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Abstract:Optimization is a key technique for maximizing or minimizing func-
tions and achieving optimal cost, gains, energy, mass, and so on. In order
to solve optimization problems, metaheuristic algorithms are essential. Most
of these techniques are influenced by collective knowledge and natural for-
aging. There is no such thing as the best or worst algorithm; instead, there
are more effective algorithms for certain problems. Therefore, in this paper,
a new improved variant of a recently proposed metaphorless Runge-Kutta
Optimization (RKO) algorithm, called Improved Runge-Kutta Optimization
(IRKO) algorithm, is suggested for solving optimization problems. The IRKO
is formulated using the basic RKO and local escaping operator to enhance
the diversification and intensification capability of the basic RKO version.
The performance of the proposed IRKO algorithm is validated on 23 stan-
dard benchmark functions and three engineering constrained optimization
problems. The outcomes of IRKO are compared with seven state-of-the-art
algorithms, including the basic RKO algorithm. Compared to other algo-
rithms, the recommended IRKO algorithm is superior in discovering the
optimal results for all selected optimization problems. The runtime of IRKO
is less than 0.5 s for most of the 23 benchmark problems and stands first for
most of the selected problems, including real-world optimization problems.
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1 Introduction

The term “optimization” relates to determining the best values of different system compo-
nents to complete the systems engineering at the lowest possible price. In machine learning and
artificial intelligence, practical applications and problems are typically constrained, unconstrained,
or discrete [1,2]. As a result, finding the best solutions using standard numerical programming
approaches is difficult. Numerous optimization methods have been established in recent years to
enhance the performance of various systems and reduce computing costs. Conventional optimiza-
tion techniques have several flaws and restrictions, such as convergence to a local minimum and an
undefined search space. Many novel optimization approaches have been presented in recent years
to address such flaws. Most systems are nonlinear and require advanced optimization techniques
to be evaluated. Mathematical optimization techniques are often inspired by findings in nature.
Such algorithms produce random solutions inside the search space and keep making improvements
until these results converge to probable global optimums. Every metaheuristic algorithm does
have its settings that influence the optimization process [3–6]. In general, each metaheuristic
algorithms share common characteristics, such as the search strategy, which itself is divided into
two sections, one of which is known as diversification and the latter of which has been known
as intensification. The first phase of the algorithm creates random variables in the initial phase
to explore potential search space locations. The optimization approach attempts to discover the
best result from the search space in the second phase. An excellent optimization algorithm must
balance the exploitation and exploration phase to prevent entrapment at the local minima. The
highest complications of such algorithms are in having an exact balance between exploitation
and exploration phases to avoid trap from local minima and still enhance the solution accuracy
previously obtained [7–9]. As per the discussion by [10], there are no bad or good among the
various optimization techniques, but one more suitable for a certain problem, that is, still has a
gap for developing new optimization techniques.

The authors want to provide a more efficient and successful method, and hence this paper
proposes an Improved Runge-Kutta Optimization (IRKO) algorithm, a revolutionary metaphor-
free optimization method. The suggested IRKO is formulated from the basic version of the RKO
algorithm [11], and it employs a particular slope computation ideology based on the Runge-
Kutta technique as a search engine for optimization problems. To improve the solution quality of
the IRKO, the Local Escaping Operator (LEO) [12] is integrated with the RKO. To thoroughly
demonstrate the robustness and efficacy of the IRKO, a set of twenty-three classical benchmarks
and three constrained engineering problems is employed.

The paper has been organized as follows: Section 2 confers the backgrounds of metaheuristic
algorithms related works, and Section 3 discusses the formulation of the IRKO algorithm employ-
ing RKO and LEO concepts. Section 4 demonstrates the numerical simulation results on classical
benchmark functions and real-world problems. Section 5 concludes the paper.

2 Literature Review

Metaheuristic algorithms are divided into four categories relying on the motivation for its
development: (i) swarm behaviors, (ii) natural behaviors, (iii) human behaviors, and (iv) physics
concepts.

2.1 Swarm Intelligence Algorithms
Swarms can inspire natural and social phenomena. Several algorithms have been developed

and presented by many researchers. Particle Swarm Optimization (PSO) is a common approach
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derived from the natural behavior of swarming particles [13]. Each particle can be updated as per
the local positions and its global best position. The PSO addresses various challenges, such as
solving global optimization problems, power systems, power electronics, feature selection, image
segmentation, electric vehicles, data clustering, and much more. Ant foraging behavior inspires
the Ant Colony Optimization (ACO) algorithm [14]. The ants release pheromone on the earth
naturally to ensure the colony members choose the ideal path. It has been employed in several
optimization problems, as stated earlier. Firefly Algorithm (FA) is based on the flashing strobe
of fireflies in the sea [15]. It was well-received and implemented in many applications, such
as feature selection, data clustering, mechanical systems, power systems, and other optimization
challenges. The Artificial Bee Colony (ABC) algorithm is designed to mimic the activity of a
honey bee [16]. It contains three groups: bees who are working, onlookers that are observing,
and Scouters who are searching for food. The ABC algorithm has numerous applications, such
as global optimization, job shop scheduling, wireless sensor network, image segmentation, etc.
In addition, various algorithms proved to be effective for optimization problems, such as Gray
Wolf Optimizer (GWO) [17], Harris-Hawks Optimizer (HHO) [18], Whale Optimization Algorithm
(WOA) [19], Aquila optimizer [20], slime mold algorithm [21], marine predator algorithm [22],
equilibrium optimizer [23], salp swarm optimizer [24], etc.

2.2 Evolutionary Algorithms
Numerous techniques presented in the literature use natural evolution’s inherent characteristics

to address optimization challenges. Examples of several evolutionary algorithms are as follows.
The Genetic Algorithm (GA) is the most often used evolutionary technique [25]. The GA was
invented after Darwinian evolution. It has gained much interest and has been widely applied in
various applications, such as power systems, power electronics, electric vehicles, facial recognition,
network anomaly detection, and scheduling problems. The authors of [26] demonstrate differential
evolution algorithm in 1997, and it is considered to be an effective algorithm for many real-world
applications. For instance, text classification, global optimization, image classification, parallel
machine scheduling, power systems, smart grid, microgrid, wireless sensor networks, etc. Other
famous algorithms, called biogeography-based optimizer [27], sunflower optimization [28], invasive
tumor growth [29], etc., have been proven in numerous optimization tasks.

2.3 Human-Based Algorithms
Researchers presented numerous metaheuristic algorithms by mimicking real human actions.

Teacher Learning-Based Optimizer (TLBO) is inspired by teachers’ impact on their student’s
achievement [30]. Various problems have been solved by applying TLBO, including problems
with constraints. Socio-evolution learning optimizer is developed by mimicking the human’s social
learning grouped as families in a social environment. Additional human-based algorithms, such as
Hunger Games Search Optimizer (HGSO) [31], political optimizer [32], harmony search [33], Jaya
algorithm [34], Rao algorithm [35], etc., are some of the best algorithms for solving optimization
problems.

2.4 Physics-Based Algorithms
To provide alternatives to optimization problems, physics-based algorithms rely on physical

laws. Big Bang-Big Crunch is a prominent MH algorithm inspired by the universe’s development,
and it has been applied in various applications, such as data clustering, global optimization,
and various engineering design problems. The law of gravity and mass relations inspired the
Gravitational Search Algorithm (GSA) [36]. It has also gotten much press and has been utilized
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to enhance and address various applications, such as global optimization, feature selection, image
segmentation, and so on, which are only a few examples. The multi-verse optimizer is based on
physics’ multi-verses hypothesis. It has handled various problems, including global optimization,
forecasting, power systems, feature selection, etc. Other physics-based algorithms, such as the Sine-
Cosine Algorithm (SCA) [37], Ion-Motion Optimizer (IMO) [38], and equilibrium optimizer [23],
are few best algorithms for solving optimization problems.

In general, population-based optimization algorithms begin procedures by randomly selecting
candidate solutions. Such solutions are improved significantly by the algorithms and iteratively
assessed against a specified fitness function, which is the basis of any algorithms. Due to the
stochastic nature, obtaining an optimal or near-optimal solution in a single run is not sure.
However, many random solutions and evolutionary rounds increase the possibility of discovering
the global optima for the given problem. Regardless of the differences in algorithms used in
metaheuristic approaches, the optimization process may be separated into two distinct phases:
exploration and exploitation. This refers to the broad scope of searching by employing several
solutions provided by the algorithms to circumvent search difficulties.

3 Improved Runge-Kutta Optimization (IRKO) Algorithm

Firstly, this section discusses the concepts of the RKO algorithm and LEO and then extends
the discussion to the development of the IRKO algorithm using RKO and LEO.

3.1 Runge-Kutta Optimization (RKO) Algorithm
The RKO algorithm is characterized by the absence of metaphors and strict attention to

the underlying mathematical structures [11]. It is inappropriate to describe the population-based
technique’s framework using metaphors, as doing so conceals the basis of the mathematics that
power the optimizers. Thus, RKO was established considering the logic of the Runge-Kutta (RK)
approach and the growth of a population of individuals. The RK employs a special formulation
to handle ordinary differential equations. The fundamental premise of RKO is based on the RK
method’s suggested estimated gradient. The RKO employs that as a method of exploring the
search space to form a set of rules. The initialization phase is the first step in algorithms, and this
phase of the RKO is similar to other population-based algorithms. This section discusses only the
main mathematical formulation RKO algorithm.

3.1.1 Search Mechanism
The solution space is divided into regions, with random solutions placed in each region. A set

of search solutions are then placed into the various regions, and a balance between exploitation
and exploration is established. To identify the search strategy in the RKO algorithm, the RK4
approach was applied. Thus, the search mechanism (SM) in RKO is represented in Eq. (1).

SM = 1
6
(xRK)�x (1)

xRK = k1 + 2× k2 + 2× k3+ k4 (2)

where k1, k2, k3, k4 are coefficients of the first-order derivative by the RK and �x is position
increment.



CMC, 2022, vol.70, no.3 4807

3.1.2 Solution Update
The RKO algorithm starts the procedure with a random population (solutions). Every time

around, the solutions’ positions are updated by the RK method. RKO employs a solution and
the search mechanism generated using the Runge-Kutta approach. To offer exploration and
exploitation search, Eq. (3) is utilized.

if rand < 0.5

xn+1 = (xc+ r.SF .g.xc)+SF .SM +μ.randn.(xm−xc) (exploration)

else

xn+1 = (xm+ r.SF .g.xm)+SF .SM +μ. randn.(xr1−xr2) (exploitation)

end

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3)

where μ denote random numbers between [0, 1], r and g denote random numbers between [1, −1]
and [0, 2], respectively, and SF denotes adaptive factor and is given in Eq. (4).

SF = 2.(0.5− rand)×f (4)

f = a× exp
(
−b× rand×

(
IT

MaxIT

))
(5)

where a and b are constant numbers, IT denotes current iteration, and MaxIT denotes the
maximum number of iterations. The expressions for xc and xm are presented in Eq. (6).

xc = ϕ × xn+ (1−ϕ)× xr1

xm = ϕ × xbest+ (1−ϕ)× xlbest

}
(6)

where ϕ denotes a random number between [0, 1], xbest denotes the best solution, and xlbest
denotes the current best solution.

3.1.3 Enhanced Solution Quality (ESQ)
The RKO employs ESQ to maximize the quality of the solution across iterations while

avoiding local optima. Here’s how the solution (xnew2) is created utilizing the ESQ.

if rand < 0.5

if w< 1

xnew2 = xnew1 + r.w.|(xnew1 −xavg)+ randn|
else

xnew2 = (xnew1 −xavg)+ r.w.|(u.xnew1−xavg)+ randn|
end

end

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

w= rand(0, 2).exp
(
−c

(
IT

MaxIT

))
(8)

xavg = xr1+xr2 +xr3
3

(9)
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xnew1 = β × xavg+ (1−β)× xbest (10)

where β signifies a random number between [0, 1], c signifies a random number equal to 5×rand,
r denotes an integer number equal to 1, 0, or −1. The solution (xnew2) may not have improved
solution than the current solution (i.e., f (xnew2) > f (xn)). To produce the best fitness again,
alternative new solution (xnew3) is produced, which is represented as follows:

if rand < w

xnew3 = (xnew2 − rand.xnew2)+SF .(rand.xRK + (v.xb−xnew2))

end

⎫⎪⎬
⎪⎭ (11)

where v denotes a random number equal to 2× rand. Eq. (11) is about moving the xnew2 toward
a better location. The search around xnew2 begins in the first criterion, and then RKO seeks to
find potential directions to progress towards the right decision. The pseudocode of RKO is shown
in Algorithm 1. For comprehensive details of RKO, the readers are encouraged to read the base
paper.

Algorithm 1: Pseudocode of RKO Algorithm
Initialize a, b and generate the population Xn (n= 1, 2, …, Np) and calculate the fitness of each
population
Determine the solutions xw, xb, and xbest

for n= 1:Np
for l= 1:dim
Compute position xn+1,l via Eq. (3)
end for
if rand < 0.5 (ESQ)
Calculate the position xnew2 via Eq. (7)
if f (xn) < f (xnew2)
if rand <w

Calculate position xnew3 via Eq. (11)
end if
end if

end if
Update the positions xw and xb
end for
Update the position xbest
i= i + 1

end for
Return xbest

3.2 Local Escaping Operator
The authors of [3,6] presented an operator called the LEO, which is employed to boost

the capabilities of a gradient-based optimizer. The LEO’s updates ensure that the solutions are
of superior quality. It can bypass local minima traps, and hence, it enhances convergence. LEO
produces its xmr1 and xmr2 viable alternatives, high-performing by implementing various solutions
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such as the best location xbest, two randomly produced solutions, and a new randomly generated
solution xmk . Therefore, X

m
LEO can be calculated using Eq. (12).

if rand < pr

if rand < 0.5

Xm
LEO =Xm+1

x + a× (a1× xb− a2 × xmk )+ b× ρ1 × (a3× (X2mx −X1mx )+ a2× (xmr1−xmr2))/2

Xm+1
x =Xm

LEO

Else (12)

Xm
LEO = xb+ a× (a1× xb− a2× xmk )+ b× ρ1× (a3× (X2mx −X1mx )+ a2 × (xmr1−xmr2))/2

End

End

where b is a normal distributed random number, pr represents the probability rate, and a
represents a uniform random number in the range of [−1, 1]. The values of random numbers a1,
a2, and a3 are obtained using Eq. (13).

a1 =Z1× rand× 2+ (1−Z1)

a2 = a3 =Z1× rand+ (1−Z1)

}
(13)

The Z1 is equal to 1 or 0. The expression for xmk is given in Eq. (14).

xmk =
{
xrand , if u2 < 0.5

xmp , otherwise

xrand =Xl+ rand×(Xu−Xl)

⎫⎪⎪⎬
⎪⎪⎭ (14)

where xrand represents the updated solution, u2 represents a random number between [0, 1], and
xmp represents the random population solution. Therefore, Eq. (14) is altered, as shown in Eq. (15).

xmk =Z2× xmp + (1−Z2)× xrand (15)

The value of Z2 is 1 or 0 based on the u2. The readers are encouraged to read the base
paper [6] for better understanding.

3.3 Development of Improved Runge-Kutta Optimization Algorithm
RKO algorithm struggles from being “trapped in the local minima situation.” Optimization

could not be completed since the local region confined the system. This scenario often occurs
in difficult and high-dimensional optimization problems. Additionally, producing new solutions
is based on the results of the last iteration. This could slow down the algorithm’s convergence
speed, and hence, cause early convergence of the solutions. To increase search capabilities and
handle difficult real-world problems, we enhance the RKO algorithm using the LEO concept. The
proposed IRKO algorithm follows the RKO algorithm procedure step-by-step. LEO improves
the diversification and intensification phase of the RKO algorithm along with the RK method.
The initialization phase of the IRKO is similar to the RKO algorithm.

To examine the suggested solutions and improve the new suggested solutions in the next
iteration, it is necessary to analyze the solutions in each iteration. As a result, each population is
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assessed to acquire its solution when each new population is randomly produced, an update that
permits the new fitness to be upgraded using Eq. (3). Then, the new population is improved by the
LEO mechanism, as mentioned in Eq. (12). Finally, the best position is achieved after updating
the population using Eqs. (7) and (11) as similar to the RKO algorithm. Iterate the suggested
IRKO until it meets the terminating condition. After that, the best option so far is discovered.
The flowchart of the IRKO is shown in Fig. 1.

Figure 1: Flowchart of the IRKO algorithm

4 Numerical Simulation and Discussions

The performance of the IRKO is validated using twenty-three classical test benchmark
functions and three real-world engineering problems. The IRKO has been simulated with a 30-
population size and 500 maximum iterations to solve the benchmarks and engineering problems.
The other control parameters are as follows. RKO and IRKO (a = 20 and b = 12), GWO and
WOA (a = 2 − 2 × IT/MaxIT), HGSO (pCR = 0.8, βmin = 0.2, and βmax = 0.8), SCA (a =
2), IMO (�1 and �2 = 0.5), and HHO (β = 1.5). The performance of the IRKO algorithm is
compared with seven algorithms, namely GWO, HHO, IMO, SCA, HGSO, WOA, and the basic
RKO version. To assess the steadiness and reliability, all algorithms have been run 30 times. The
Min, Mean, and Standard Deviation (STD) values are reported for all chosen algorithms. To
check the IRKO superiority, Friedman’s rank test (FRT) is conducted, and results are reported.
All algorithms have been executed with the same population and number of iterations to have a
reasonable assessment.

4.1 Benchmark Test Suites
Twenty-three benchmark functions, including unimodal, multi-modal, and fixed dimension

multi-modal functions, were used to examine the IRKO’s ability to exploit global solutions,
explore the search space, and escape from the local minima trap. The benchmark test functions
are provided in the weblink [39] for the reader’s reference, in which the exploitation potential
is assessed using the unimodal benchmarks (F1–F7), multi-modal benchmarks (F8–F13) meant
to assess the exploration ability with a dimension of 30, and fixed dimension multi-modal test
benchmarks (F14–F23) demonstrate the ability to explore low-dimensional search spaces. Several
well-known optimization algorithms, such as GWO, HHO, SCA, IMO, HGSO, RKO, and WOA,
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have been evaluated against the same functions to confirm the superiority of the suggested IRKO
algorithm. The simulation was carried out using a MATLAB 2020a installed on a laptop with an
Intel Core i5 processor, 2.4 GHz clock speed, and 8 GB of RAM.

To confirm the performance of the proposed IRKO algorithm, the balance phase curve,
average fitness curve, and trajectory curves are utilized and have been in Fig. 2. Fig. 2 shows the
qualitative measures, such as the 2-D figure of all test functions (first column) and search history
to confer the solutions in the search space (second column). The trajectory curves, balancing
phase curves, and the average fitness curves are displayed in the third, fourth, and fifth columns
of Fig. 2. In addition, Min, Mean, STD, and Run-Time (RT) values obtained by all selected
algorithms are listed in Tab. 1. The boldface letters in the table indicate the best values. From
Tab. 1, it is observed that the proposed IRKO produced the best results in terms of Min, Mean,
and STD values on all 23 benchmark functions. However, the RT values of IRKO are slightly
higher than the basic RKO version. This is due to the deployment of the LEO concept with
the RKO algorithm. However, the proposed IRKO produces excellent performance in terms of
reliability and robustness.

The search’s history explains how the algorithm search for the optimal solution in search
space. The LEO concept enhances the behavior of the IRKO. This modality depicts the movement
of the population about the best position for unimodal functions. The nature of the dispersion
qualities of populations corresponds to the modality. When using IRKO to address multi-modal
and unimodal functions, the exploration and exploitation capabilities are all enhanced. The tra-
jectory curve indicated a high amplitude and frequency in the initial iterations and disappeared
during the final iteration. As can be seen, IRKO has a high exploration ability early on and
strong exploitation later on. Based on this behavior, the ideal approach is likely for the IRKO
algorithm. The LEO in IRKO algorithm promotes the search optimization process to precisely
and broadly focus on the local region. Compared to other recently proven methods, the LEO
aids the RKO in efficiently and accurately discovering the search space. Fig. 3 illustrates the best
solutions achieved so far throughout the iteration numbers. IRKO’s convergence curves show a
visible decay rate for unimodal functions. Meanwhile, other algorithms have a severe standstill,
making the exploitation stage of the IRKO have a reliable exploration capability. The IRKO’s
multi-modal functions’ convergence curves indicate the seamless transition between exploitation
and exploration.

It converges quickly with better results than the other counterparts in most of the remaining
test functions. This is evident when it’s understood that the IRKO performs well between exploita-
tion and exploration stages since it captures nearby values for the best solutions. These solutions
are exploited proficiently throughout the iterations to offer the best solutions. In addition, the
reliability of all selected algorithms is assessed by visualizing the boxplot. Fig. 4 shows the boxplot
analysis of all algorithms on selected benchmarks. It is visualized that the reliability of the
proposed IRKO is superior to all other selected algorithms. To rank all algorithms, Friedman’s
rank test is carried out, and the FRT values of all algorithms are listed in Tab. 2. It is observed
from Tab. 2 that the proposed IRKO algorithm stands first in most of the benchmark functions.

4.2 Real-World Optimization Problems
In this subsection, the IRKO algorithm has been tested in addressing three real-world engi-

neering design problems, including welded beam, tension/compression spring, and pressure vessel.
All these design problems have many inequality constraints. The method gets substantial solutions
if it violates any of the criteria using the death penalty function.
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Figure 2: Qualitative results produced by IRKO algorithm on all selected benchmarks

Table 1: Results of all algorithms on classical benchmarks

Algorithm Min. Mean STD RT Algorithm Min. Mean STD RT

F1 IRKO 9.746E− 238 1.319E− 229 0.000E +00 0.43 F13 IRKO 3.021E− 08 3.662E− 03 6.344E− 03 0.45
RKO 1.433E− 175 2.212E− 170 0.000E +00 0.2 RKO 3.792E− 08 1.067E− 02 1.052E− 02 0.38
SCA 7.572E− 02 4.986E− 01 3.897E− 01 4.12 SCA 1.964E+ 01 5.154E+03 6.063E+ 03 1.97
WOA 3.277E− 85 4.060E− 74 7.032E− 74 6.82 WOA 1.862E− 01 2.686E− 01 8.218E− 02 6.09
IMO 5.897E− 38 6.075E− 31 1.052E− 30 2.06 IMO 1.001E− 02 4.227E− 02 5.318E− 02 1.45
HGSO 5.607E+00 7.458E+00 1.868E +00 4.1 HGSO 2.325E+ 00 3.937E+00 1.396E+ 00 4.54
GWO 5.557E− 29 9.856E− 28 1.419E− 27 0.36 GWO 4.168E− 01 6.979E− 01 3.739E− 01 0.49
HHO 7.745E− 107 7.672E− 100 1.326E− 99 0.45 HHO 8.529E− 06 4.219E− 05 5.806E− 05 0.98

F2 IRKO 4.099E− 125 2.697E− 122 3.737E− 122 0.14 F14 IRKO 9.980E− 01 9.980E− 01 1.570E− 16 0.69
RKO 7.275E− 106 3.578E− 93 6.197E− 93 0.1 RKO 2.982E+ 00 2.982E+00 3.608E− 15 0.72
SCA 2.631E− 03 2.779E− 02 4.247E− 02 1.49 SCA 1.002E+ 00 2.322E+00 1.143E+ 00 2.65
WOA 4.006E− 54 1.063E− 51 1.397E− 51 5.83 WOA 1.992E+ 00 5.246E+00 4.804E+ 00 6.35
IMO 3.394E− 36 1.212E− 24 2.098E− 24 1.12 IMO 9.980E− 01 1.661E+00 5.739E− 01 2.06
HGSO 7.212E+00 1.490E+01 7.526E +00 3.06 HGSO 9.980E− 01 1.329E+00 5.739E− 01 2.48
GWO 6.323E− 17 1.085E− 16 5.997E− 17 0.19 GWO 9.980E− 01 4.914E+00 5.161E+ 00 0.92
HHO 1.861E− 56 2.972E− 55 3.742E− 55 0.17 HHO 9.980E− 01 9.980E− 01 3.847E− 10 1.78

F3 IRKO 8.149E− 222 1.329E− 213 0.000E +00 0.38 F15 IRKO 1.223E− 03 1.223E− 03 2.713E− 18 0.07
RKO 6.149E− 149 1.051E− 144 1.817E− 144 0.3 RKO 3.075E− 04 6.127E− 04 5.287E− 04 0.07
SCA 3.530E+03 1.516E+04 1.164E +04 1.82 SCA 7.653E− 04 8.150E− 04 6.242E− 05 1.19
WOA 3.367E+04 4.919E+04 1.421E +04 6.01 WOA 4.976E− 04 9.951E− 04 6.649E− 04 5.59
IMO 1.687E+04 3.508E+04 1.638E +04 1.23 IMO 3.111E− 04 7.898E− 04 6.009E− 04 0.7
HGSO 5.593E+02 1.526E+04 2.539E +04 4.16 HGSO 7.719E− 04 1.954E− 03 2.039E− 03 0.49
GWO 3.861E− 07 2.248E− 06 2.028E− 06 0.43 GWO 3.699E− 04 7.046E− 03 1.153E− 02 0.07
HHO 2.482E− 100 4.529E− 72 7.845E− 72 0.8 HHO 3.192E− 04 9.988E− 04 5.952E− 04 0.2

F4 IRKO 1.366E− 118 4.581E− 115 7.684E− 115 0.15 F16 IRKO − 1.032 − 1.032 0.000E+ 00 0.05
RKO 4.044E− 86 9.464E− 80 1.637E− 79 0.07 RKO − 1.032 − 1.032 4.313E− 14 0.05
SCA 1.654E+01 3.611E+01 2.026E +01 1.3 SCA − 1.032 − 1.032 3.138E− 05 1.13
WOA 7.001E+01 7.316E+01 3.535E +00 5.96 WOA − 1.032 − 1.032 1.075E− 10 5.62
IMO 8.269E− 03 7.117E+00 1.128E +01 0.8 IMO − 1.032 − 1.032 4.027E− 07 0.65
HGSO 3.707E+00 5.463E+00 2.069E +00 2.72 HGSO − 1.032 − 1.032 0.000E+ 00 0.47
GWO 5.385E− 07 5.911E− 07 7.161E− 08 0.19 GWO − 1.032 − 1.032 5.791E− 08 0.05
HHO 5.767E− 52 4.996E− 50 4.563E− 50 0.17 HHO − 1.032 − 1.032 8.135E− 12 0.16

(Continued)
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Table 1: Continued

Algorithm Min. Mean STD RT Algorithm Min. Mean STD RT

F5 IRKO 3.840E− 03 1.643E− 02 1.488E− 02 0.17 F17 IRKO 3.979E− 01 3.979E− 01 0.000E+ 00 0.08
RKO 2.442E +01 2.500E +01 5.879E− 01 0.1 RKO 3.979E− 01 3.979E− 01 5.612E− 13 0.08
SCA 7.996E +02 2.979E +03 3.455E +03 1.4 SCA 3.979E− 01 4.001E− 01 2.650E− 03 3
WOA 2.748E +01 2.790E +01 4.165E− 01 5.79 WOA 3.979E− 01 3.979E− 01 2.315E− 07 5.29
IMO 2.775E +01 2.830E +01 4.966E− 01 0.85 IMO 3.979E− 01 3.979E− 01 1.440E− 05 1.38
HGSO 1.498E +03 2.581E +03 1.547E +03 3.04 HGSO 3.979E− 01 3.979E− 01 0.000E+ 00 1.08
GWO 2.708E +01 2.712E +01 3.469E− 02 0.21 GWO 3.979E− 01 3.979E− 01 5.550E− 06 0.1
HHO 2.296E +01 2.386E +01 1.094E +00 0.3 HHO 3.979E− 01 3.979E− 01 2.240E− 06 0.36

F6 IRKO 2.308E− 09 2.709E− 09 6.428E− 10 0.13 F18 IRKO 3.0 3.0 1.601E− 15 0.04
RKO 2.525E− 09 3.025E− 09 6.239E− 10 0.08 RKO 3.0 3.0 2.057E− 12 0.03
SCA 5.223E +00 1.239E +01 6.206E +00 1.32 SCA 3.0 3.0 1.928E− 05 0.95
WOA 1.649E− 01 3.970E− 01 2.562E− 01 5.74 WOA 3.0 3.0 2.719E− 04 4.4
IMO 4.586E− 02 4.983E− 02 4.562E− 03 0.8 IMO 3.0 3.0 1.049E− 05 0.55
HGSO 3.662E +00 7.069E +00 3.538E +00 2.91 HGSO 3.0 3.0 4.283E− 15 0.33
GWO 2.496E− 01 7.470E− 01 6.597E− 01 0.19 GWO 3.0 3.0 4.790E− 05 0.04
HHO 1.940E− 04 4.780E− 04 3.059E− 04 0.19 HHO 3.0 3.0 1.838E− 08 0.11

F7 IRKO 1.061E− 04 3.581E− 04 3.931E− 04 0.23 F19 IRKO −3.863 −3.863 0.000E+ 00 0.06
RKO 2.094E− 05 6.540E− 05 7.115E− 05 0.19 RKO −3.863 −3.863 2.560E− 10 0.05
SCA 2.536E− 02 9.712E− 02 1.006E− 01 1.55 SCA − 3.861 −3.856 4.674E− 03 1.12
WOA 2.600E− 04 4.012E− 03 4.560E− 03 6 WOA −3.862 −3.858 4.847E− 03 4.39
IMO 3.502E− 04 1.225E− 03 8.936E− 04 0.99 IMO −3.863 −3.863 5.738E− 05 0.59
HGSO 6.957E +00 1.350E +01 6.048E +00 3.33 HGSO −3.863 −3.863 7.022E− 16 0.42
GWO 9.594E− 04 1.187E− 03 2.461E− 04 0.3 GWO −3.863 −3.863 1.465E− 05 0.06
HHO 1.933E− 04 3.155E− 04 1.104E− 04 0.42 HHO −3.863 −3.860 2.938E− 03 0.15

F8 IRKO − 1.458E +05 − 7.875E +04 5.963E +04 0.16 F20 IRKO −3.322 −3.282 6.864E− 02 0.06
RKO − 8.518E +03 − 7.825E +03 6.011E +02 0.09 RKO −3.322 −3.282 6.864E− 02 0.05
SCA − 3.986E +03 − 3.673E +03 3.188E +02 1.43 SCA −3.114 −3.040 6.420E− 02 1.12
WOA − 1.257E +04 − 1.257E +04 1.876E +00 5.84 WOA −3.320 −3.188 1.181E− 01 4.41
IMO − 1.257E +04 − 1.256E +04 6.233E +00 0.85 IMO −3.322 −3.321 1.510E− 04 0.62
HGSO − 1.006E +04 − 9.126E +03 9.683E +02 3.04 HGSO −3.322 −3.138 2.201E− 01 0.45
GWO − 6.260E +03 − 5.994E +03 2.308E +02 0.2 GWO − 3.322E+ 00 − 3.238E+ 00 7.309E− 02 0.06
HHO − 1.257E +04 − 1.257E +04 1.631E +00 0.29 HHO − 3.183E+ 00 − 3.111E+ 00 7.234E− 02 0.19

F9 IRKO 0.000E +00 0.000E +00 0.000E +00 0.18 F21 IRKO − 1.015E+ 01 − 1.015E+ 01 0.000E+ 00 0.06
RKO 0.000E +00 0.000E +00 0.000E +00 0.09 RKO − 1.015E+ 01 − 1.015E+ 01 2.559E− 09 0.07
SCA 1.184E− 01 5.683E +00 9.576E +00 1.38 SCA − 6.708E+ 00 − 4.070E+ 00 2.953E+ 00 1.2
WOA 0.000E +00 0.000E +00 0.000E +00 6.15 WOA − 1.015E+ 01 − 8.452E+ 00 2.942E+ 00 4.47
IMO 0.000E +00 0.000E +00 0.000E +00 0.8 IMO − 1.015E+ 01 − 1.014E+ 01 8.561E− 03 0.64
HGSO 1.360E +02 2.253E +02 7.838E +01 3.16 HGSO − 1.015E+ 01 − 1.015E+ 01 1.130E− 14 0.48
GWO 1.137E− 13 1.238E +00 2.144E +00 0.19 GWO − 1.015E+ 01 − 6.781E+ 00 2.918E+ 00 0.07
HHO 0.000E +00 0.000E +00 0.000E +00 0.23 HHO − 5.055E+ 00 − 5.050E+ 00 4.512E− 03 0.22

F10 IRKO 8.882E− 16 8.882E− 16 0.000E +00 0.16 F22 IRKO − 1.040E+ 01 −1.040E+ 01 2.413E− 14 0.08
RKO 8.882E− 16 8.882E− 16 0.000E +00 0.09 RKO − 1.040E+ 01 − 8.631E+ 00 3.069E+ 00 0.07
SCA 1.935E +01 1.989E +01 4.774E− 01 1.33 SCA − 4.569E+ 00 − 3.519E+ 00 9.182E− 01 1.24
WOA 4.441E− 15 5.625E− 15 2.051E− 15 5.77 WOA − 1.040E+ 01 − 7.852E+ 00 4.407E+ 00 4.43
IMO 8.882E− 16 4.441E− 15 3.553E− 15 0.81 IMO − 1.039E+ 01 − 1.032E+ 01 1.150E− 01 0.67
HGSO 1.906E +01 1.960E +01 4.718E− 01 3.25 HGSO − 1.040E+ 01 − 7.853E+ 00 4.417E+ 00 0.5
GWO 7.905E− 14 8.971E− 14 1.281E− 14 0.21 GWO − 1.040E+ 01 − 1.040E+ 01 5.920E− 04 0.08
HHO 8.882E− 16 8.882E− 16 0.000E +00 0.24 HHO − 9.730E+ 00 − 6.634E+ 00 2.681E+ 00 0.24

F11 IRKO 0.000E +00 0.000E +00 0.000E +00 0.18 F23 IRKO −10.5400 −8.7340 3.122E+ 00 0.09
RKO 0.000E +00 0.000E +00 0.000E +00 0.11 RKO −10.5400 −8.7340 3.122E+ 00 0.09
SCA 7.405E− 01 9.151E− 01 1.612E− 01 1.61 SCA −4.5300 −2.3760 1.900E+ 00 1.25
WOA 0.000E +00 0.000E +00 0.000E +00 5.8 WOA −10.5300 −10.5100 2.635E− 02 4.49
IMO 0.000E +00 3.701E− 17 6.410E− 17 0.85 IMO −10.5000 −10.4800 2.656E− 02 0.68
HGSO 1.890E− 01 2.930E− 01 1.254E− 01 3.04 HGSO −10.5400 −7.5830 5.115E+ 00 0.54
GWO 0.000E +00 0.000E +00 0.000E +00 0.21 GWO −10.5400 −10.5400 3.509E− 04 0.1
HHO 0.000E +00 0.000E +00 0.000E +00 0.28 HHO −5.1280 −5.1260 2.162E− 03 0.28

(Continued)
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Table 1: Continued

Algorithm Min. Mean STD RT Algorithm Min. Mean STD RT

F12 IRKO 2.310E− 09 3.172E− 09 7.895E− 10 0.59
RKO 2.239E− 09 2.445E− 09 2.985E− 10 0.46
SCA 4.813E +00 1.804E +01 1.873E+ 01 2.1
WOA 1.220E− 02 1.742E− 02 5.945E− 03 6.34
IMO 3.234E− 03 3.997E− 03 8.271E− 04 1.52
HGSO 5.463E +00 7.339E +00 1.809E+ 00 4.77
GWO 2.555E− 02 3.729E− 02 1.371E− 02 0.53
HHO 5.174E− 09 6.733E− 07 6.172E− 07 1.01

4.2.1 Welded Beam Design
The primary objective of the problem depicted in Fig. 5 is to minimize the cost of the welded

beam and find the best cost by considering the constraints. The design variables are length (l),
the thickness of the bar (b), the thickness of the weld (h), and height (t). It has constraints,
such as beam end deflection (δ), bar buckling load (Pc), shear stress (τ ), beam blending stress
(θ), and side constraints, and consider x = [x1, x2, x3, x4] = [h, l, t, b]. The variable ranges are
0.1� x1 � 2, 0.1� x2 � 10, 0.1� x3 � 10, and 0.1� x4 � 2, and design values are P= 6000lb,L=
14in., δmax = 0.25in., E = 30 × 16psi,G = 12 × 106psi, and τmax = 13600psi,σmax = 30000psi. The
objective function is given in Eq. (16).

Minimize, f (x)= 1.10471x21x2+ 0.04811x3x4(14+x2) (16)

Subjected to constraints:

g1(�x)= τ (�x)− τmax � 0

g2(�x)= σ(�x)− σmax � 0

g3(�x)= δ(�x)− δmax � 0

g4(�x)= x1−x4 � 0

g5(�x)=P−Pc(�x) � 0

g6(�x)= 0.125−x1 � 0

g7(�x)= 1.10471x21+ 0.04811x3x4(14.0+x2)− 5.0� 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

Tab. 3 lists the results obtained by the IRKO and other selected algorithms, including RKO,
GWO, HHO, WOA, IMO, HGSO, and SCA. From Tab. 3, it can be seen that the IRKO
performing better than all selected methods and attained the minimum cost. Tab. 3 also lists the
statistical data, such as Min, Mean, STD, and RT. Therefore, it is determined that the reliability
of the suggested IRKO algorithm is better for the engineering design problem. Fig. 6 depicts the
convergence curves and box plots of all algorithms while handling the problem. In addition, FRT
values obtained by all algorithms are also listed. The proposed IRKO algorithm stands first in
solving the welded beam design problem also.



4818 CMC, 2022, vol.70, no.3



CMC, 2022, vol.70, no.3 4819

Figure 3: Convergence performance of all selected algorithms on traditional benchmarks

4.2.2 Tension/Compression Spring Design
Compression spring design has been considered as yet alternative traditional mechanical

engineering problem. This problem is illustrated in Fig. 7, and the primary objective of this
problem is to minimize the tension spring weight of the framework. The design variables of the
tension/compression spring design problem are active coils (N), wire diameter (d), and mean coil
diameter (D), and consider x = [x1, x2, x3] = [d, D, N]. The variable ranges are 0.05 ≤ x1 ≤
2.0, 0.25≤ x2 ≤ 1.3, and 2.0≤ x3 ≤ 15.0. The objective function is given in Eq. (18).

Minimize f (�x)= (x3 + 2)x2x
2
1 (18)

Subjected to constraints:

g1(�x)= 1− x32x3
71785x41

≤ 0

g2(�x)=
4x22−x1x2

12566(x2x31 −x41)
+ 1

5108x21
− 1≤ 0

g3(�x)= 1− 140.45x1
x22x3

≤ 0

g4(�x)= x1+x2
1.5

− 1≤ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

Tab. 4 lists the results obtained by the IRKO and other selected algorithms, including RKO,
GWO, HHO, WOA, IMO, HGSO, and SCA. From Tab. 4, it can be seen that the IRKO per-
forming better than all other selected algorithms and attained the minimum tension spring weight.
Tab. 4 also lists the statistical data, such as Min, Mean, STD, and RT. Therefore, it is determined
that the reliability of the suggested IRKO algorithm is better for the compression spring design
problem. Fig. 8 depicts the convergence curves and box plots of all algorithms while handling the
problem. In addition, FRT values obtained by all algorithms are also listed. The proposed IRKO
algorithm stands first in solving the tension/compression spring design problem also.
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Figure 4: Boxplot analysis of all algorithms on selected benchmark functions
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Table 2: FRT values of all selected algorithms

Algorithm/Function IRKO RKO SCA WOA IMO HGS GWO HHO

F1 1.000 2.000 5.667 7.667 7.000 5.667 4.000 3.000
F2 1.000 2.000 6.667 8.000 5.667 5.667 4.000 3.000
F3 1.000 3.000 7.333 5.000 6.000 7.667 4.000 2.000
F4 1.333 1.667 7.667 5.333 4.000 7.333 5.667 3.000
F5 2.333 1.000 7.000 5.000 5.000 8.000 4.667 3.000
F6 1.000 5.667 8.000 3.000 4.000 5.333 7.000 2.000
F7 3.000 3.000 6.667 3.000 3.000 8.000 6.333 3.000
F8 2.167 2.167 8.000 4.667 3.833 7.000 6.000 2.167
F9 3.333 3.333 8.000 3.333 4.333 7.000 3.333 3.333
F10 2.000 1.000 7.667 5.000 4.000 7.333 6.000 3.000
F11 2.000 2.333 8.000 5.000 3.667 7.000 6.000 2.000
F12 1.167 6.000 6.667 6.667 4.667 2.500 5.333 3.000
F13 5.667 2.667 4.333 4.667 3.667 5.667 4.000 5.333
F14 1.500 3.000 8.000 5.000 5.667 1.500 6.667 4.667
F15 1.500 3.000 8.000 4.333 6.667 1.500 5.667 5.333
F16 1.333 2.667 6.333 6.333 6.667 2.000 6.667 4.000
F17 1.167 3.000 7.667 6.667 4.333 1.833 4.667 6.667
F18 2.000 2.667 7.333 5.333 3.000 5.000 4.000 6.667
F19 1.000 3.000 7.667 5.000 5.000 2.000 5.000 7.333
F20 1.667 3.667 7.333 5.667 4.667 3.333 3.333 6.333
F21 2.667 3.667 7.667 4.333 4.667 3.333 3.000 6.667
F22 1.000 2.000 5.667 7.667 7.000 5.667 4.000 3.000
F23 1.000 2.000 6.667 8.000 5.667 5.667 4.000 3.000

Figure 5: Welded beam design optimization problem



4822 CMC, 2022, vol.70, no.3

Table 3: Results obtained by all algorithms while solving the welded beam problem

Algorithm h l t b Min Mean STD RT FRT

IRKO 0.205735 3.253031 9.036624 0.20573 1.695 1.697 0.001 0.146 1.67
RKO 0.200881 3.341663 9.036607 0.20573 1.700 1.710 0.009 0.099 3.33
SCA 0.204085 3.574402 8.771277 0.220685 1.801 1.835 0.030 3.391 6.00
WOA 0.170613 4.265315 8.470226 0.234164 1.880 2.029 0.150 6.203 7.67
IMO 0.210796 3.345326 8.462105 0.234613 1.821 1.865 0.070 1.453 6.33
HGSO 0.205291 3.26129 9.035764 0.205771 1.696 1.707 0.021 0.661 2.00
GWO 0.200872 3.347504 9.038295 0.205781 1.701 1.706 0.004 0.151 3.00
HHO 0.200804 3.43318 9.230382 0.204784 1.738 1.888 0.228 0.464 6.00

Figure 6: Curves of all algorithms for the welded beam design; (a) Convergence curve, (b) Boxplot

Figure 7: Tension/Compression spring design problem

4.2.3 Pressure Vessel Design
The graphic view of the pressure vessel design framework is shown in Fig. 9. The pressure

vessel has hemispherical heads and capped ends. The key objective is to minimize the construction
cost. It has four constraints and four parameters (i.e., the length of the cylindrical section (L), the
thickness of the head (Th), the inner radius (R), and the thickness of the shell (Ts)), and consider
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x= [x1x2x3x4] = [TsThRL]. The variable ranges are 0≤ xi ≤ 99, i= 1, 2 and 10≤ xi ≤ 200, i= 3, 4.
The objective function is given in Eq. (20).

Minimize f (x)= 0.6224x1x3x4+ 1.7781x2x
2
3+ 3.1661x21x4 + 19.84x21x3 (20)

Subjected to constraints:

g1(x)=−x1+ 0.0193x

g2(x)=−x2+ 0.00954x3 ≤ 0

g3(x)=−πx23x4 − (4/3)πx33 + 1, 296, 000≤ 0

g4(x)= x4− 240≤ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(21)

Table 4: Results obtained by all algorithms while solving the tension/compression spring problem

Algorithm d D P Min Mean STD RT FRT

IRKO 0.139149732 1.3 11.89243063 3.662 3.662 0.000 0.057 1.00
RKO 0.13914971 1.3 11.89242563 3.662 3.662 0.000 0.047 2.33
SCA 0.137440614 1.265 12.33009784 3.682 3.696 0.023 1.297 6.67
WOA 0.13914159 1.3 11.88950847 3.662 3.685 0.033 4.557 5.67
IMO 0.133756325 1.149 14.64262775 3.731 3.734 0.002 0.583 8.00
HGSO 0.13914701 1.3 11.89186832 3.662 3.662 0.000 0.214 3.67
GWO 0.139124009 1.3 11.88926717 3.662 3.662 0.000 0.052 5.00
HHO 0.139149956 1.3 11.89251101 3.662 3.665 0.006 0.135 3.67

Figure 8: Curves of all algorithms for the compression spring; (a) Convergence curve, (b) Boxplot

Tab. 5 lists the results found by the IRKO and several selected algorithms, including RKO,
GWO, HHO, WOA, IMO, HGSO, and SCA. From Tab. 5, it can be seen that the IRKO
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performing better than all other selected algorithms and attained the minimum construction cost.
Tab. 5 also lists the statistical data, such as Min, Mean, STD, and RT. Therefore, it is concluded
that the reliability of the proposed IRKO algorithm is better for the pressure vessel design
problem. Fig. 10 depicts the convergence curves and box plots of all algorithms while handling
the problem. In addition, FRT values obtained by all algorithms are also listed. The proposed
IRKO algorithm stands first in solving the pressure vessel design problem.

Figure 9: Pressure vessel design problem

Table 5: Results obtained by all algorithms while solving the pressure vessel problem

Algorithm Ts Th R L Min Mean STD RT FRT

IRKO 1.093571 0 65.22523 10 2302.55 2302.55 0.00 0.05 1.00
RKO 1.09259 1.04E− 13 65.22524 10 2302.56 2302.57 0.02 0.04 2.67
SCA 1.13138 0 65.15833 12.33304 2429.79 4856.43 2101.55 0.88 6.33
WOA 0.906674 0 57.89208 45.89891 3006.85 5122.66 1836.32 4.51 7.33
IMO 0.764525 0 51.81955 84.5345 3396.84 5173.69 1538.81 0.58 6.33
HGSO 1.09356 2.14E− 21 65.22523 10 2302.55 2683.27 659.43 0.23 3.67
GWO 1.086553 0 65.22587 10 2303.17 2309.16 10.02 0.05 3.67
HHO 0.943091 0 59.14706 39.05765 2903.52 3084.58 231.81 0.13 5.00

Figure 10: Curves of all algorithms for the pressure vessel problem; (a) Convergence curve, (b)
Boxplot
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5 Conclusion

In this paper, an enhanced variant of the RKO algorithm called IRKO algorithm is proposed.
A local escaping operator concept is employed to improve the characteristics, i.e., exploration
and exploitation capabilities of the original RKO algorithm. A 23 classical test suite and three
engineering design problems—welded beam, tension/compression spring, and pressure vessel design
problems are used to assess the performance of the IRKO algorithm. According to benchmark
tests’ statistical findings, the IRKO produced outcomes that were either superior or relatively
close to other selected algorithms. Furthermore, it may assess the proposed IRKO’s suitability to
real-world applications based on actual investigations of design problems.

From the earlier analysis, the IRKO might enable a broad range of future tasks. This includes
applying the IRKO algorithm in numerous applications, such as image processing, feature selec-
tion, PV parameter estimation, power systems, power electronics, smart grid, big data applications,
data mining applications, signal denoising, wireless sensor networks, artificial intelligence, machine
learning, and other benchmark functions. Also applicable to situations depending on binary-,
multi-, and many-objective optimizations.
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