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Abstract: Effective medical diagnosis is dramatically expensive, especially in
third-world countries. One of the common diseases is pneumonia, and because
of the remarkable similarity between its types and the limited number of
medical images for recent diseases related to pneumonia, themedical diagnosis
of these diseases is a significant challenge. Hence, transfer learning represents
a promising solution in transferring knowledge from generic tasks to specific
tasks. Unfortunately, experimentation and utilization of different models of
transfer learning do not achieve satisfactory results. In this study, we suggest
the implementationof an automatic detectionmodel, namely CADTra, to effi-
ciently diagnose pneumonia-related diseases. This model is based on classifi-
cation, denoising autoencoder, and transfer learning. Firstly, pre-processing is
employed to prepare themedical images. It depends on an autoencoder denois-
ing (AD) algorithm with a modified loss function depending on a Gaussian
distribution for decoder output to maximize the chances for recovering inputs
and clearly demonstrate their features, in order to improve the diagnosis pro-
cess. Then, classification is performed using a transfer learning model and
a four-layer convolution neural network (FCNN) to detect pneumonia. The
proposed model supports binary classification of chest computed tomography
(CT) images and multi-class classification of chest X-ray images. Finally, a
comparative study is introduced for the classification performance with and
without the denoising process. The proposedmodel achieves precisions of 98%
and 99% for binary classification and multi-class classification, respectively,
with the different ratios for training and testing. To demonstrate the efficiency
and superiority of the proposed CADTra model, it is compared with some
recent state-of-the-art CNN models. The achieved outcomes prove that the
suggested model can help radiologists to detect pneumonia-related diseases
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and improve the diagnostic efficiency compared to the existing diagnosis
models.

Keywords: Medical images; CADTra; AD; CT and X-ray images;
autoencoder

1 Introduction

Pneumonia is defined as an infection caused by bacteria, germs, or any other viruses, and it
occurs inside the lungs. Pneumonia is one of the main causes of death in children and old people
worldwide [1]. Therefore, pneumonia threatens human life, if it is not diagnosed promptly or
known, early. Symptoms associated with pneumonia diseases include a combination of productive
or dry cough, fever, difficulty of breathing, and chest pain [2].

Due to the similarity of symptoms associated with pneumonia and COVID-19 diseases,
identifying them becomes complicated. Due to the mutations of coronavirus and the continuous
increase of the number of infected people, COVID-19 pandemic is still widespread. The most
critical step in confronting this virus is the effective and continuous examination of patients
infected with pneumonia and COVID-19, so that they can receive treatment and isolate themselves
to reduce the speed of spreading of the virus.

The method used in the screening and detection of coronavirus is the polymerase chain
reaction (PCR) test [1], which can detect SARSCov-2 RNA from respiratory system samples
collected by various means, such as swabs of the oropharynx and the nose. The PCR test
is considered as a gold standard for high sensitivity, but it is time-consuming, expensive, and
extremely complex. Alternatively, radiography examination of chest radiography images, such as
X-rays and CT scans, helps to discover infected cases quickly and isolate them to minimize the
spread of infection. In recent studies, it was found that patients show differences and abnormalities
in chest radiography, through which it is possible to identify those infected with the COVID-19
virus [2,3]. Some researchers have even suggested that chest radiography is a fundamental tool
in detecting coronavirus in areas that suffer from the pandemic spread, because it is faster and
available in modern healthcare systems [4]. Radiological images also show high sensitivity to
the infection [5]. One of the serious problems faced, when dealing with images, is the need for
radiologists to interpret these images, because visual features can be unclear. Therefore, computer
diagnostic systems will help specialists greatly in interpreting images, as they are, by far, faster
and more accurate in detecting cases of pneumonia and COVID-19.

Deep convolution learning methods for learning feature representations of data in large
dimensions were successfully implemented. The learned features would display the non-linear prop-
erties seen in the data. Unsupervised or supervised learning is a part of deep network preparation
for feature extraction and classification. Noise reduction is required to analyze images, properly.
So, a study of methods to reduce noise is presented, because denosising is a classic problem in
computer vision. Various techniques are used in denoising of medical images, such as the stacked
denoising autoencoder (SDAE) model, which is used for pre-training of networks [6]. Researchers
suggested a new efficient online model for variational learning of limited and unlimited Gamma
distributions [7]. It depends on the characteristics of Gamma distribution, online knowledge
scalability, and the performance of variation inference. Initial experiments on newly developed
databases of COVID-19 images were carried out with a feed-forward strategy, CNNs, and image
descriptors of texture features [8]. A modern class decomposition-based CNN architecture was
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used to increase the efficiency of classification of medical images, with the DeTraC method for
transfer learning and class decomposition. This method was presented in [9].

The developments and progress taking place in deep learning (DL) have led to new models for
medical image processing [10–12]. Autoencoders were used to reduce the noise in images [13,14],
as they have better performance than those of other traditional methods. To compare the autoen-
coder with traditional methods for noise reduction in medical images, we find that the autoencoder
method gives the same performance as those of the other methods in the case of feature linearity.
On the other hand, with feature non-linearity, the traditional methods fail to reconstruct the image
from noise. Automatic noise reduction devices (autoencoders), using CNN, can effectively reduce
noise on images, as they can exploit high spatial correlations. To solve the problem of data paucity
in medical images, transfer learning is used to transfer what the model has learned from natural
images in ImageNet competitions to medical image classification and save the amount of data
and the training time.

This paper presents a model for the automatic detection of pneumonia and COVID-19 in a
multi-class classification (Pneumonia, COVID-19, and Normal) scenario and binary classification
(COVID-19 and Normal) scenario of chest CT images. This is performed using a deep CNN,
namely CADTra, for better performance in terms of accuracy, precision, recall, f 1-score, confusion
matrix, and receiver operating characteristic (ROC) curve. It is performed on X-ray and CT
datasets with an autoencoder model to denoise medical images and obtain higher evaluation
metrics. Different types of noise are investigated, including Gaussian, salt and pepper, and speckle
noise with different variances. The CADTra works to reduce noise and achieve good performance
in extracting different features from medical images. This is clear in the values obtained for Peak
Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index (SSIM). Then, images resulting
from the denoising process are used to improve classification efficiency using transfer learning.
Different models of transfer learning, including AlexNet [15], LeNet-5 [16], VGG16 [17], and
Inception (Naïve) V1 [18], are used for DL, whose purpose is to retrain all weights of the pre-
trained network from the first to the last layer. DenseNet121, Dense-Net169, DenseNet201 [19],
ResNet50, ResNet152 [20], VGG16, VGG19 [17], and Xception [21] are used for fine-tuning,
whose purpose is to train more layers by tuning the learning weights, until an important perfor-
mance boost is achieved. To test the rigidity of the proposed model, FCNN full training is used.
Moreover, different ratios of training and testing are applied (80:20, 70:30, and 60:40).

This empirical work leads to the following significant results:

1) Differentiating between cases of pneumonia, COVID-19, and normal, depending on mul-
tiple sources of medical imaging. This is performed on datasets of X-ray and CT scans.

2) Proposal of CNN deep training for transfer learning models and FCNN model without
using CADTra.

3) Preparing and training CADTra on different datasets, and then preparing images by adding
noise and then removing it by AD.

4) Using CADTra to enhance the same deep training and the diagnostic and classification
functions of knowledge transfer models.

5) Comparing the outcomes of the models with varying training/testing ratios before and after
the use of CADTra, to assess their effect on digital medical image categorization.

6) Utilization of different state-of-the-art models from the literature for detailed comparisons
and experimental research.
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The rest of this research work is organized as follows. Related work is presented in Section 2.
The proposed model for classification (CADTra) with autoencoder denoising is given in Section 3.
Results are presented in Section 4, and the concluding remarks are given in Section 5.

2 Related Work

Having an accurate diagnosis and identifying the cause of a disease and its complications
quickly remain important tasks for physicians. This is needed to minimize patient distress. Indeed,
image processing and deep learning algorithms in biomedical image analysis and processing have
shown outstanding results. This section presents a short overview of a few significant literature
contributions.

A CNN was used to create a decompose, transfer, and compose (DeTraC) model for diag-
nosing COVID-19, based on X-ray scans [22]. The model dealt with any irregularity in the image
dataset by identifying its class using a class decomposition mechanism. Based on a CT dataset,
a dual-branch combination network (DCN) method was developed to map the likelihood of
converting the classification from classification at the slice level to classification at the individual
level to better recognize COVID-19 [23]. This model achieved an accuracy of 96.74%, using an
internal validation dataset, and 92.87% using an external dataset. Another model was devised
depending on deep learning, using CT datasets to detect Coronavirus. It also uses a stacked
autoencoder to improve the performance of the entire model by extracting the features of the
dataset and achieving better results [24]. Capsule networks have been proposed as new artificial
neural networks, whose goal is to detect COVID-19 from chest X-ray images [25]. These networks
were suggested for quick and accurate diagnosis of COVID-19. For obtaining results in a short
time, they were used for binary and multi-class classification.

Depending on artificial intelligence, especially deep learning, researchers evaluated eight pre-
trained CNN models (VGG16, AlexNet, GoogleNet, SqueezeNet, MobileNet-V2, Inception-V3,
ResNet34, and ResNet50) on chest X-ray images, and compared between models, based on several
important factors [26]. The ResNet34 model has the best performance, with an average accuracy
of 98.33%. A new CoroDet model was proposed for the automatic detection of COVID-19, based
on CNN and using X-ray and CT images [27]. It was used for binary, as well as multi-class
classification. The latter was performed in the case of attempting to classify images into three
and four categories. This model has good performance. The CNN was used to classify a set of
X-ray images to extract deep features from each [28]. Previously-trained models were used, such
as ResNet18, ResNet50, ResNet101, VGG16, and VGG19. The support vector machine (SVM)
classifier with different kernels, namely linear, quadratic, cubic, and Gaussian, were also used.
Deep samples extracted with ResNet50 and the SVM classifier have achieved an accuracy of
94.7%, which was the highest among the results. A new multi-tasking model to identify pneumonia
diseases, especially COVID-19, was devised based on DL. It works on CT scans and performs
three tasks: classification, reconstruction, and segmentation [29]. The goal of this model is to
improve the performance in both classification and segmentation, especially for small datasets.

The multiple kernels ELM (MKs-ELM-DNN) [30] is one of the methods used to identify
Coronavirus, based on the DenseNet201 structure. It was previously trained on a set of CT
images. It uses the extreme learning machine (ELM) classifier. Panahi et al. [31] introduced a new
method for identifying people infected by COVID-19 using X-ray images. It is called fast COVID-
19 detector (FCOD), and it depends on the inception architecture, as it reduces the layers of
wrapping to reduce the computational cost and time and enable the model to be used in hospitals
and in assisting radiology specialists. The COVID-Screen-Net was used in the multi-category
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classification of datasets of X-ray images, which works to determine the distinctive features of
images. These features were drawn from GradCam, and the dataset was collected through hospitals
and data available on the web [32].

In this paper, we create a CADTra model, based on CNN, in addition to using an autoen-
coder to reduce noise in images, in order to achieve an outstanding performance and a high
accuracy of diagnosis. The main objective is to automatically identify the type of the disease in
the shortest possible time. The proposed model is superior to other models published in previous
studies, as seen in the result section.

3 Proposed CADTra Model

In this work, we propose an automatic model, using a type of deep CNN called CADTra, to
detect and identify infected persons with pneumonia and COVID-19 diseases, as shown in Fig. 1.
The proposed CADTra model consists of three stages: a pre-processing stage, an autoencoder
denoising stage, and a classification stage using a CNN. The pre-processing stage is responsible
for processing and reading the dataset and for augmentation of images. Since the sizes of the
images are different, because they have been collected from more than one source, this stage also
works on resizing the images to 224× 224× 3. These numbers refer to the length, width, and
channel of the image, and they are adopted for all images (X-ray and CT) to avoid overfitting,
in order to classify images by using the CNN architecture. In the denoising autoencoder stage,
various noise types (Gaussian, speckle, and salt and pepper) are treated to reduce their effect on
the classification process. In the final classification stage, the FCNN and transfer learning models
are used for classification.

Figure 1: General steps of the proposed CADTra model

3.1 Network of the Denoising Autoencoder
An autoencoder consists of an encoder and a decoder. Each of them contains three layers,

in addition to the batch normalization stage at the beginning of the model, as shown in Fig. 2.
There are three convolution layers and three convolution-transposed layers (ConvTrans) in the
autoencoder described above. An autoencoder extracts features from images and reshapes them.
It is made of an input layer, which compresses the image to extract all strong features and
eliminate weak ones. The second component of the encoder is the neural network, which is usually
shrunk to have the smallest number of nodes possible. From the extracted features, a decoder (to
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reconstruct the image) is presented, and it works based on the composition and features of the
image. The general purpose of this autoencoder is to work on denoising of images. The training
process is carried out by comparing the resulting image and the original one and improving the
former weights to obtain the most similar image to the original one.

Figure 2: The structure of the denoising autoencoder network layer

In general, the utilization of a smaller number of layers and the achievement of lower
computational cost improve the performance of the image denoising process. Image denoising is
performed using an eight-layer convolution autoencoder network. The dimensions of the input
image are 224× 224× 3, and those of the output image are 224× 224× 32. This output is the
input of the decoder, and its output size is 224× 224× 3. In the proposed denoising autoencoder
network, the batch normalization layer and the convolution layers form the encoder. The size
of the kernels of each layer is 3× 3, and the numbers of convolution filters for layers 1, 2,
and 3 are 128, 64, and 32, respectively. The ConvTrans layers and the output convolution layer
form the decoder, and the number of convolution filters for layers 1, 2, and 3 are 32, 64, and
128, respectively. The stride of the convolution calculation is 1. The same applies to the padding
operation. The linear rectification unit (Relu) is used as the activation function in every ConvTrans
and convolution layer [33]. It can be expressed using the following function:

f (xi)=max(0,xi) (1)

where xi is an input value. During the training phase, the proposed denoising autoencoder model
was trained to reduce the reconstructive error and increase the chances of recovering inputs [34],
since both the encoder and decoder are non-linear. It was trained by minimizing loss function
through backpropagation to select the strongest features. The autoencoder that depends on the
number of layers, convolution filters in each layer and loss is given by:

MSE = 1
n

n∑
i=1

(yi− ŷi)
2 (2)

Loss=− logp(yi | z)=− log
n∏
i=1

N(yi; ŷi ,σ 2)=−
n∑
i=1

logN(yi; ŷi,σ 2)∝
n∑
i=1

(yi− ŷi)
2

(3)
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where yi is the original input and ŷi is the reconstructed output and N(yi; ŷi,σ 2) represents a
Gaussian distribution for decoder output with variance σ 2, n is the output dimension and p(yi | z)
is the decoder distribution [35]. The denoising autoencoder distinguishes signals from noise and
learns the features that capture the distribution of the training dataset to allow the model to
robustly recreate the output from a partially destroyed input.

3.2 Transfer Learning and Full Learning Models
The CNNs have been used in image classification to detect different types of pneumonia,

especially COVID-19. In general, the CNN framework includes the following layers: batch normal-
ization, input, convolutional, fully-connection (FC), pooling, dropout, dense, and output layers.
It is well-known that the CNN framework can be prepared endwise to permit selection and
extraction of features, and ultimately, prediction or classification. In this work, several full-training
and transfer learning models were utilized to compare and test the durableness and efficiency of
our CNN model, before and after the proposed AD model, including tuning of CNN frameworks
such as AlexNet [15], LeNet-5 [16], VGG16 [17], and Inception (Naïve) V1 [18], used in DL.
The DL aims to retrain all the pre-trained network weights from the first to the end layer.
The following CNN models of transfer learning are also included: DenseNet121, DenseNet169,
DenseNet201 [19], ResNet50, ResNet152 [20], VGG16, VGG19 [17], and Xception [21]. The
pre-trained transfer learning models by fine-tuning have achieved outstanding performance in
classifying CT and X-ray images [22]. The transfer learning is divided into three main scenarios,
namely shallow tuning, deep tuning and fine tuning. They were used for fine tuning. Fine tuning
aims to train more layers by tuning the learning weights until a significant performance boost is
achieved. A simple FCNN framework is designed to identify cases infected by Coronavirus. It is
composed of batch normalization, followed by four convolution layers consisting of 16, 32, 64,
and 64 filters, successively, with a rectified linear unit (ReLU) and a kernel size of 3× 3. It is
also composed of two layers of max-pooling with a pool size of 2, three FC layers with dropout
probabilities of 0.22 and 0.15, using SoftMax as an activation function, and cross-entropy as a
loss function in the classification layer. The comprehensive specifications of our suggested CNN
classification framework are shown in Fig. 3.

Figure 3: The structure of the FCNN classification network
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3.3 The Overall Network
Transfer learning and FCNN models are independently designed, trained, and used in the

binary and multi-class classification performed on chest CT and X-ray datasets. Then, the convo-
lution autoencoder network was designed to extract features from the images and reconstruct them
and train them, independently. Based on their structure, the convolution autoencoder network,
and transfer learning models were used before and after the denoising stage to test the effect
of AD on the classification process. Following this step, fine tuning is performed to improve the
network performance in noise reduction and feature extraction. The whole network design can be
explained as follows:

Step 1: Constructing the transfer learning and FCNN models.

Step 2: Utilization of the cross-entropy loss function to train the transfer learning and FCNN
models. The trained weights are then saved.

Step 3: Constructing the denoising autoencoder network.

Step 4: Utilization of the mean square error (MSE) loss function to train the AD. The trained
weights are then saved.

Step 5: Reusing transfer learning and FCNN after AD.

Step 6: Reorganizing the denoising autoencoding network, transfer learning, and FCNN to
construct the composite network (CADTra).

Step 7: Keeping the weights of the denoising autoencoding network unchanged in the image
denoising process. The trained weights are then saved and used as input for transfer learning and
FCNN.

Step 8: Fine tuning of all overall network parameters, based on the weights of the denoising
autoencoding network and transfer learning. The final proposed model (CADTra) is then saved.

The above-mentioned network, which has been trained and whose weights have been main-
tained, is used to adjust the whole network. The complex network parameters to obtain a more
accurate performance and higher efficiency have been designed and tested.

4 Experimental Results and Comparative Analysis

4.1 Dataset Description
To accurately evaluate the performance of the proposed model, we obtained a total of 9201

X-ray images and 2762 CT images. The datasets are available through the links in [36–39]. The
X-ray images have three categories, and each category contains several images (1161 COVID-19
images, 4240 pneumonia images, and 3800 normal images). The CT images have two categories,
and each category contains 1305 COVID-19 and 1457 normal images that are available publicly.
These datasets have been compiled by various platforms and sources. It is noticeable that the
dataset of X-ray images has images of different sizes, meaning that it is not balanced. We find that
the images of COVID-19 represent 12.5% of the total number of images, while both pneumonia
and normal images represent 46.1% and 41.4% of the total number of images, respectively. This
may lead to the occurrence of overfitting. In order to avoid this problem, dropout layers are
adopted in the proposed model. On the other hand, we find that the numbers of CT images in the
two categories are close to each other, which means that the dataset is balanced. In this research,
the dataset was divided with different proportions for training and testing, which are [80%:20%],
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[70%:30%], and [60%:40%]. The images were randomly selected to ensure that the proposed model
works with high efficiency with different ratios.

4.2 Data Augmentation
One of the distinguishing factors for obtaining a good classification performance is the dataset

used. We notice that the dataset depends heavily on the number of images. We find that the CT
datasets are small in size, and this may cause over fitting. An augmentation process was made on
the CT dataset to avoid this problem, as shown in Tab. 1. This includes transitions and changes
that occur in the images, such as changes in the image width and image rotation. Moreover, the
range of brightness and application of augmentation for each part of slice on the digital images
were investigated appropriately for each training sample.

Table 1: The employed data augmentation

Argument Parameter
value

Description

Width shift range 2 Factor of the shifted image
Rotation range 4 Degree range of random rotation
Brightness (0.5,1.5) Range for picking a brightness shift value
Sample-wise center True Boolean. Set each sample mean to zero
Feature-wise center True Boolean. Set input means to zero over the dataset, feature-wise

4.3 Implementation Setup
Binary and multi-class classification depend on a set of publicly available image datasets

(Chest X-ray and CT datasets). The size of the dataset images was changed to 224× 224 pixels
to train the model. We set different batch sizes with different numbers of epochs. Samples for
training are assigned and validated according to different ratios. To obtain accurate results, the
Adam’s optimizer is used in both classification model and CNN autoencoder denoising. We used
β1 = 0.9, β2 = 0.999 for optimization in the classification model, and β1 = 0.5, β2 = 0.999 in the
autoencoder denoising algorithm. The adaptive learning rate (LR) was set to 0. 00001 for all CNN
classification models. It was decreased by 0.5 for each 2 epochs to control loss and validation
loss. Early stopping is adopted for 4 epochs for validation loss to obtain lower loss and higher
accuracy. The LR is set to 0.0002 for the autoencoder algorithm to decrease noise. Epsilon is used
with a value of 10−8. Shuffle is true and verbose has a value of 1. Due to using normalization for
medical images from 0 to 1, we used ReLU as an activation function in all layers and softmax for
the output layer. After tuning of all hyperparameters, FCNN and CNN models achieved excellent
performance in the classification of chest CT and X-ray images. The development and design of
the proposed models are carried out using GPU machines for implementation, and the proposed
structures are carried out using a Kaggle that offers free access to NVIDIA TESLA P100 GPUs
for notebook editors and 13 GB of RAM running on a Professional Windows Microsoft 10 (64-
bit). Python 3.7 is used for simulation testing, and TensorFlow and Keras are used as the DL
backend.
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4.4 Evaluation Metrics
To evaluate the proposed CAD and transfer learning models used in performing classification

of the datasets (chest X-ray and CT images) and to determine the type of disease, we performed
a study of the AD effect on the model before and after its use. To ascertain the strength of the
model, we segmented the dataset into different proportions for training and testing (80%:20%),
(70%:30%), and (60%:40%), successively. Since the proposed model (CADTra) is a model for
feature learning classification, the output was tested and compared to those of the models that
involve the automated extraction of features. The suggested model outperforms all other models,
as per the experimental findings. The models were evaluated by calculating accuracy, loss, preci-
sion [40], recall [40], f 1-score [40], log loss [41], confusion matrix, precision and recall curve, and
ROC curve. The denoising autoencoder model was also evaluated based on SSIM and PSNR [42].
These parameters are defined as follows:

Accuracy= TP+TN
TP+TN +FP+FN

(4)

Precision= TP
TP+FP

(5)

Recall= TP
TP+FN

(6)

f1-score= 2× Recall+Precision
Recall×Precision

(7)

log loss=− logP(yT/yP)=−yT log(yP)+ (1− yT ) log(1− yP) (8)

PSNR= 10log10

(
MAX2

I

MSE

)
(9)

SSIM(x,y)= (2μxμy+ c1)(2σxy+ c2)

(μ2
x+μ2

y+ c1)(σ 2
x + σ 2

y + c2)
(10)

where TN is the true negative, TP is the true positive, FN is the false negative, and FP is the false
positive. yP refers to the predicted labels, yT refers to ground truth (correct) labels, MAXI refers
to maximum power of a signal or an image I , MSE is the mean square error evaluated pixel by
pixel,μy is the average value for the second image, μx is the average value for the first image, σx
is the standard deviation for the first image, σy is the standard deviation for the second image,
and σxy=μxy−μxμy is the covariance. C2,C1 are two variable to avoid division by zero.

4.5 Comparison Results
The performance and results of the proposed model, using CNN and transfer learning, were

evaluated before and after using the AD to illustrate how it affects the results. The proposed
model and the other transfer learning models showed better performance with AD, as shown in
Tabs. 2 and 3. The FCNN model achieved average accuracy scores of 98.38% for X-ray images
and 97.64% for CT images without the denoising autoencoder. For transfer learning, AlexNet with
full training yields 95.63% on X-ray images and 95.12% on CT images. LeNet-5 with full training
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yields 93.47% on X-ray images and 90.77% on CT images, VGG16 with full training yields 95.47%
on X-ray images and 95.66% on CT images, Inception Naïve V1 with full-training yields 94.66%
on X-ray images and 84.99% on CT images, DenseNet121 with pre-training yields 97.85% on
X-ray images and 96.38% on CT images, DenseNet169 with pre-training yields 97.79% on X-
ray images and 96.56% on CT images, DenseNet201 with pre-training yields 97.04% on X-ray
images and 97.29% on CT images, ResNet50 with pre-training yields 97.74% on X-ray images and
94.58% on CT images, ResNet152 with pre-training yields 98.11% on X-ray images and 96.56% on
CT images, VGG16 with pre-training yields 95.74% on X-ray images and 94.76% on CT images,
VGG19 with pre-training yields 96.39% on X-ray images and 96.75% on CT images, and Xception
with pre-training yields 94.99% on X-ray images and 85.35% on CT images without the denoising
autoencoder.

The use of AD to reduce noise and display important characteristics in medical images has
achieved great success in enhancing the performance of the models, as shown in Tab. 3. The
proposed FCNN model has achieved an average accuracy score of 98.42% on X-ray images
and 98.34% on CT images. AlexNet with full training yields 96.56% on X-ray images and
96.13% on CT images, LeNet-5 with full training yields 95.20% on X-ray images and 92.64%
on CT images, VGG16 with full training yields 97.27% on X-ray images and 96.87% on CT
images, Inception Naïve V1 with full training yields 95.42% on X-ray images and 85.47% on
CT images, DenseNet121 with pre-training yields 98.03% on X-ray images and 96.87% on
CT images, DenseNet169 with pre-training yields 98.03% on X-ray images and 97.24% on CT
images, DenseNet201 with pre-training yields 98.20% on X-ray images and 97.97% on CT images,
ResNet50 with pre-training yields 98.03% on X-ray images and 95.03% on CT images, ResNet152
with pre-training yields 98.31% on X-ray images and 97.79% on CT images, VGG16 with pre-
training yields 98.31% on X-ray images and 96.13% on CT images, VGG19 with pre-training yields
97.60% on X-ray images and 97.24% on CT images, and Xception with pre-training yields 95.31%
on X-ray images and 90.80% on CT images.

In general, the use of AD helps to increase the efficiency and performance of the models.
These results represent the culmination of accuracy, loss, precision, recall, f 1-score, log loss, con-
fusion matrix, accuracy and loss curve, precision and recall curve, and ROC curve. The denoising
autoencoder model has also been evaluated to reduce the noise with different types (Gaussian,
salt and pepper, and speckle) and different variances, including 0.05, 0.10, 0.15, 0.20, and 0.25.
The AD was also evaluated by calculating SSIM and PSNR, as shown in Tab. 5. It was found
that Gaussian noise is the most severe type of noise.

4.5.1 Classification Results of the FCNNModel and Transfer Learning Architectures Without the AD
Model

Tab. 2 displays the parameters used in evaluating the FCNN model and transfer learning
models in X-ray images and CT scans without AD, which are accuracy, loss, precision, recall,
f 1-score, and log loss with different ratios of training and testing [80%:20%], [70%:30%], and
[60%:40%]. The FCNN model gives the best results, while the LeNet-5 with full training achieves
the worst results on X-ray images, while Inception naïve v1 with full training achieves the worst
results on CT images.

4.5.2 Classification Results of the CADTra Model and Transfer Learning Architectures with the AD
Model

According to Tab. 3, the parameters used in evaluating the proposed FCNN and transfer
learning models on X-Ray and CT images with AD, which are accuracy, loss, precision, recall,
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f 1-score, and log loss with different ratios of training and testing [80%:20%], [70%:30%], and
[60%:40%]. The FCNN model gives the best results, while LeNet-5 (Full-Training) gives the worst
results on X-ray images, and Inception naïve v1 (Full-Training) achieves the worst result on CT
images.

Table 2: Comparison of the CNN architectures and the proposed FCNN algorithm without the
AD algorithm on the X-ray images and CT scans

Model name Resolution Train:
Test

Accuracy (%) Loss Precision (%) Recall (%) f 1-score (%) Log loss

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

FCNN model
(Full-Training)

(224,224,3) 80:20 98.38 97.64 0.0779 0.1217 98 98 98 98 98 98 0.5582 0.8119
70:30 97.66 96.86 0.1330 0.1327 98 97 98 97 98 97 0.8069 1.0819
60:40 97.41 95.47 0.1291 0.1248 98 95 97 95 98 95 0.8937 1.5628

LeNet-5
(Full-Training)

(224,224,1) 80:20 93.47 90.77 0.1763 0.2329 93 91 92 91 93 91 2.2542 3.1853
70:30 92.27 91.16 0.2199 0.2447 92 91 91 91 92 92 2.6402 2.9164
60:40 91.18 87.51 0.2554 0.3512 92 87 90 87 91 87 3.0458 4.3134

AlexNet
(Full-Training)

(224,224,1) 80:20 95.63 95.12 0.1305 0.1586 96 95 96 95 96 95 1.5089 1.6863
70:30 93.28 92.28 0.1785 0.3168 93 92 93 92 93 92 2.3224 2.6664
60:40 93.04 90.32 0.1972 0.2862 93 90 93 90 93 90 2.4032 3.3445

VGG16
(Full-Training)

(224,224,1) 80:20 95.47 95.66 0.1304 0.1906 96 96 95 96 95 96 1.5649 1.4989
70:30 95.29 93.12 0.1445 0.2369 96 93 96 93 96 93 1.6269 2.3748
60:40 94.55 93.12 0.1612 0.2840 95 93 94 93 95 93 1.8816 2.3755

Inception naïve
v1
(Full-Training)

(224,224,1) 80:20 94.66 84.99 0.1478 0.3429 94 85 93 85 94 85 1.8443 5.1839
70:30 94.25 85.16 0.1559 0.3496 94 85 93 85 93 85 1.9871 5.1246
60:40 93.12 83.08 0.1868 0.3884 93 83 92 83 93 83 2.3752 5.8450

DenseNet121
(Pre-Training)

(224,224,3) 80:20 97.85 96.38 0.0732 0.1143 98 96 98 96 98 96 0.7444 1.2491
70:30 96.73 93.74 0.1068 0.1642 97 94 97 94 97 94 1.1298 2.1639
60:40 96.71 89.05 0.1093 0.2436 97 89 97 89 97 89 1.1358 3.7820

DenseNet169
(Pre-Training)

(224,224,3) 80:20 97.79 96.56 0.0673 0.1079 98 97 98 97 98 97 0.7629 1.1867
70:30 96.87 95.54 0.1041 0.1622 97 96 97 96 97 96 1.0801 1.5397
60:40 96.12 88.42 0.1238 0.3707 97 88 97 88 97 88 1.3406 4.0008

DenseNet201
(Pre-Training)

(224,224,3) 80:20 97.04 97.29 0.1064 0.0901 97 97 97 97 97 97 1.0235 0.9369
70:30 96.91 95.30 0.1128 0.1343 97 95 97 95 97 95 1.0677 1.6229
60:40 96.17 91.86 0.1174 0.1985 96 92 97 92 97 92 1.3219 2.81311

ResNet50
(Pre-Training)

(224,224,3) 80:20 97.74 94.58 0.0966 0.1601 98 95 98 95 98 95 0.7950 1.8737
70:30 97.69 94.58 0.0815 0.1361 98 95 98 95 98 95 0.7946 1.8726
60:40 97.73 94.21 0.0788 0.1404 98 94 98 94 98 94 0.7820 2.0004

ResNet152
(Pre-Training)

(224,224,3) 80:20 98.11 96.56 0.0801 0.1166 98 97 98 97 98 97 0.6513 1.1866
70:30 97.38 94.22 0.0954 0.1527 98 94 98 94 98 94 0.9063 1.9974
60:40 97.23 94.48 0.1243 0.1578 98 94 98 95 98 94 0.9496 1.9066

VGG16
(Pre-Training)

(224,224,3) 80:20 95.74 94.76 0.1275 0.2499 96 95 97 95 96 95 1.4701 1.8113
70:30 96.95 93.62 0.0981 0.2457 97 94 97 94 97 94 1.0553 2.2055
60:40 95.96 90.59 0.1639 0.2897 96 91 97 90 96 91 1.3965 3.2507

VGG19
(Pre-Training)

(224,224,3) 80:20 96.39 96.75 0.1250 0.1009 97 97 97 97 97 97 1.2468 1.1242
70:30 96.08 96.39 0.1379 0.1029 96 96 97 96 96 96 1.3533 1.2484
60:40 96.55 93.03 0.1136 0.1958 97 93 97 93 97 93 1.1916 2.4068

Xception
(Pre-Training)

(299,299,3) 80:20 94.99 85.35 0.1952 0.3527 95 85 95 85 95 85 1.7307 5.0590
70:30 95.26 84.46 0.1898 0.3698 96 84 96 85 96 84 1.6388 5.3681
60:40 94.15 82.35 0.1928 0.3821 94 82 94 82 94 82 2.0202 6.0951

In Tab. 4, simulation results of the proposed model using CNN on X-Ray and CT datasets
with and without AD are presented using different evaluation metrics, including the confusion
matrix, accuracy and loss curves, precision, and recall curves, and ROC curve. These results
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demonstrate the superior effect of AD in enhancing the efficiency of CNNs in the classification
and diagnosis processes.

Table 3: Comparison of the CNN architectures and the proposed FCNN algorithm with the AD
algorithm on the X-ray images and CT scans

Model name Resolution Train:
Test

Accuracy (%) Loss Precision (%) Recall (%) f 1-score (%) Log loss

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

FCNN
(Full-Training)

(224,224,3) 80:20 98.42 98.34 0.1119 0.0635 99 98 98 98 98 98 0.5455 0.5714
70:30 98.32 98.16 0.0796 0.0536 99 98 98 98 98 98 0.5769 0.6341
60:40 97.44 96.50 0.1390 0.1221 97 96 97 97 97 96 0.8841 1.2063

LeNet-5
(Full-Training)

(224,224,1) 80:20 95.20 92.64 0.1459 0.2070 95 93 96 93 96 93 1.6554 2.5396
70:30 94.11 91.91 0.1435 0.2333 94 92 94 92 94 92 2.0316 2.7935
60:40 94.58 88.69 0.1561 0.2773 94 89 95 89 94 89 1.8717 3.9046

AlexNet
(Full-Training)

(224,224,1) 80:20 96.56 96.13 0.1340 0.2095 97 96 97 96 97 96 1.1851 1.3332
70:30 95.35 95.95 0.1299 0.2318 96 96 95 96 96 96 1.6052 1.3967
60:40 95.47 92.92 0.1235 0.3048 96 93 96 93 96 93 1.5613 2.4443

VGG16
(Full-Training)

(224,224,1) 80:20 97.27 96.87 0.0878 0.1322 97 97 96 97 97 97 0.9405 1.0793
70:30 97.05 95.58 0.0869 0.1675 97 96 97 96 97 96 1.0158 1.5237
60:40 95.72 93.10 0.1291 0.2302 96 93 94 93 95 93 1.4767 2.3808

Inception naïve
v1
(Full-Training)

(224,224,1) 80:20 95.42 85.47 0.1255 0.3175 95 86 95 85 95 85 1.5802 5.0157
70:30 95.46 85.41 0.1289 0.3610 95 86 95 85 95 85 1.5676 5.0369
60:40 95.07 85.93 0.1427 0.3462 94 86 94 86 94 86 1.7024 4.8570

DenseNet121
(Pre-Training)

(224,224,3) 80:20 98.03 96.87 0.0793 0.1333 98 97 98 97 98 97 0.6772 1.0793
70:30 97.96 95.96 0.0644 0.1505 98 96 98 96 98 96 0.7023 1.3950
60:40 97.35 94.94 0.0921 0.2058 97 95 97 95 97 95 0.9123 1.7459

DenseNet169
(Pre-Training)

(224,224,3) 80:20 98.03 97.24 0.0680 0.1966 98 97 98 97 98 97 0.6772 0.9724
70:30 97.49 95.96 0.0862 0.2403 98 96 98 96 98 96 0.8653 1.3950
60:40 96.59 95.58 0.1150 0.2587 96 96 97 95 96 96 1.1757 1.5237

DenseNet201
(Pre-Training)

(224,224,3) 80:20 98.20 97.97 0.0765 0.1005 98 98 98 98 98 98 0.6207 0.6983
70:30 97.74 96.81 0.0777 0.1845 98 97 98 97 98 97 0.7775 1.0991
60:40 97.41 96.13 0.0908 0.1628 97 96 98 96 97 96 0.8935 1.3332

ResNet50
(Pre-Training)

(224,224,3) 80:20 98.03 95.03 0.0559 0.1288 98 95 99 95 98 95 0.6772 1.7142
70:30 98.14 94.73 0.0462 0.1418 98 95 98 95 98 95 0.6396 1.8178
60:40 97.82 94.30 0.0548 0.1739 98 94 98 94 98 94 0.7524 1.9682

ResNet152
(Pre-Training)

(224,224,3) 80:20 98.31 97.79 0.0517 0.0842 98 98 99 98 99 98 0.5831 0.7618
70:30 98.18 94.61 0.0608 0.1446 98 95 99 95 98 95 0.6270 1.8601
60:40 97.41 95.49 0.0725 0.1223 97 95 98 96 98 95 0.8935 1.5555

VGG16
(Pre-Training)

(224,224,3) 80:20 98.31 96.13 0.0511 0.2014 98 96 99 96 99 96 0.5831 1.3332
70:30 97.34 96.57 0.0927 0.2079 97 97 98 96 98 97 0.9155 1.1837
60:40 97.49 96.04 0.1007 0.2605 98 96 98 96 98 96 0.8653 1.3650

VGG19
(Pre-Training)

(224,224,3) 80:20 97.60 97.24 0.0915 0.1048 98 97 98 97 98 97 0.8277 0.9523
70:30 97.02 97.18 0.0979 0.0905 97 97 98 97 97 97 1.0283 0.9723
60:40 96.73 97.05 0.1177 0.1179 96 97 98 97 97 97 1.1287 1.0158

Xception
(Pre-Training)

(299,299,3) 80:20 95.31 90.80 0.1741 0.2908 96 91 95 91 96 91 1.6178 3.1745
70:30 95.57 92.41 0.1900 0.3118 96 92 95 93 96 92 1.5300 2.6210
60:40 94.82 86.02 0.2386 0.4256 95 86 94 86 95 86 1.7871 4.8252
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Table 4: Simulation results of the FCNN model with and without the proposed AD algorithm on
the X-ray and CT scan datasets (Full-Training)

X-ray CT X-ray CT 
Accuracy 

Curve 
Accuracy in the 

y-axis and # 
Epochs in the x-

axis

Loss 
Curve 

loss in y-axis 
and # Epochs in 

x-axis

Confusion 
Matrix 

ROC 
Curve 

Precision-
Recall 
Curve 

Model CNN model (Before AD) CADTra model (After AD) 

4.5.3 Denoising Results with the ADModel for Different Noise Variances
Tab. 5 shows the results of an AD model on X-Ray and CT datasets, and this is represented

by calculating PSNR and SSIM according to Eqs. (9) and (10) for different types of noise
(Gaussian, Salt &Pepper, and Speckle noise) using different factors for each type including 0.05,
0.10, 0.15, 0.20, 0.25, respectively.

4.6 Discussions
From the previous tables without using AD, the FCNN and transfer learning models showed

satisfactory results regarding the use of CNNs in building an automatic model that works to
detect and diagnose pneumonia and COVID-19, as shown in Tab. 2. Then, we used AD in the
process of feature extraction from medical images and noise reduction. Tab. 5 illustrates the
evaluation metrics. These results ensure the distinct performance of the CADTra model with AD
and transfer learning. Then, we compared the proposed model with the recent models that work
on CT and X-ray datasets. Our work outperforms these models, as shown in Tab. 6.
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Table 5: Results of an AD model for different types of noise on X-ray and CT datasets

Types of noise variance PSNR SSIM

X-ray CT X-ray CT

Gaussian noise var = 0.05 37.30357 34.49398 0.9469 0.9421
var = 0.10 34.29652 31.2636 0.9063 0.9003
Var = 0.15 31.66098 30.4040 0.8715 0.8698
Var = 0.20 31.06916 27.7174 0.8444 0.8363
Var = 0.25 29.86472 28.3120 0.8309 0.8214

Salt &pepper Salt-vs.-pepper = 0.05 41.77245 38.2018 0.9801 0.9811
Salt-vs.-pepper = 0.10 39.01948 37.4850 0.9824 0.9807
Salt-vs.-pepper = 0.15 39.60350 34.3466 0.9758 0.9703
Salt-vs.-pepper = 0.20 35.08919 38.0737 0.9792 0.9783
Salt-vs.-pepper = 0.25 38.11704 35.4389 0.9779 0.9680

Speckle Var = 0.05 32.11715 30.2087 0.8979 0.8882
Var = 0.10 32.11513 29.2835 0.8740 0.8575
Var = 0.15 31.73431 28.3345 0.8669 0.8463
Var = 0.20 31.10216 27.36801 0.8543 0.8100
Var = 0.25 30.38853 27.1008 0.8433 0.8247

Table 6: Comparison of the proposed work with other literature models

Model name Method Modality Accuracy (%) Precision (%) Recall (%) f 1-score (%)

In DeTraC [22] AlexNet X-ray 95.66 93.49 97.53 -
VGG19 97.35 96.34 98.23 -
ResNet 95.12 91.87 97.91 -
GoogleNet 94.71 95.76 97.88 -
SqueezeNet 94.90 94.71 95.70 -

In DCN [23] VGG16 CT scan 93.49 - - -
ResNet-34 91.87 - - -
ResNet-50 94.31 - - -
ResNet-101 94.31 - - -
DenseNet 93.49 - - -
DCN 96.74 - - -

In Stacked-
autoencoder-based
model for COVID-19
diagnosis [24]

Baseline model CT scan 84.7 97 76.2 85.3
Convolution model 84.2 90 77.1 83.1
DRE-Net 86 79 96 87
M-Inception 82.9 73 88 77
Our model 94.7 96.54 94.1 94.8

In CapsNet [25] CapsNet (binary class) X-ray 97.24 97.08 - 97.24
CapsNet (multi-class) 84.23 84.61 - 84.21

(Continued)
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Table 6: Continued

Model name Method Modality Accuracy (%) Precision (%) Recall (%) f 1-score (%)

In Application of deep
learning techniques for
detection of
COVID-19 cases
[26]

ResNet-34 X-ray 98.33 96.77 - 98.36
ResNet-50 97.50 95.24 - 97.56
GoogleNet 96.67 96.67 - 96.67
VGG-16 95.83 95.08 - 95.87
AlexNet 97.50 96.72 - 97.52
MobileNet-V2 95.83 98.24 - 95.73
InceptionV3 92.50 96.36 - 92.17
SqueezeNet 96.67 98.27 - 96.61

In CoroDet [27] CoroDet (binary) X-ray &
CT scan

99.12 97.64 95.3 91.32

CoroDet (3 class) 94.2 94.04 92.5 98.3
In Deep Learning
Approaches for
COVID-19 Detection
[28]

ResNet50
Features + SVM

X-ray 95.79 97.78 94.00 95.92

Fine-tuning of
ResNet50

92.63 97.78 88.00 92.63

End-to-end
training of CNN

90.53 93.33 88.00 90.72

BSIF + SVM 91.58 93.33 90.00 91.84
In Multi-task deep
learning-based CT
imaging analysis for
COVID-19 pneumonia:
Classification and
segmentation [29]

CNN-8layers CT scan 74.67 80.0 70.0 -
Encoder-Dense 70.04 75.0 61.0 -
AlexNet 56.67 67.0 64.0 -
VGG-16 62.67 67.0 65.0 -
VGG-19 66.14 77.0 61.0 -
ResNet50 86.67 90.0 83.0 -
DenseNet169 83.33 91.0 83.0 -
Inception V3 82.67 88.0 78.0 -
Inception-
ResNet-V2

85.33 84.0 88.0 -

Efficient-Net 90.67 91.0 85.0 -
Multi-task model 94.67 96.0 92.0

In MKs-ELM-DNN
model [30]

MKs-ELM-DNN
model

CT scan 98.36 98.22 - 98.25

In FCOD [31] VGG-19 X-ray 90.0 100.0 - 81.0
ResNet50 98.0 100.0 - 100.0
DenseNet201 90.0 100.0 - 81.0
Xception 80.0 60.0 - 75.0
MobileNet 60.0 20.0 - 33.0
FCOD model 96.0 97.0 - 96.0

In COVID-Screen-
Net [32]

COVID-Screen-
Net
model

X-ray 97.71 97.72 100.0 97.71

Proposed model CADTra model CT scan 98.34 98 98 98
X-ray 98.42 99 98 98

5 Conclusions and Future Work

In this work, we presented a method (CADTra) depending on autoencoder denoising for
the early and rapid detection of lung infections to determine the type of disease, using a CNN
on datasets of medical images (X-ray and CT). The proposed method has been implemented
on FCNN and 12 deep learning architectures, namely AlexNet (full training), LeNet-5 (full
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training), VGG16 (full training), Inception (Naïve) V1 (full training), DenseNet121 (pre-training),
DenseNet169 (pre-training), DenseNet201 (pre-training), ResNet50 (pre-training), ResNet152 (pre-
training), VGG16 (pre-training), VGG19 (pre-training), and Xception (pre-training). We performed
a comparison with traditional deep learning models for the detection and identification of pneu-
monia and COVID-19 diseases. The models were evaluated, based on different evaluation metrics,
including accuracy, loss, precision, recall, f 1-score, log loss, confusion matrix, precision and recall
curve, and ROC curve. The experiments were conducted on a chest X-ray dataset, which contains
9,201 images, and a CT dataset containing 2,762 images. X-ray images consist of 1,161 COVID-19
positive images, 4,240 pneumonia-positive images, and 3,800 normal images. For CT images, they
were divided into two categories: 1,305 COVID-19-positive images and 1,457 normal images. The
proposed model achieved high performance in binary and multi-class classification. In the future
research work, we will look at developing and improving the classification model on more datasets
and using more in-depth features. Examples include the use of generative adversarial networks
(GAN) in super-resolution, after the process of denoising using an autoencoder, which may help
to improve the classification performance.
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[28] A. M. Ismael and A. Şengür, “Deep learning approaches for COVID-19 detection based on chest X-ray
images,” Expert Systems with Applications, vol. 164, no. 14, pp. 1–16, 2021.

[29] A. Amyar, R. Modzelewski, H. Li and S. Ruan, “Multi-task deep learning-based CT imaging analysis
for COVID-19 pneumonia: Classification and segmentation,” Computers in Biology and Medicine, vol.
126, no. 13, pp. 1–21, 2020.



CMC, 2022, vol.70, no.3 6125

[30] M. Turkoglu, “COVID-19 detection system using chest CT images and multiple kernels-extreme learn-
ing machine based on deep neural network,” Innovation and Research in BioMedical Engineering, vol. 5,
no. 2, pp. 1–15, 2021.

[31] A. H. Panahi, A. Rafiei and A. Rezaee, “FCOD: Fast COVID-19 detector based on deep learning
techniques,” Informatics in Medicine Unlocked, vol. 22, no. 10, pp. 1–14, 2021.

[32] V. S. Dhaka, G. Rani, M. G. Oza, T. Sharma and A. Misra, “A deep learning model for mass screening
of COVID-19,” International Journal of Imaging Systems and Technology, vol. 4, no. 3, pp. 1–22, 2021.

[33] N. El-Hag, A. Sedik, W. El-Shafai, H. El-Hoseny, A. Khalaf et al., “Classification of retinal images
based on convolutional neural network,”MicroscopyResearch andTechnique, vol. 84, no. 3, pp. 394–414,
2021.

[34] J. Choi, J. K. Rhee and H. Chae, “Cell subtype classification via representation learning based on a
denoising autoencoder for single-cell rna sequencing,” IEEE Access, vol. 9, pp. 14540–14548, 2021.

[35] R. Atienza, “Advanced deep learning with tensorFlow 2 and keras: Apply DL, GANs, VAEs, deep RL,
unsupervised learning, object detection and segmentation, and more,” Packt Publishing Ltd., 2020.

[36] COVID Dataset. [Online]. Available: https://github.com/UCSD-AI4H/COVID-CT [last access on 25–
10–2020].

[37] W. El-Shafai and F. Abd El-Samie, “Extensive COVID-19 X-Ray and CT chest images dataset,”
Mendeley Data, v3, 2020. [Online]. Available: http://dx.doi.org/10.17632/8h65ywd2jr.3.

[38] COVID Dataset. [Online]. Available: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
[last access on 25–10-2020].

[39] COVID Dataset. [Online]. Available: https://data.mendeley.com/datasets/8h65ywd2jr/1?fbclid=IwZLb04f
ZMx4CX7fU1B6Ln1Do [last access on 25-10-2020].

[40] H. Zhao, Y. Pan and F. Yang, “Research on information extraction of technical documents and
construction of domain knowledge graph,” IEEE Access, vol. 8, pp. 168087–168098, 2020.

[41] J. Jiao, T. A. Courtade, K. Venkat and T. Weissman, “Justification of logarithmic loss via the benefit
of side information,” IEEE Transactions on Information Theory, vol. 61, no. 10, pp. 5357–5365, 2015.

[42] A. Mahmoud, W. El-Shafai, T. Taha, E. El-Rabaie, O. Zahran et al., “A statistical framework for breast
tumor classification from ultrasonic images,” Multimedia Tools andApplications, vol. 80, no. 4, pp. 5977–
5996, 2021.

https://github.com/UCSD-AI4H/COVID-CT
http://dx.doi.org/10.17632/8h65ywd2jr.3
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://data.mendeley.com/datasets/8h65ywd2jr/1?fbclid=IwZLb04fZMx4CX7fU1B6Ln1Do
https://data.mendeley.com/datasets/8h65ywd2jr/1?fbclid=IwZLb04fZMx4CX7fU1B6Ln1Do

