930 – – – – –
9. [38] 256 × 256 0.1163 0.4687 0.5586 −1.91 × 10−3 0.1289 0.1094

(Continued)
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Table 6: Continued

No. Literature Grid ψ x (m) y (m) ψ x (m) y (m)

Right secondary vortex Left tertiary vortex

1. Present Mesh3 −1.885918 × 10−4 0.9193 0.0719 1.604245 × 10−7 0.0105 0.0072
Mesh4 −2.008825 × 10−4 0.9188 0.0724 1.331363 × 10−7 0.0098 0.0072
Mesh5 −2.140407 × 10−4 0.9175 0.0765 1.064865 × 10−7 0.0092 0.0073
Mesh6 −2.193169 × 10−4 0.9173 0.0767 8.97955 × 10−8 0.0087 0.0073

2. [16] 275 × 275 −2.31129 × 10−4 0.9141 0.0781 9.31929 × 10−8 0.0078 0.0078
3. [14] N = 160 −2.334528 × 10−4 0.9167 0.0781 5.03944 × 10−8 0.00768 0.00765
4. [35] 141 × 141 −2.1700 × 10−4 0.91429 0.07143 – – –
5. [36] 321 × 321 −2.24 × 10−4 0.9250 0.0813 – – –
6. [37] 129 × 129 −2.11 × 10−4 0.9141 0.0781 8.79 × 10−8 0.0079 0.0078
7. [38] 256 × 256 −3.25 × 10−4 0.9141 0.0820 – – –

Right tertiary vortex

1. Present Mesh3 1.718158 × 10−7 0.9913 0.0087
Mesh4 1.170545 × 10−7 0.9930 0.0093
Mesh5 6.971293 × 10−8 0.9942 0.0087
Mesh6 5.026749 × 10−8 0.9941 0.0078

2. [14] N = 64 2.08635 × 10−8 0.99642 0.00452
N = 160 6.39800 × 10−9 0.99516 0.00484


