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Abstract: Pneumonia is a highly transmissible disease in children. According
to the World Health Organization (WHO), the most affected regions include
south Asia and sub-Saharan Africa. Worldwide, 15% of pediatric deaths can
be attributed to pneumonia. Computing techniques have a significant role
in science, engineering, and many other fields. In this study, we focused on
the efficiency of numerical techniques via computer programs. We studied
the dynamics of the pneumonia-like infections of epidemic models using
numerical techniques. We discuss two types of analysis: dynamical and numer-
ical. The dynamical analysis included positivity, boundedness, local stability,
reproduction number, and equilibria of the model. We also discuss well-known
computing techniques including Euler, Runge Kutta, and non-standard finite
difference (NSFD) for the model. The non-standard finite difference (NSFD)
technique shows convergence to the true equilibrium points of the model for
any time step size. However, Euler and Runge Kutta do not work well over
large time intervals. Computing techniques are the suitable tool for cross-
checking the theoretical analysis of the model.

Keywords: Pneumonia disease; epidemic model; computing techniques; con-
vergence analysis

1 Introduction

Pneumonia is a disease of the lungs that can cause minor to severe illness in people of different
ages. The swelling of the lungs that occurs during pneumonia is most commonly caused by infection
with bacteria or molds. There are also a few noninfectious types of pneumonia. These are caused
by inhaling contaminated materials into the lungs. Most pneumococcal poisons are insignificant, but
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some of them are harmful, causing such issues as brain damage and hearing problems. Meningitis is
the most severe disease caused by pneumococcal pneumonia, and it is more common in children who
are less than five years old and it can cause long-term disease in individuals over 50 years old. Bacteria
are a main and major cause of pneumococcal disease and blood-borne infection. About 1% of children
under five years old with this infection die. The chance of death from pneumococcal pneumonia is also
higher among the elderly. About 5% of people with pneumonia die, but the ratio is higher among the
elderly. Pneumococcal pneumonia can be asymptomatic if there are no bacteria or cold weather during
that period. Pneumococcal pneumonia can cause swelling of the throat, necessitating ear tubes in
some children. Symptoms of pneumococcal pneumonia can include greenish, yellow, or bloody liquid
produced during coughing, weakness, profuse sweating, difficulty breathing, severe headache, and
severe chest pain. Symptoms tend to worsen when the patient is hungry or exhausted. In 2014, Mochan
et al. [1] dynamically described the interhost immune response to bacterial pneumonia infection in
murine strains in a simple ordinary differential equation model. In 2014, Drusano et al. [2] reported
the effects of granulocytes in the eradication of bacterial pathogens, and there was no antimicrobial
therapy involved in this work. In 2015, Ndelwa et al. [3] produced a dynamic mathematical model for
the transmission of pneumonia with screening and medication and analyzed it to assess transmission
and effects. In 2015, Kosasih et al. [4] analyzed a mathematical model of cough sounds using wavelet-
based crackle detection work for rapid diagnosis of bacterial pneumonia in children. In 2016, Cesar
et al. [5] mathematically estimated fine particulate matter in a model and evaluated medications for
pneumonia and asthma among children. In 2016, Marchello et al. [6] listed atypical bacterial pathogens
as the main causes of such lower respiratory diseases as coughs, bronchitis, and CAP. In 2017, Cheng
et al. mathematically and dynamically evaluated an IAV-SP model. A quantitative risk-assessment
framework was established to improve respiratory health due to COPD [7]. In 2017, Kosasih et
al. [8] provided a simple mathematical model showing the analysis of measurements for clinical
diagnosis of pneumonia among children. In 2017, Tilahun et al. proposed a deterministic nonlinear
mathematical model and analyzed optical control strategies for bacterial pneumonia. Results are
shown graphically [9]. In 2018, Raj et al. [10] analyzed the classification of asthma and pneumonia
based upon mathematical features of cough sounds among poorer segments of the population. In
2018, Kizito et al. presented a mathematical model that shows the control of pneumonia spread by
bacteria. It also gave the dynamics of treatment and formulation of vaccines [11]. In 2018, Mbabazi
et al. [12] investigated a nonlinear mathematical model that modeled intra-host co-infection influenza
A virus and pneumonia. In 2018, Tilahun et al. [13] proposed a co-infection model for pneumonia-
typhoid and mathematically analyzed their characteristic relationship for the development of medical
strategies. In 2019, Tilahun et al. described a model of pneumonia-meningitis co-infection with the
help of ordinary differential equations and theorems. It explained different techniques for disease
clearance [14]. In 2020, Naveed et al. [15] reported a dynamic analysis of coronavirus while assessing
the sensitivity of model parameters. In 2019, Kosasih et al. [16] explained the main cause of pneumonia
affecting children in early childhood in poor regions of the world. In 2019, Tilahun et al. [17] analyzed
a co-infection mathematical model for the bacterial disease of pneumonia and meningitis. In 2019,
Mbabazi et al. [18] proposed a mathematical model of pneumococcal pneumonia with time delays
and performed Hopf-bifurcation analysis. In 2020, Otoo et al. [19] analyzed a model of pneumonia
spread by bacteria. The analysis determined the effects of vaccination on control of this disease. In
2020, Zephaniah et al. [20] presented the dynamics of a mathematical model of pneumonia, showing
the result graphically. In 2019, Raza et al. [21] described the stochastic dynamics of gonorrhea-like
infections. In 2020, Jung et al. [22] demonstrated the observations using different clinical tests and
showed the cause of disease, a novel pathogen. Many mathematical models are studied with different
techniques, as shown in previous works [23–27]. Well-known mathematical models can be investigated
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with the help of efficient techniques [28–39]. The rest of the paper is organized as follows. In Sections
2–4, we investigate the dynamic analysis of the model. Section 5 explains the well-known computer
methods used on this model. The last two sections present the results, discussion, and conclusion.

2 Formulation of Pneumonia Model

For any arbitrary time t, the parameters and variables of pneumonia disease described as follows:
S(t): represents the susceptible, who is at risk of acquiring infection pneumonia, C(t): represents the
carrier individuals carrying the pneumonia bacteria and can transfer the infection, I(t) : represents the
infective individuals that are capable of transmitting the infection to individuals at risk, R(t): represents
the individuals who have been recovered after the treatment of Pneumonia, μ: represents the natural
mortality rate of individuals per capita, �: represents the recruitment rate into susceptible population
per capita, θ : represents the proportion of susceptible individuals who joins the carriers, σ : represents
the disease induced mortality rate birth rate of human population per capita, β: represents the recovery
rate of carriers per capita, α: represents the infection force of susceptible individuals, τ : represents
the recovery rate of individuals who are infected of Pneumonia per capita, π : represents the rate of
developing symptoms by carriers, η: represents the rate of treated individuals becoming susceptible,
γ : represents the rate of susceptible individuals getting vaccinated, ω: represents the rate of treated
individuals having vaccinated, ω: represents the coefficient of transmission for the carrier subgroup,
δ: represents the rate of transmission, p: represents the probability that shows a contact is efficient
enough to cause infection, k: represents the rate of contact. The governing equations of the model are
as follows:

S′(t) = � − δI(t)S(t)
N

− δωS(t)C(t)
N

− μS(t) + ηR(t). (1)

C ′(t) = δI(t)θS(t)
N

+ δωC(t)θS(t)
N

− μC(t) − βC(t) − πC(t). (2)

I ′(t) = δ(I + ωC(t))
N

(1 − θ)S(t)2 + πC(t) − (τ + μ + Φ)I(t). (3)

R′(t) = βC(t) + τ I(t) − (μ + η)R(t). (4)

2.1 Fundamental Properties of Model

We consider all parameters positive and show that the solution is bounded in � = {(S, C, I , R)ε�4
+ :

0 ≤ N ≤ �

μ
}, N = S + C + I + R.

Lemma 1: The initial values {S(0), C(0), I(0), R(0)} ∈ �, then the solution set {S(t), C(t), I(t), R(t)} is
positive of all t ≥ 0.

Proof: From Eq. (1), we have

dS
dt

= ∧ − δ

(
I + ωC

N

)
S − μS + ηR

dS
dt

≥ −
(

δ

(
I + ωC

N

)
+ μ

)
S
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∫ dS
S

≥ − ∫
(

δ

(
I + ωC

N

)
+ μ

)
dt

S = S(0)e−(δ( I+ωC
N )+μ) ≥ 0

So, S ≥ 0 similarly shows that for Eqs. (2)–(4)

Lemma 2: The solution of the model equation in (1–4) are bounded in � for all t ≥ 0.

Proof: Firstly, adding the Eqs. (1)–(4) as follows:

dN
dt

= � − μN − σ I .

dN
dt

≤ � − μN.

N ≤ �

μ
+

(
N0 − �

μ

)
e−μt.

where N0 is the initial condition of N,

So, limt→∞ Sup N(t) ≤ �

μ
. This show that 0 ≤ N ≤ �

μ
and N = S + C + I + R, then all variable is

bounded in �.

2.2 Steady States of Pneumonia Model

There are two steady states of Eqs. (1)–(4), as follows: disease-free equilibrium (DFE) =
(S0, C0, I 0, R0) =

(
�

μ
, 0, 0, 0

)
, and endemic equilibrium (EE) = (S1, C1, I 1, R1),

where

S1 = N
R0

, C1 = θ�Kb(μ + η)(R0 − 1)

R0 [( Kb(Ka(μ + η) − ηθB)) − ητ(Ka (1 − θ) + πθ)] − σ(Ka (1 − θ) + πθ)(μ + η)]
,

I 1 = �(Ka (1 − θ) + πθ))(μ + η)(R0 − 1)

R0 [( Kb(Ka(μ + η) − ηθB)) − ητ(Ka (1 − θ) + πθ)] − σ(Ka (1 − θ) + πθ)(μ + η)]
,

R1 = (βθKb + τ(Ka(1 − θ) + πθ))�(R0 − 1)

R0 [( Kb(Ka(μ + η) − ηθB)) − ητ(Ka (1 − θ) + πθ)] − σ(Ka (1 − θ) + πθ)(μ + η)]
.

3 Reproduction Number of Pneumonia Model

The next-generation matrix method is presented for the system (1–4). We calculate two types of
matrices like transmission and transition after assuming the disease-free equilibrium as follows:

A =
[

δωθ δθ

δω(1 − θ) δ(1 − θ)

]
, B =

[
Ka 0
−π Kb

]
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AB−1 =
⎡
⎢⎣

δθ(ωKb + π)

KaKb

δθKa

KaKb
δ(1 − θ)(ωKb + π)

KaKb

δKa(1 − θ)

KaKb

⎤
⎥⎦

where Ka = (μ + β + π), Kb = τ + μ + σ .

|AB−1 − λI | =

∣∣∣∣∣∣∣
δθ(ωKb + π)

KaKb

− λ
δKaθ

KaKb
δ(1 − θ)(ωK2 + π)

KaKb

δK1(1 − θ)

KaKb

− λ

∣∣∣∣∣∣∣ = 0.

(
δθ(ωKb + π)

KaKb

− λ

) (
δKa(1 − θ)

KaKb

− λ

)
−

(
δKaθ

KaKb

) (
δ(1 − θ)(ωKb + π)

KaKb

)
= 0

λ = δ[Ka (1 − θ) + θ(wKb + π)]
KaKb

.

The spectral radius of the model is denoted by R0 = δ[Ka (1 − θ) + θ(wKb + π)]
KaKb

.

4 Local Stability

Theorem: The disease-free equilibrium of model (1–4) is locally asymptotically stable if the
reproduction number is less than one and unstable if it is greater than one.

Proof: To prove the local asymptotically stable disease-free equilibrium, we take the Jacobian
matrix of SCIR Model of pneumonia model at disease-free equilibrium. To show that trace is less
than zero and a determinant greater than zero.

J(S0, C0, I 0, R0) =

⎡
⎢⎢⎣

−μ 0 0 η

0 −Ka 0 0
0 π −Kb 0
0 β τ −(μ + η)

⎤
⎥⎥⎦ .

where, Ka = (μ + β + π), Kb = τ + μ + σ .

trace (J) = −μ − Ka − Kb − (μ + η) = −(2μ + Ka + Kb + η ) 〈0, det(J) = −μ(−KaKb(μ + η)) 〉 0.

where −(2μ + Ka + Kb + η < 0).

Be not be negative and δ[Ka (1 − θ) + θ(ωKb + π)] is positive and also KaKb > 0 and we note
that determinant (J) also positive, which is −μ(−KaKb(μ + η)) > 0, thus we have

R0 = δ[Ka (1 − θ) + θ(ωKb + π)]
KaKb

< 1.

The above discussion is about the matrix J, a trace is less than zero and a determinant greater
than zero. So, the disease-free equilibrium point is locally asymptotically stable if R0 < 1.

Theorem: If the reproduction number is greater than one, then the endemic equilibrium of the
model Eqs. (1)–(4) is locally asymptotically stable in �.
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Proof: The Jacobian matrix at endemic equilibrium is as follows:

J(S1, C1, I 1, R1) =

⎡
⎢⎢⎣

−(α1 + μ) 0 0 η

α1θ −Ka 0 0
α1(1 − θ) π −Kb 0

0 β τ −(μ + η)

⎤
⎥⎥⎦

where Ka = (μ + β + π), Kb = τ + μ + σ .

P(λ) = |λI − J(S1, C1, I 1, R1)| =

∣∣∣∣∣∣∣∣
−(α1 + μ) 0 0 η

α1θ −Ka 0 0
α1(1 − θ) π −Kb 0

0 β τ −(μ + η)

∣∣∣∣∣∣∣∣
= 0

P(λ) = λ4 + c1λ
3 + c2λ

2 + c3λ + c4

where c1 = 2μ + η + Ka + Kb + α1, c2 = (η + μ)(Ka + Kb + α1 + μ) + KaKb + (α1 + μ)(Ka + Kb),
c3 = KaKb(η + μ) + (Ka + Kb)(α1 + μ)(η + μ) + KaKb(α1 + μ) + ητα1(1 − θ) + ηβθα1, c4 =
KaKb(α1 + μ)(η + μ) + ηα1τθπ + ηKaα1τ(1 − θ) + α1Kaηβθ .

By using Routh Hurwitz method for order 4th as follows:⎡
⎢⎢⎢⎢⎣

1
c1

c2 − (c3/c1)

c2 c4 λ4

c 3 0 λ3

c4 0 λ2

c3 − (c1c4/(c2 − (c3/c1)))

c1

0 0 λ

0 0 1

⎤
⎥⎥⎥⎥⎦

The endemic equilibrium is locally asymptotically stable for the reproduction number greater than
one if

c1 > 0, c2 −
(

c3

c1

)
> 0c3 −

⎛
⎝ c1c4(

c2 −
(

c3
c1

))
⎞
⎠ > 0 c4 > 0.

5 Computing Techniques

In this section, we present the well-known techniques like Euler, Runge Kutta, and non-standard
finite difference for the system (1–4) as follows:

5.1 Euler Technique

The system (1–4) is described under Euler technique, as follows:

Sn+1 = Sn + h
[
∧ −

(
δ

(
In + ωCn

N

)
+ μ

)
Sn + ηRn

]
(5)

Cn+1 = Cn + h
[
δ

(
In + ωCn

N

)
θSn − (μ + β + π)Cn

]
(6)

In+1 = In + h
[
δ

(
In + ωCn

N

)
(1 − θ)Sn + πCn − (τ + μ + σ)In

]
(7)
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Rn+1 = Rn + h[βCn + τ In − (μ + η)Rn] (8)

where the time step is represented by h.

5.2 Runge-Kutta Technique

The system (1–4) is described under Runge Kutta technique, as follows:

Stage 1:

K1 = h
[
∧ −

(
δ

(
In + ωCn

N

)
+ μ

)
Sn + ηRn

]

L1 = h
[
δ

(
In + ωCn

N

)
θSn − (μ + β + π)Cn

]

M1 = h
[
δ

(
In + ωCn

N

)
(1 − θ)Sn + πCn − (τ + μ + σ)In

]

N1 = h[−βCn + τ In − (μ + η)Rn]

Stage 2:

K2 = h

[
∧ −

(
δ

(
(In + M1

2
) + ω

(
Cn + N1

2

)
N

)
+ μ

)(
Sn + K1

2

)
+ η

(
Rn + L1

2

)]

L2 = h

[[
δ

(
(In + M1

2
) + ω

(
Cn + N1

2

)
N

)
θ

(
Sn + K1

2

)
− (μ + β + π)

(
Cn + N1

2

) ]]

M2 = h

[[
δ

(
(In + M1

2
) + ω

(
Cn + N1

2

)
N

)
(1 − θ)

(
Sn + K1

2

)
+ π

(
Cn + N1

2

)
− (τ + μ + σ)

(
In + M1

2

)]]

N2 = h
[
β(Cn + N1

2
) + τ

(
In + M1

2

)
− (μ + η)

(
Rn + L1

2

)]

Stage 3:

K3 = h

[
∧ −

(
δ

(
(In + M2

2
) + ω

(
Cn + N2

2

)
N

)
+ μ

) (
Sn + K2

2

)
+ η

(
Rn + L2

2

)]

L3 = h

[[
δ

((
In + M2

2

) + ω
(
Cn + N2

2

)
N

)
θ

(
Sn + K2

2

)
− (μ + β + π)

(
Cn + N2

2

) ]]

M3 = h

[[
δ

(
(In + M2

2
) + ω

(
Cn + N2

2

)
N

)
(1 − θ)

(
Sn + K2

2

)
+ π

(
Cn + N2

2

)
− (τ + μ + σ)

(
In + M2

2

)]]
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N3 = h
[
β(Cn + N2

2
) + τ

(
In + M2

2

)
− (μ + η)

(
Rn + L2

2

)]

Stage 4:

K4 = h
[
∧ −

(
δ

(
(In + M3) + ω(Cn + N3)

N

)
+ μ

)
(Sn + K3) + η(Rn + L3)

]

L4 = h
[[

δ

(
(In + M3) + ω(Cn + N3)

N

)
θ(Sn + K3) − (μ + β + π)(Cn + N3)

]]

M4 = h

[[
δ

(
(In + M3) + ω

(
Cn + N2

2

)
N

)
(1 − θ)(Sn + K3) + π(Cn + N3) − (τ + μ + σ)(In + M3)

]]

N4 = h[β(Cn + N3) + τ(In + M3) − (μ + η)(Rn + L3)].

Final stage:

Sn+1 = Sn + 1
6

[K1 + 2K2 + 2K3 + K4]

Cn+1 = Cn + 1
6

[N1 + 2N2 + 2N3 + N4]

In+1 = In + 1
6

[L1 + 2L2 + 2L3 + L4]

Rn+1 = Rn + 1
6

[M1 + 2M2 + 2M3 + M4]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (9)

where the time step is represented by h.

3 Non-standard Finite Difference Technique

The system (1–4) is described under NSFD technique, as follows:

Sn+1 = Sn + h[∧ + ηRn]

1 + (
δ
(

1+ωC
N

) + μ
) (10)

Cn+1 = Cn + hδ
(

1+ωCn

N

)
θSn

1 + hμ + hβ + hπ
(11)

In+1 = hδ
(

1+ωCn

N

)
(1 − θ)Sn + hπCn

1 + h(τ + μ + σ)
(12)

Rn+1 = Rn + hβCn + hτ In

1 + h(μ + η)
(13)

where the time step is represented by h.
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5.4 Convergence Analysis

Theorem: The computing technique of the proposed system (10–13) is stable for any n ≥ 0 if the
absolute eigenvalues are less than one [40].

Proof: We consider F1, F2, F3, and F4 from Eqs. (10)–(13), as follows:

F1 = S + h� + hηR

1 + δ
(

1+ωC
N

)
h + μh

, F2 = C + hδ
(

I+ωC
N

)
θS

1 + hμ + hβ + hπ
, F3 = hδ

(
1+ωC

N

)
(1 − θ)S + hπC

1 + h(τ + μ + σ)
,

F4 = R + hβC + hτ I
1 + h(μ + η)

.

The Jacobian matrix is defined as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂S
∂F1

∂C
∂F1

∂I
∂F1

∂R
∂F2

∂S
∂F2

∂C
∂F2

∂I
∂F2

∂R
∂F3

∂S
∂F3

∂C
∂F3

∂I
∂F3

∂R
∂F4

∂S
∂F4

∂C
∂F4

∂I
∂F4

∂R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where ∂F1
∂S

= 1

1+δ( 1+ωC
N )h+μh

, ∂F1
∂C

= S+h�+hηR

1+δ( ω
N )h

, ∂F1
∂I

= S+h�+hηR

1+δ( 1
N )h

, ∂F1
∂R

= hη

1+δ( 1+ωC
N )h+μh

∂F2

∂S
= hδ

(
I+ωC

N

)
θ

1 + hμ + hβ + hπ
,

∂F2

∂C
= hδ

(
ω

N

)
θS

1 + hμ + hβ + hπ
,

∂F2

∂I
= C + hδ

(
1
N

)
θS

1 + hμ + hβ + hπ
,

∂F2

∂R
= 0

∂F3

∂S
= hδ

(
1+ωC

N

)
(1 − θ)S

1 + h(τ + μ + σ)
,

∂F3

∂C
= hδ

(
1+ωC

N

)
(1 − θ)S

1 + h(τ + μ + σ)
,
∂F3

∂I
= hδ

(
1
N

)
(1 − θ)S

1 + h(τ + μ + σ)
,
∂F3

∂R
= 0

∂F4

∂S
= 0,

∂F4

∂C
= hβ

1 + h(μ + η)
,

∂F4

∂I
= hτ

1 + h(μ + η)
,
∂F4

∂R
= 1

1 + h(μ + η)
.

After that, by assuming the values of disease-free equilibrium DFE =
(

�

μ
, 0, 0, 0,

)
as follows:

The given Jacobian is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + μh

�(� + h�μ)

μ(� + μδωh)

�(� + h�μ)

μ(� + μδh)

ηh
1 + μh

0
� + θ�δωh

�(1 + hμ + hβ + hπ)

hδθ

1 + hμ + hβ + hπ
, 0

0
hδ�ω(1 − θ)

{1 + h(τ + μ + σ)}
hδ(1 − θ)

1 + h(τ + μ + σ)
0

0
hβ

1 + h(μ + η)

hτ

1 + h(μ + η)
,

1
1 + h(μ + η)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The eigenvalues of the Jacobian matrix are

λ1 =
∣∣∣∣ 1
1 + hμ

∣∣∣∣ < 1, λ2 =
∣∣∣∣ 1
1 + h(μ + η)

∣∣∣∣ < 1,

J =
⎡
⎢⎣

� + θ�δωh
�(1 + hμ + hβ + hπ)

hδθ

1 + hμ + hβ + hπ
hδ�ω(1 − θ)

{1 + h(τ + μ + σ)}
hδ(1 − θ)

1 + h(τ + μ + σ)

⎤
⎥⎦

P1 = Trace of J = � + θ�δωh
�(1 + hμ + hβ + hπ)

+ hδ(1 − θ)

1 + h(τ + μ + σ)

P2 = Determinant of J =
(

� + θ�δωh
�(1 + hμ + hβ + hπ)

) (
hδ(1 − θ)

1 + h(τ + μ + σ)

)
−

(
hδ�ω(1 − θ)

{1 + h(τ + μ + σ)}
)

(
hδθ

1 + hμ + hβ + hπ

)
.

Lemma 3: For the quadratic equation λ2 − − P1λ + P2 = 0 , |λi| < 1, i = 1, 2, if and
only if the following conditions are satisfied:

(i). 1 + P1 + P2 > 0
(ii). 1 − P1 + P2 > 0

(iii). P2 < 1.

5.5 Computing Results

In this section, we investigate the computing results for the said model with the help of computer
software and the scientific literature presented in Tab. 1 as follows:

Table 1: Values of parameters

Parameters Values

� 0.5
ω 0.1124
θ 0.563
η 0.00641
β 0.515
μ 0.5
π 0.7096
σ 0.53
δ 2 (DFE) 2.5 (EE)
τ 0.641
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(a) (b)

Figure 1: Combined graphical behaviors for DFE and EE at different subpopulations of the pneumo-
nia disease (a) subpopulations for DFE at any time t (b) subpopulations for EE at any time t

(a) (b)

Figure 2: Euler method for the behavior of infected individuals at different time-step sizes (a) infected
individuals at h = 0.01 (b) infected individuals at h = 0.8

(a) (b)

Figure 3: Runge Kutta method for the behavior of carrier individuals at different time-step sizes (a)
carrier individuals at h = 0.01 (b) carrier individuals at h = 0.9
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(a) (b)

Figure 4: NSFD method for the behavior of carrier individuals at different time-step sizes (a) carrier
individuals at h = 0.01. (b) carrier individuals at h = 100

5.6 Comparison Section
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Figure 5: Combined graphical behaviors of NSFD with Euler and Runge Kutta methods at different
time-step sizes (a) infective individuals for EE at h = 0.01 (Euler and NSFD) (b) infective individuals
for EE at h = 3 (Euler and NSFD) (c) infective individuals for EE at h = 0.01(Runge Kutta and
NSFD) (d) infective individuals for EE at h = 3(Runge Kutta and NSFD)

6 Results and Discussion

We present the solution to the system (1–4) via Matlab ordinary differential equations-45 at
disease-free and endemic equilibria of the model in Figs. 1a and 1b. Also, the solutions of the system
(5–8) via the Euler method at different time step sizes are in Figs. 2a and 2b. The solution of the
system (9) via the Runge Kutta method at different time step sizes is in Figs. 3a and 3b. In the same,
we plot the solutions of the system (10–13) via the NSFD method in Figs. 4a and 4b. In Figs. 5a–
5d, the comparison section shows the investigation of computer methods such as Euler and Runge
Kutta with NSFD approximations. Here, we observe that Euler and Runge Kutta show negativity and
unboundedness and violate the dynamical properties of the model. However, our proposed numerical
approximation is reliable, inexpensive, independent of the time step, and an efficient computational
method.

7 Conclusion

We here investigated analyses of pneumonia infections via well-known computing techniques.
Computer results of epidemic models are an authentic tool to cross-check the dynamical analysis
of the model. For the sake of computational analysis, Euler, Runge Kutta, and the non-standard
finite difference techniques (NSFD) are presented. Throughout the analysis, we observe that Euler and
Runge Kutta are time-dependent techniques. Even when we increase the duration of the time step, these
techniques violate such dynamic properties as positivity, boundedness, and dynamical consistency.
However, NSFD is always convergent and independent of the size of the time step. These things could
be observed from the comparison section. This idea could be extended to different types of disease
modeling.
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