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Abstract: Extreme Learning Machine (ELM) is popular in batch learning,
sequential learning, and progressive learning, due to its speed, easy integra-
tion, and generalization ability. While, Traditional ELM cannot train massive
data rapidly and efficiently due to its memory residence, high time and space
complexity. In ELM, the hidden layer typically necessitates a huge number of
nodes. Furthermore, there is no certainty that the arrangement of weights and
biases within the hidden layer is optimal. To solve this problem, the traditional
ELM has been hybridized with swarm intelligence optimization techniques.
This paper displays five proposed hybrid Algorithms “Salp Swarm Algorithm
(SSA-ELM), Grasshopper Algorithm (GOA-ELM), Grey Wolf Algorithm
(GWO-ELM),Whale optimizationAlgorithm (WOA-ELM) andMoth Flame
Optimization (MFO-ELM)”. These five optimizers are hybridized with stan-
dard ELMmethodology for resolving the tumor type classification using gene
expression data. The proposed models applied to the predication of electricity
loading data, that describes the energy use of a single residence over a four-
year period. In the hidden layer, Swarm algorithms are used to pick a smaller
number of nodes to speed up the execution of ELM. The best weights and
preferences were calculated by these algorithms for the hidden layer. Experi-
mental results demonstrated that the proposed MFO-ELM achieved 98.13%
accuracy and this is the highest model in accuracy in tumor type classification
gene expression data.While in predication, the proposed GOA-ELMachieved
0.397which is least RMSE compared to the other models.

Keywords: Extreme learning machine; salp swarm optimization algorithm;
grasshopper optimization algorithm; grey wolf optimization algorithm;
moth flame optimization algorithm; bio-inspired optimization; classification
model; and whale optimization algorithm

1 Introduction

In recent years, Extreme Learning machine (ELM) has attracted a significant attention in a
range of fields as an accurate and powerful machine learning technique. ELM is a less-square
learning algorithm for a ‘general’ single-hidden layer feedforward network (SLFN) that can be
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used as an estimator or as a classifier in a regression problem. ELM has two major advantages:
easier to understand and excellent results in generalization. ELM has also been used to carry
out many studies in the fields of image applications filter design, market predictions, time series
forecasting, energy efficiency shipping, electricity load prediction, target detection, aircraft recon-
naissance, clustering, real-time error diagnostics, end-point prediction model, design of neural
architectures, illness diagnosis, agility prevision, etc [1].

The Single Hidden Layer Neural Feed Forward (SLFN) is commonly considered as one
of the most popular learning machine models in the classification and prediction areas. The
Learning Algorithm is widely acknowledged to be at the core of the Neural Network [2]. Tra-
ditional gradient-based machine learning approaches, such as Levenberg-Marquardt (LM) and
Scaled-Conjugate-Gradient (SCG), complain about over-fitting, minima local, and long-term waste
memory [3]. ELM [4] has been presented to fix complex issues mentioned in gradient-based
machine learning algorithms. ELM is used as an SLFN learning solution. Although many real-
life problems have been arisen, ELM has enormous precision and anticipation speed [5]. Instead
of turning all inner parameters as in gradient-based algorithms, ELM efficiently determines the
weight of inputs and the bias of the hidden layer. ELM also assists in offering an unbiased
overview of the output weight. Gradient-based learning algorithms need less hidden neurons than
ELM due to the erratic choice of input weights and hidden layer bias [6,7].

1.1 Motivations and Contributions
Machine learning (ML) has proven to be useful in tackling tough issues in classification

and prediction. ELM, one of the machine learning algorithms that requires significantly shorter
training time than popular Back Propagation (BP) and support vector machine/support vector
regression (SVM/SVR) [8]. In many situations, the prediction accuracy of ELM is somewhat
greater than that of BP and close to that of SVM/SVR. In comparison to BP and SVR, ELM
is easier to construct since there is few parameters to tune. ELM requires more hidden nodes
than BP but many fewer than SVM/SVR, implying that ELM and BP respond to unknown
input considerably faster than SVM/SVR. ELM has an incredibly rapid learning rate. In contrast
to standard gradient-based learning methods, which only operate with differentiable activation
functions. Unlike standard gradient-based learning algorithms, which have numerous difficulties
such as local minima, inappropriate learning rate, and overfitting, etc., ELM tends to achieve
simple answers without such minor issues. Many learning algorithms, such as neural networks and
support vector machines, appear considerably easier than the ELM learning method. The ELM’s
obstacles overcame, by using bio-inspired algorithms to refine it.

Five bio-inspired algorithms are proposed to optimize ELM model. These algorithms are
namely, Salp Swarm Optimizer (SSA) [9], Grasshopper Optimizer (GOA) [10], Grey Wolf Opti-
mizer (GWO) [11], Moth Flame Optimizer (MFO) [12] and Whale Optimizer (WOA) [13]. These
algorithms have been used to select input weights and biases in order to define ELM weights
of the output. Proposed models performed a significant generalization of the simplified structure.
They have been used to identify the quality of motions of patients with distinctive tumor forms
and their advanced identification. Also, they have been used to predict the electricity consumption
of Clients.

1.2 Paper Organization
The paper is structured as follows: Section 2 devoted for related work. Section 3 presents

preliminaries that describe (SVM, ELM and the swarm intelligence algorithms); Section 5 reflects
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on the potential approach and the implementation of hybrid models; Section 6 discusses the
experimental results, while Section 7 points out the core conclusions of the proposed model and
highlights the future work.

2 Related Work

Wang et al. [8] investigated the efficacy of the ELM and suggested a revised effectiveness of
extreme learning algorithm. The suggested algorithm requires an optimal set of input weights and
assumptions, ideally maintaining the full column rank of H matrix. Isham et al. [14] used a whale
optimization algorithm (WOA) technique to determine the optimal value of the input weight
and the hidden layer distortions. Huang et al. [15] proposed a new learning algorithm called
the ELM for single-hidden layers feedforward neural networks (SLFNs), which randomly chooses
hidden nodes and analytically measures SLFN output weights. This algorithm generalized at an
extremely high pace in theory while studying. Using ELM ideas. HuaLing et al. [16] increased
the performance of ELM convergence by integrating ELM and PSO algorithm. Alhamdoosh
et al. [17] presented an evolutionary approach that was defined for the assembly of ELM to
reach an optimal solution while preserving the size of the ensemble under control. Wu et al. [18]
used GA algorithm to optimize ELM model. Sundararajanc et al. [19] used a truly modern
genetic algorithm called ‘RCGA ELM’ to pick out the strongest neurons in the hidden layer.
Zhao et al. [20] suggested a genetic ELM focused on the economic distribution of the power
grid. Abdul Salam et al. [21] refined the ELM model and increased efficiency in stock market
forecasts compared to the classic ELM model, as well as they suggested a new Flower Pollination
Algorithm (FPA). Salam et al. [22] stated that in this model, the dragonfly optimizer applied a
hybrid dragonfly algorithm with an extreme predictive learning scheme, which improved the ELM
model’s predictive performance. According to Aljarah et al. [23], the proposed WOA-based train-
ing algorithm outperforms existing algorithms in most datasets; not only in terms of accuracy,
but also in terms of convergence. Mohapatra et al. [24] discovered that ELM-based classifiers
work better when projecting higher dimensional space elements. Liu et al. [25] proposed a multi-
extension of the kernel ELM to manage heterogeneous databases through kernel tuning and
convergence. According to Huang et al. [26], the separating hyperplane begins to travel through the
root of the ELM’s space function, resulting in less space. SVM has less optimization limitations
and improved generalization performance. It was also noted that there is a generalization of the
ELM’s output that is less sensitive to learning parameters such as the number of hidden nodes.
Zong et al. [27] demonstrated that the weighted ELM is capable of balanced data generalization.
Sowmya et al. [28] designed sensor system uses the spectroscopic method using machine learning
to improve the accuracy of detection.

3 Preliminaries

3.1 Extreme Learning Machine (ELM)
The Extreme learning machine for training SLFN was proposed by Huang et al. [15]. ELM’s

central idea is the hidden weights of the layer. In addition, the biases are generated randomly, with
the less-squares procedure used to determine the output weights. The outputs of the objectives
and the hidden layer [29] are also established. Fig. 1 shows a high-level outline of the training
algorithm and the ELM layout. Where: N refers to a set of unique samples (Xi,ti), where
Xi = [xi1,xi2 . . . xin]T ∈Rn and ti= [ti1, ti2 . . . tim]T ∈ Rm, L represents the hidden layer nodes, g(x)
represents the activation function,
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Figure 1: Diagram of ELM (Huang et al. 2011)

There is also a mathematical model represented as shown in Eq. (1):

L∑
i=1

βigi(Xj)=
L∑
i=1

βigi(Wi.Xj+ bi) (1)

where: Wi = [Wi1,Wi2 . . . Win]T represents the vector of weight connecting the hidden node and
the ith nodes, βi = [βi1,βi2 . . . βim]T represents the vector weight which connects the hidden nodes
to the output nodes, bi It represents the threshold of the hidden nodes, Wi. Xj represents the
inner product of Wi and Xj.S election of the output nodes is linearly done, however.

The SLFN and L hidden nodes norm in the g(x) activation function is error-free. In other
words, mean:

∑L
j=1 || oj− tj || = 0, i.e., and there exist βi,Wi and bi in such a way that declared

in Eq. (2)

L∑
i=1

βigi(WiXj+ bj)= tj, j= 1, . . . N, (2)

It can then be presented as represented in Eq. (3)

Hβ =T (3)

where we can represent H Matrix as represented below in Eq. (4)

H(W1 . . . WL,b1 . . . bL,X1 . . . XN)=

⎡⎢⎣g(W .1..X1+ b1) · · ·g(W .L..X1+ bL)
...

...
...

g(W .1..XN + b1)· · ·g(W .1..XN + bL)

⎤⎥⎦ (4)

We can display β in Eq. (5) and T in Eq. (6)

β =
[
βT1

βTL

]
L∗m

(5)
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T=
[
tT1
tTLN

]
N∗m

(6)

And Eq. (3) becomes a linear system. Furthermore, by finding a least square solution, the
performance weights β can be calculated analytically: β = H†T Where H† Is the generalized
inverse for H Moore–Penrose.

This results in a mathematical transformation in the weighing of the items. This ensures that
a change in network parameters for such basic learning parameters eliminates the long training
time (such as iterations and learning rate).

A number of variables were described, Huang et al. (2006), The H matrix in which the hidden
layers are represented and the ith column determines the hidden layer input nodes. The activation
function g becomes infinitely differentiable if L ≤ N represents the optimal number of hidden
nodes.

3.2 Swarm Intelligence Algorithms
3.2.1 Salp Swarm Algorithm (SSA)

Salp Swarm Algorithm (SSA) was proposed by Mirjalili et al. [9]. The main inspiration of
SSA is the swarming behaviour of salps when navigating and foraging in oceans. The society is
divided into two groups: leaders and followers to model the salp chains mathematically. The salp
is the leader in the front chain, while the remaining salp followers are called.

The leader’s position can be updated according to Eq. (7) as follows:

x1j =
{
Fj + c1((ubj− lbj)c2+ lbj
Fj − c1((ubj− lbj)c2+ lbj

(7)

where x1j represents the position of the first salp (leader) in the jth dimension, Fj is the position

of the food source in the jth dimension, ubj represents the upper bound of jth dimension,
lbj represents the lower bound of jth dimension, c1, c2, and c3 are random numbers.

Eq. (8): Newton’s law of motion was used to update the position of the followers:

xij =
1
2
at2+ v0t (8)

where i ≥ 2, xij shows the position of ith follower salp in jth dimension, t is time, v0 is the initial

speed, and a= vfinal
v0

where v= x−x0
t .

3.2.2 Grasshopper Optimization Algorithm (GOA)
Luo et al. [10] created the GOA, a new swarm intelligence algorithm. GOA is a system that is

dependent on the population. GOA mimics the nature and social activity of grasshopper swarms.

Three forces determine each grasshopper’s place in the swarm. Its social contact with the other
grasshoppers Si, Gravitational effect on it Gi, and wind advection the letter Ai. The following
Eq. (9) is the final shape of the three impacted powers on each grasshopper.

Xi = Si+Gi+Ai (9)
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Eq. (10) explains the social interaction between each grasshopper and the other grasshopper.

Si =
N∑
j=1

s(dij)d̂ij, j �= 1 (10)

where dij is the distance between the grasshopperi and grasshopperj, s is a function represents the
strength of two social force, attraction and repulsion between grasshoppers, it can be defined as
represented in Eq. (11).

s(r)= f e
−r
l − e−r (11)

where f, l is the attraction strength and the attractive length dimension. The position of the
grasshopper can be calculated as declared in Eq. (12):

Xi =
N∑
j=1

s(|xj −xi|)
xj −xi
dij

− gêg+ uêw (12)

3.2.3 Whale Optimization Algorithm (WOA)
WOA could be a recent algorithm introduced in 2016 by Mirjalili et al. [13] on a population

level. WOA is derived from the social activity of humpback whales.

The difference is determined between the whale at (X, Y) and the abuser at (X*, Y*). At this
point, after the Helix-shaped forming of the Humpback whale, a winding condition is formed
between the position of the whale and the victim to be taken as described below in Eqs. (13) and
(14):

�X(t+ 1)= ebk. cos(2πk).
−→
D∗ +−→

X∗(t), (13)

−→
D∗ = |−→X∗(t)− �X (t)| (14)

To retrieve the pattern of the logarithmic spiral, if B can be a constant value, and k can be an
arbitrary number within the range [−1, 1]. This way, in the middle of optimization, WOA thinks
about changing whaling. There is a 50 percent chance of choosing between the lease component
and the contract portion, and the contract components are as represented in Eq. (15):

�X(t+ 1)=
{ −→

X∗ − �A. �D
ebk. cos(2πk).

−→
D∗ +−→

X∗(t), if p≥ 0.5,
(15)

where p is a random number within the (0,1).

3.2.4 Grey Wolf Optimizer (GWO)
Seyedali Mirjalili and colleagues proposed the grey wolf optimizer (GWO) in 2014 as a novel

swarm intelligent optimization algorithm that primarily imitates the hierarchy of wolf management
and hunting in nature [30].

Mirjalili developed the optimization algorithm by modelling it after the looking and hunting
actions of grey wolves. The optimum solution is defined as alpha (α), the second best as beta
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(β), and the third best as delta (β) for the mathematical model. Many of the remaining candi-
date solutions are omegas (ω). These three grey wolves will lead all the omegas when looking
(optimizing) and shooting.

When a prey object is discovered, the iteration starts (t = 1). Following that, the alpha, beta,
and delta wolves would lead the omegas in pursuing and ultimately encircling the prey. To define
the encircling action, three coefficients are proposed as represent in Eqs. (16)–(18):

−→
Dα = |−→C1.

−→
Xa− �X(t)|, (16)

−→
Dβ = |−→C2.

−→
Xβ − �X(t)|, (17)

−→
Dδ = |−→C3.

−→
Xδ − �X (t)|, (18)

where t indicates the current iteration,
−→
X is the position vector of the grey wolf, and

−→
X1 ,

−→
X2

&
−→
X3 are the position vectors of the alpha, beta, and delta wolves. �X would be computed as

Eqs. (19)–(22):
−→
X1 =−→

Xa−−→
A1.

−→
Dα, (19)

−→
X2 =−→

Xβ −−→
A2.

−→
Dβ (20)

−→
X3 =−→

Xδ −−→
A3.

−→
Dδ (21)

�X(t)=
−→
X1+−→

X2+−→
X3

3
(22)

3.2.5 Moth–Flame Optimization Algorithm (MFO)
MFO is a new Metaheuristic population-based approach created by Mirjalili in 2015 [31] that

mimics the transverse orientation for navigation technique used by moths at night. Moths travel
at night dependent on the moonlight, keeping a set angle to navigate their way.

MFO starts by randomly creating moths in the solution space, then calculating each moth’s
fitness values (i.e., location) and labelling the best position with flame. The position of the moths
is then updated with the spiral movement function to attain better flame marked locations, then
the best individual location updates and the previous processes continue until the ends have been
achieved. MFO converges the global optimum of optimization problems using three associated
functions. The following are these functions as declared in Eq. (23):

MFO= (I ,P,T) (23)

where I refers to the first random locations of the moths (I: �→M, OM), P refers to motion of
the moths in the search space (P:M→M), and T refers to finish the search process (T: M→ true,
false). Eq. (24) represents I function, which is used for implementing the random distribution.

M(i, j)= (ub(i)− lb(j)) ∗ rand()+ lb(i) (24)

where lb and ub indicate the lower and upper bounds of variables, respectively.
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The MFO algorithm’s logarithmic spiral is as described in Eq. (25):

S(Mi,Fj)=Di.ebt. cos(2π t)+Fj (25)

where Di refers to the space between the i-th moth and the j-th flame (i.e., Di = |Fi−Mi|), b
indicates a fix to define the shape of the logarithmic spiral, and t indicates a random number
between [−1, 1].

This section focuses on enhancing MFO algorithm exploitation (for example, updating the
moths’ positions in n different locations in the search space will minimize the probability of
exploiting the most promising solutions). Reducing the number of fires, as a consequence of the
following Eq. (26), helps in the resolution of this problem:

flame no= round
(
N − l ∗ N− l

T

)
(26)

where N denotes the maximum number of fires, l the present number of iterations, and T the
cumulative number of iterations.

4 The Proposed Hybrid Models

As long as a suitable number of hidden nodes are selected within the program, ELMs offer
the benefit of taking minimum training time while still preserving acceptable classification and
predication. Since the optimum hidden layer weighting is not achievable within the hidden layer,
the huge number of nodes slows down the execution of the ELM experiments. Therefore, in this
hybrid model, fewer nodes within the hidden layer must be used to accelerate ELM execution
while retaining an appropriate choice of hidden layer weights and predispositions. It is often used
in the same manner when determining the weights and preferences of the output sheet. Swarm
algorithms are the most efficient for collecting the hidden layer weights and expectations that
optimize the overall execution of the ELM.

4.1 SSA-ELMModel
The hidden output layer matrix’ pseudo reverse matrix serves to establish the weight of the

output layer matrix of an ELM and over-fit a significant amount of hidden layer nodes. In
addition, the weight and hidden offset layer value of the ELM are randomly generated, resulting
in multiple weights matrices of the output layer. The Salp Swarm Algorithm optimizes input
weight and hidden layer bias values in the ELM to avoid confusion created by random selection
of the two. Hence, iterative update and optimization [32] offered the globally best approach.

According to the literature [33], this section addresses the nature and implementation of the
SSA - ELM training Algorithm. The SSA is used for the optimization of the ELM network,
which serves the ELM candidate network for any salp path. SSA is programmed to maintain the
parameters of the network to be optimized, namely the weights of a connection between the input
and the hidden level and the bias of the neurons in the hidden layer. As a result, the length of
each salp can be determined with the formula L = I*N + N, where I denotes the number of
input variables. Fig. 2 depicts the architecture of the SSA-structural ELM.
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Figure 2: Structural design of SSA-ELM

Algorithm 1: Hybrid Salp Swarm Optimization and Extreme Learning Machine (SSA-ELM)
Inputs:

• N: the number of Agents
• T: Iterations Number
• X∗Z: the best search agent
• P: The current search position
• Trn.: Training Data set
• Vld.: Validation Data set

Outputs:
• fbest: Optimal hidden weights and biases
• f (fbest): sum square error for the NN over the validation set fbest

Initialize:
• Generate Xi Initial Population (i = 1, 2, . . ., n) considering ub and lb.
• Calculate each solution’s fitness.
• X∗= the ideal agent for a search

while (The final criterion is not fulfilled)
Calculate each search agent’s fitness (Salp)
F= Best Agent for Search
Update c1

for each salp (xi)
if (i = 1)
Modify the lead salp position.

Else
Modify the follower’s position.

End
End
Modify Salps depending on the higher and lower limits.

End
Return best ELM network with minimum RMSE.
Return F

4.2 GOA-ELMModel
The hybrid ELM model based on GOA is mentioned in detail in this section. GOA is used in

GOA-ELM to refine the parameters of ELM. The suggested technique is split into two sections.
The first stage entails refining internal parameters. The second segment assesses the efficiency of
the outer classification. The GOA technique dynamically adjusts the optimum parameters for the
training set while tuning the inner parameters for ELM. The optimal parameters are then fed into
the ELM model in the outer loop to perform the classification task.
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Algorithm 2: Hybrid Grasshopper Optimization and Extreme Learning Machine (GOA -ELM)
Inputs:

• N: the maximum number of Agents
• T: Number of Iterations
• X∗: the best search agent
• P: The current search position
• T rn.: Training Data set
• V ld.: Validation Data set

Outputs:
• fbest: Optimal hidden weights and biases
• f (fbest): sum square error for the NN over the validation set fbest

Initialize:
• Generate Xi Initial Population (i = 1, 2, . . ., n)
• Initialize cmax, cmin and L (maximum number of iterations);
• Evaluate the fitness of all agents by ELM with agent as parameters;
• Calculate each solution’s fitness
• TZ the ideal agent for a search

while (l ≤L)
Update c

for i < n
Standardize the grasshopping distance.
Update the search agent’s position Xi
Perform Levy flight strategy.
Bring the X i back if it goes outside the boundaries.
end for

Assess the fitness of the agent as parameters of all agents with ELM
If a better option is available, update T.
for i < n

Calculate the oppositional position xopi of Xi
Assess for this agent as criteria the fitness for the existing ELM search agent.
Return the new search agent as it exceeds borders.
end for.
Update T if there is a better solution.
Update population X by selecting the best n search agents from Xop and X
l = l + 1

end while
Return T as ELM’s best parameter.

4.3 GWO-ELMModel
This algorithm can be paired with other optimization algorithms to solve these issues and

increase the performance of ELM. The ELM algorithm will be paired with GWO in this analysis
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since it has a sufficient convergence rate and does not have several tuning parameters. ELM, on
the other hand, can be paired with other optimization algorithms. The following steps can be
taken to build a hybrid ELM-GWO algorithm:

Algorithm 3: Hybrid Grey Wolf Optimization and Extreme Learning Machine (GWO -ELM)
Inputs:

• N: the maximum number of Agents
• T: Number of Iterations
• X∗: the best search agent
• P: The current search position
• Trn.: Training Data set
• Vld.: Validation Data set

Outputs:
• fbest: Optimal hidden weights and biases
• f (fbest): sum square error for the NN over the validation set fbest

Initialize:
• Generate Xi Initial Population (i = 1, 2, . . ., n)
• Calculate each solution’s fitness
• X∗= the ideal agent for a search

Record the best individual, second best individual and third best individual as
−→
Xα,

−→
Xβ &

−→
Xδ

While (t < maximum iteration number)
For each individual

Update the position of current individual by Eqs. (D.1)–(D.7)
End for
Update a, A, C
Calculate the fitness value of all individuals in the population
Update

−→
Xα,

−→
Xβ &

−→
Xδ

t = t + 1
End While
Return

−→
Xα

4.4 MFO-ELMModel
The proposed MFO-ELM model retains the same method for determining the output sheet’s

weights and preferences. The MFO algorithm is used to maximize the overall efficiency of the
ELM by choosing the weights and expectations of the secret layer as described in Eq. (27). M
variables must be calculated by the MFO, with M = (NH +1) * NI where NH and NI are the
total number of nodes in the secret and input layers, in that order. Individual vector ranges are
limited to [−1, 1].

F(w)=
NValidation∑

j=1

No∑
i=1

∣∣Oij−dij
∣∣ (27)

where NValidation is the number of data points in the validation set, No is the number of nodes in
the output layer. Oij is the actual output on node i as a result of applying sample j to the ELM,
and dij is the desired output on node i for a sample j.
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Algorithm 4 presents an algorithm that depicts the proposed MFO-ELM model as follows:

Algorithm 4: Hybrid Moth Flame Optimization and Extreme Learning Machine (MFO-ELM)
Inputs:

• n: Number of moths (search agents)
• N The maximum number of flames
• T: Number of Iterations
• X∗: the best search agent
• T rn.: Training Data set
• V ld.: Validation Data set

Outputs:
• f best: Optimal hidden weights and biases
• f (f best): sum square error for the NN over the validation set fbest

Initialize:
• initialize population of n flames positions randomly with hidden layers weight and biases.
• Initialize the parameters for Moth-flame.

while Criteria not met do
Update the No. of flames to be used Nflames
according to equation E.6.
Fitness of all n moths is determined by
foreach Mothi with i ≤ n do

- create NN with the weights and biases of the hidden layer of Mothi
- Calculate weights of output layer with the given training data from the MP matrix Trn

and hidden layer weights and biases.
- Asses NN model using the validation data V ld

End
If first iteration, then

Sort the moths as fit and put the product into the flame matrix.
Else

- Combine the population of pasr moths and flames.
- The combined population is ranked between best and worst.
- Choose from the classified combined population the best N places as flames.

End
Calculate the convergence constant r
Foreach Mothi with i ≤ n do

Calculate t as t =(r-1) * rand + 1
If i ≤ N then

Update Mothi Position according to Flamei using Eq. E.5
Else

Update Mothi Position according to FlameN flames using Eq. E.5
End
End

End
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4.5 WOA-ELMModel
The suggested WOA-ELM algorithm consists of the following steps:

1- Initialize all the humpback whales (z = 1, .., Ps) randomly where each whale represents
a set of input weights and hidden biases within a range [−1, 1] as represented in Eq. (28)

sz = [wh11, . . . .,wh1l,w
h
nh1

, . . . ,whnhl,b1,b2, . . . .,bnh] (28)

2- Evaluate the output weights and fitness of each whale and find sbestof all the solutions
in the population. The fitness is defined as represented in Eq. (29)

f (sbest)=
√∑Nv

j=1 ||
∑nh

i=1w
o
i ∅(whi .xj + bi)− tj||22
Nv

(29)

where, Nv indicates the number of validation samples

3- For each whale, calculate a, A, ζ , q, and pr. Update the position based on Eq. (24) and
generate the new population.
4- Bound the new solutions using the following Eq. (30).

sz(k+ 1)=
{−1, sz(k+ 1) <−1,
+1, sz(k+ 1) >+1

(30)

and find the best new solution sbestnew.

5- Update the sbest using the norm of the output weights and the fitness value as (31).

sbest =
{
sbestnew, if(|f (sbest)− f(sbestnew)|< εf (sbest) and wosbestnew)

sbest, otherwise

}
(31)

where f (sbest) and f (sbestnew) denotes the fitness of the best solution so far and the new best
solution respectively. wosbest and wosbestnew represents the output weights of best solution so far and
the best new solution respectively. ∈> 0 is a user-defined tolerance rate.

6- Repeat steps 3–5 before the end condition is not met (i.e., the full number of iterations)
to achieve the desired input weights and latent biases.

5 Experimental Results

5.1 Dataset Description
With the classification and predication information package of the UCI Machine Learning

store used in the experiments and comparisons. Several highlights and incidents were chosen to
provide the set of information as agents with various kinds of issues to be addressed in the
strategy illustrated. To ensure that optimization algorithms are applied in colossal search spaces
as seen in Tabs. 1 and 2, we picked a set of high-dimensional results separately.

We worked on two datasets, one for classification and the other for prediction.
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Algorithm 5: Hybrid Whale Optimization and Extreme Learning Machine (WOA-ELM)
Inputs:

• N: the maximum number of Agents
• T: Number of Iterations
• X∗: the best search agent
• P: The current search position
• Trn.: Training Data set
• Vld.: Validation Data set

Outputs:
• fbest: Optimal hidden weights and biases
• f (fbest): sum square error for the NN over the
• validation set fbest

Initialize:
• prepare the training data and testing data.
• set the relevant parameters of ELM.
• Initialize the WOA population
• Compute the fitness of each search agent.
• X∗= the ideal agent for a search

While (t < Max_Iteration)
for each solution

Modify a, A , C , l, and p
if 1 (p < 0.5)

if 2 (|A| < +1)
Update the current sol.’s Position

else if 2 (|A| > + 1)
pick a random search agent
Modify the new search agent’s location

end if 2
else if 1 (p ≥ 0.5)

Modify the latest search location
end if 1

end for
Verify that every solution reaches the search space and adjust it
Compute each solution’s fitness
Modify X∗ if a better solution occurs
t = t + 1
end while
Obtain the optimal input weights and hidden layer biases of ELM byX∗ ELM train and test

5.1.1 Classification Dataset
Cancer is one of the most dreaded and violent illnesses in the world, causing over 9 million

deaths. The earlier the level of cancer is, the better the chance of survival. The RNA sequence
analysis is one of the steps [34]. There has been an interest in human genomics research recently
in developing reliability and precision of artificial intelligence approaches and optimization algo-
rithms. Centered on tumor RNA sequence (RNA-Seq) gene expression data, the authors present
five hybrid models for classifying different forms of cancer. This study will focus on KIRC “kidney
renal clear cell carcinoma”, BRCA “breast invasive carcinoma”, LUSC “lung squamous cell
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carcinoma”, LUAD “lung adenocarcinoma”, and UCEC “uterine corpus endometrial carcinoma”.
And the Description of the dataset will be illustrated in Tab. 1.

5.1.2 Predication Dataset
With the proliferation of smart energy meters and the widespread deployment of electricity

generation technologies such as solar panels, there is a wealth of data on electricity demand
available [35].

This information is a multivariate time series of power-related variables that can be used
to predict and estimate potential energy demand. This paper presents five hybrid models for
predicting the household power consumption dataset, which explains energy demand for a single
house over a four-year period, And the Description of the dataset will be illustrated in Tab. 2.

Table 1: Gene expression cancer RNA-Seq dataset

Name No. of features No. of samples

Gene expression cancer RNA-seq data set 16382 801

Table 2: Electricity load diagrams dataset description

Name No. of features No. of samples

Electricity load diagrams data set 140256 370

5.2 Parameters Settings
For the proposed and compared versions, 500 cycles have been planned. The ELM has

20 input layer nodes. It has twenty hidden nodes, but more hidden nodes are expected than
algorithms of classical inclination. In the output layer, it has one node. The SSA, GOA, GWO,
MFO and ELM algorithms parameter settings are summarized in the Tab. 3.

5.3 Simulation Results
The following Results have been run on Google Colab, The VM used for Collaboratory

appears to have 2-core Xeon 2.2GHz, 13GB RAM and 2 vCPU when checking using psutil (so
a n1-highmem-2 instance)

5.3.1 Classification Results
The hybrid MFO-ELM model has a better accuracy than SSA-ELM, GOA-ELM GWO-

ELM, WOA-ELM, standard ELM and SVM as shown.

1- Accuracy

MFO-ELM has a better Accuracy than other Algorithms as shown in Tab. 4.
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Table 3: Parameters settings

Algorithm Parameters Value

SSA, GOA, GWO,
MFO, and WOA

Search agent’s number
Iterations number.

20
100

ELM Input nodes number
Hidden nodes number
Activation fun.
Output nodes number
iterations number
Learning rate

20
20
Sigmoid
1
100
0.01

SVM Input nodes number
Output nodes number
Iterations number

20
1
50

Table 4: Accuracy of proposed models

SSA-ELM GOA-ELM GWO-ELM MFO-ELM WOA-ELM ELM SVM

80.12 90.15 89.06 98.13 79.68 66.45 63.97

2- Learning Curves

All proposed models converged to global minimum after few iterations as shown in Figures
from Figs. 3–7.

3- Confusion Matrix

SSA-ELM has misclassified Class “COAD” between Class (COAD and BRCA) as shown
in Fig. 8. GOA-ELM has misclassified Class “COAD” as shown in Fig. 9. GWO-ELM has
misclassified Class “COAD” as shown in Fig. 10. MFO-ELM has misclassified Class “PRAD” as
shown in Fig. 11. WOA -ELM has classified all classes correctly as shown in Fig. 12. ELM has
misclassified Class “COAD, KIRC” as shown in Fig. 13.

4- Computational Time

Instead of the better accuracy if MFO- ELM, SVM has the best Computational Time, As
shown in Tab. 5, the time is calculated in Seconds

5- Precision

MFO- ELM has the best Precision across all classes as shown below in Tab. 6.

6-Recall

MFO- ELM has the best Recall across all classes as shown below in Tab. 7.

7- F1 Score

MFO- ELM has the best F1Score across all classes as shown below in Tab. 8.
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5.3.2 Predication Results
The hybrid GOA-ELM model has a better accuracy than SSA-ELM, MFO-ELM GWO-

ELM, WOA-ELM, standard ELM and SVM as shown.

1- Root Mean Square Error (RMSE):

GOA-ELM has the least Mean Squared Error as shown in Tab. 9.

2- Mean Absolute Error (MAE):

GOA-ELM has the least Mean Absolute Error as illustrated in Tab. 10.

Figure 3: SSA-ELM learning curve

Figure 4: GOA-ELM learning curve
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Figure 5: GWO_ELM learning curve

Figure 6: MFO-ELM learning curve
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Figure 7: WOA-ELM learning curve

Figure 8: SSA-ELM confusion matrix
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Figure 9: GOA-ELM confusion matrix

Figure 10: GWO-ELM confusion matrix
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Figure 11: MFO-ELM confusion matrix

Figure 12: WOA-ELM confusion matrix
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Figure 13: ELM confusion matrix

Table 5: Computational time

SSA-ELM GOA-ELM GWO-ELM MFO-ELM WOA-ELM ELM SVM

15.817 17.006 16.392 15.974 16.405 0.357 0.055

Table 6: Precision

SSA-ELM GOA-ELM GWO-ELM MFO-ELM WOA-ELM ELM SVM

PRAD 0.94 0.99 0.96 1.00 0.82 0.77 0.98
LUAD 0.34 0.00 0.00 1.00 0.93 0.00 1.00
KIRC 0.94 0.83 0.67 1.00 0.83 1.00 1.00
COAD 0.88 0.77 0.94 0.92 0.44 0.45 0.00
BRCA 0.96 0.99 0.96 0.97 0.00 0.94 0.00
Micro avg 0.80 0.90 0.88 0.98 0.72 0.66 0.99
Macro avg 0.81 0.72 0.71 0.98 0.61 0.63 0.60
weighted avg 0.80 0.83 0.81 0.98 0.61 0.69 0.65
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Table 7: Recall

SSA-ELM GOA-ELM GWO-ELM MFO- ELM WOA-ELM ELM SVM

PRAD 0.63 1.00 0.98 0.98 0.92 0.98 1.00
LUAD 0.86 0.00 0.00 0.95 0.88 0.00 0.88
KIRC 0.91 0.99 1.00 1.00 1.00 0.08 1.00
COAD 0.91 0.98 0.91 1.00 0.78 0.93 0.00
BRCA 0.86 0.99 1.00 0.97 0.00 0.62 0.00
Micro avg 0.80 0.90 0.88 0.98 0.72 0.66 0.64
Macro avg 0.83 0.79 0.78 0.98 0.72 0.52 0.58
weighted avg 0.80 0.90 0.88 0.98 0.72 0.66 0.64

Table 8: F1 Score

SSA-ELM GOA-ELM GWO-ELM MFO-ELM WOA-ELM ELM SVM

PRAD 0.76 1.00 0.97 0.99 0.87 0.87 0.99
LUAD 0.49 0.00 0.00 0.97 0.90 0.00 0.94
KIRC 0.92 0.90 0.81 1.00 0.91 0.14 1.00
COAD 0.89 0.87 0.92 0.96 0.56 0.61 0.00
BRCA 0.91 0.99 0.98 0.97 0.00 0.74 0.00
Micro avg 0.80 0.90 0.88 0.98 0.72 0.66 0.78
Macro avg 0.79 0.75 0.74 0.98 0.65 0.47 0.59
weighted avg 0.82 0.86 0.84 0.98 0.66 0.59 0.64

Table 9: Root mean square error (RMSE)

SSA-ELM GOA-ELM GWO-ELM MFO-ELM WOAELM ELM SVM

0.449 0.397 0.400 0.463 0.642 0.660 0.422

Table 10: Mean absolute error (MAE)

SSA-ELM GOA-ELM GWO-ELM MFO-ELM WOA-ELM ELM SVM

0.374 0.282 0.331 0.286 0.486 0.522 0.395

6 Conclusions and Future Work

This paper proposes five hybrid models for enhancing ELM efficiency. The proposed hybrid
algorithms are namely, “Salp Swarm Algorithm (SSA-ELM), Grasshopper Algorithm (GOA-
ELM), Grey Wolf Algorithm (GWO-ELM), Whale optimization Algorithm (WOA-ELM) and
Moth Flame Optimization (MFO-ELM). Experimental results for gene classification dataset
showed that MFO achieved best accuracy and efficiently select weights and hidden layer biases
of ELM. The proposed models addressed the over-fitting issue that afflicted the regular ELM
model. The five hybrid models had been used for predicting the household power consumption
dataset, which explains energy demand for a single house over a four-year period. The proposed
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GOA-ELM model has achieved the best result in predicting and estimating potential energy
demand.

In Future work, New Hybrid models will be developed. in addition, we will try to test the
hybrid models on more datasets in different fields and check the efficiency of each algorithm in
each dataset and which fits each field. And we are going to try these models on Higher datasets
with millions of features.
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