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Abstract: In machine learning, sentiment analysis is a technique to find and
analyze the sentiments hidden in the text. For sentiment analysis, anno-
tated data is a basic requirement. Generally, this data is manually annotated.
Manual annotation is time consuming, costly and laborious process. To over-
come these resource constraints this research has proposed a fully automated
annotation technique for aspect level sentiment analysis. Dataset is created
from the reviews of ten most popular songs on YouTube. Reviews of five
aspects—voice, video, music, lyrics and song, are extracted. AnN-Grambased
technique is proposed. Complete dataset consists of 369436 reviews that took
173.53 s to annotate using the proposed technique while this dataset might
have taken approximately 2.07 million seconds (575 h) if it was annotated
manually. For the validation of the proposed technique, a sub-dataset—Voice,
is annotated manually as well as with the proposed technique. Cohen’s Kappa
statistics is used to evaluate the degree of agreement between the two annota-
tions. The high Kappa value (i.e., 0.9571%) shows the high level of agreement
between the two. This validates that the quality of annotation of the proposed
technique is as good as manual annotation even with far less computational
cost. This research also contributes in consolidating the guidelines for the
manual annotation process.

Keywords: Machine learning; natural language processing; annotation;
semi-annotated technique; reviews annotation; text annotation; corpus
annotation

1 Introduction

In recent years, the internet has gained popularity and it has become an eminent platform for
socializing among users [1]. It has transformed the real world into a cyber-world [2]. Now almost
everyone has easy access to hand-held devices with a reliable internet connection. Over the last
few years, it is witnessed that due to the popularity of these handheld gadgets, massive data is
being generated on the daily basis [3]. This bulk data is being generated from diverse sources like
social media platforms, e-commerce, games, etc [4]. The generated data is both in a structured and
unstructured form [3]. Most of the unstructured data is being produced by e-users (i.e., people
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using Twitter, WhatsApp, Facebook, Instagram, YouTube, etc.) [4]. This unstructured data is the
prime challenge for the data analysts.

To overcome this challenge there exist pre-processing techniques like data cleaning, dimension-
ality reduction, data standardization, data transformation and data annotation etc. that structure
the unstructured data. Data annotation is one of the preprocessing techniques [5,6]. It is a process
to label the data into its targeted classes [7,8]. There exist different schemes of data annotation
like fully-automated annotation [9], manual annotation [10] and semi-automated annotation [11].
Certain applications and platforms use an annotation scheme that suits them best based on
their customized requirements. Manual annotation is a way to declare the subjectivity of each
entity present in the data according to the metadata file i.e., annotation guidelines by involving
humans [12]. It is considered ideally reliable and accurate than the other two schemes. At the
same time, it requires time, cost and efforts, which makes it less practical. A fully-automated
annotation scheme is a way to annotate the documents with the help of fully automated tools
like Portable document format annotation (PDFAnno), MyMiner, BARAT rapid annotation tool
(BRAT) and team-text annotation tool (TeamTat) etc. A semi-automated annotation scheme is a
way to annotate the dataset both taken manual and fully-automated annotation schemes into the
consideration.

Availability of different social networks, online blogs and other forums that enable people to
discuss various aspects of products or services. Using new technologies, most social networking or
e-commerce websites allow users to express their experience regarding the products, services and
features [13]. These reviews can help in analyzing any product, service and company [14].

The exponential growth of reviews/comments can be witnessed due to the drastic increase in
the number of e-users [15]. The internet has re-modelled the communication world as the back-
bone of a digital era [16]. Now the showbiz industry is also using this paradigm to progress [17].
Due to its accessibility and innovativeness, people can, now, easily access the entertainment
contents, watch them and give their feedback in the form of likes and reviews. Further, this
content is judged by these likes, rating and reviews on it [18]. A simple formula to check the
quality of the content is:

CQ≤ 0 ?(“good”:“Bad”) (1)

where, CQ=TL− TD

where CQ quantifies the content quality using the metrics of Total likes (TL) and Total dislikes
(TD).

This provides limited insight into the quality of the content. A better way to evaluate the
quality of content is through the analysis of comments/reviews. If the count of these reviews is
not so high, this goal can easily be achieved by reading and analyzing these reviews manually. It
becomes humanely impossible to analyze these reviews if they are in huge amount. That creates
a need to analyze these reviews through a proper automated channel. In this context Sentiment
analysis (SA), as an important paradigm, is used to know the general opinion towards that
content [19]. SA is a way to categorize the people’s opinions towards the entity into positive,
neutral or negative [20]. It can also be said that it is a way to classify the sentiments according
to the class assigned by the reviewer [21].

As discussed above, a huge amount of unstructured data is being generated by e-users on
daily basis [22] in the form of comments and reviews. To analyze this data and mine the hidden
patterns, the data is required to be in a structured form. There exist different preprocessing [23]
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techniques to overcome different data anomalies and prepare them for analysis. In Data Anno-
tation every entity of the dataset is assigned a label according to their subjectivity. There exist
different semi-automated and automated tools to annotate different types of data contents like
the video [12], audio [24], image [11] and text [25].

The rest of the paper is organized into six sections. Section 2 focuses on the previous related
research on annotation. Section 3 discusses the entire corpus generation process including the
steps involved. Section 4 focuses on the N-gram based proposed technique of auto-annotation
for the English text data. Section 5 discusses the experimental results obtained from the proposed
technique. Finally, Section 6 concludes the paper.

2 Literature Review

State-of-the-art studies have presented different tools for annotation. These tools can be
classified into two categories that are annotation for image data and annotation for text data.

2.1 Annotation for Image Data
Bio-notate is a web-based annotation tool for biomedical annotation to annotate gene-disease

and to annotate the binary association between the proteins [26]. AlvisAE, reported in [27], is a
semi-automated annotator to annotate tasks and assign different rules, based on the expertise and
generate automatic annotation which can also be modified by the users. It is mostly used in biol-
ogy and crop-sciences. GATE teamware [28] is a web-based open-source semi-automatic annotator
which performs pre-annotation of fungal enzymes with the facility of manual correction.

2.2 Annotation for Text Data
Catma [29], is a web-based annotator which allows the users to import the text data using

document browsing as well as by using Hypertext markup language (HTML) document by
entering Uniform resource locater (URL). It allows the corpus creation. It also has the capability
of automated document annotation as well as assigning manual tag sets. FLAT [30] folia is a
web-based annotator which provides linguistic and semantic-based annotation using Folia format
to annotate the biomedical document. MAT [31] is an active learning tool to annotate the text
by importing a file in Extensible markup language (XML) and exports the annotations in either
XML or Javascript object notation (JSON) formats. It is an offline application to annotate the
text. BRAT, reported in [32], is a web-based text annotation tool to support Natural language
processing (NLP) such as named entity recognition and part of speech tagging. BioQRator [33]
is another web-based tool to annotate biomedical literature.

TeamTat [34] presents an open-source web-based document annotation tool that annotates the
plain text inputs as well as document input (BioC XML or XML) and the output document is
in the form of BioC XML inline annotated document. Djangology [35] is a collaborative based
document annotator to annotate the documents using web services. To annotate, the document
is imported as plain text and after annotation, the annotated document is exported in plain
text format. In [36] geo-annotator is presented. It is a collaborative semi-automated platform for
constructing geo-annotated text corpora. The annotator is a semi-automatic web-based tool with
collaborative visual analytics to solve place references in Natural language.

There exist some articles annotator, Loomp [37] was a web-based tool or the annotation of
articles that annotate articles based on the article‘s annotator. RDFa [38] based on a general-
purpose annotation framework, to annotate the news articles automatically. MyMiner [39] a
web-based annotation tool can retrieve the abstracts and create a corpus for the annotation.
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A plain document is imported to find a binary relationship or for tagging the entity and output is
also exported in the plain text. WebAnno [40] provides full functionality for syntax and semantic-
based annotations. It allows a variety of formats to import the document for the annotation and
as well to export the annotated document. PDFAnno [41] a PDF document annotator available
open-source. The document is imported to annotate in PDF file format the PDFAnno performs
annotation and to find the relationship between entities. It can also provide the facility to annotate
the figures and tables as well. The tagtog [42] provides annotation at the entity level and as well
as document level. It uses an active learning approach to annotate the retrieved abstracts or full
test retrieve for the annotation purpose. LightTag [43] is a commercial tool to annotate the text
and its supports different languages. It can learn from active annotators using machine learning
and annotate the unseen text.

There exist different automated tools to annotate the image data and text data as well.
BRAT [32] is a tool that performs intuitive annotation, named entity annotation and dependency
annotation. Where ezTag [44] tool is used to annotate the medical-based text data using lexicon
base tagging concepts. CAT [45] is a tool that annotates the Ribonucleic acid (RNA) sequences
and annotates the clades and to identify the relationship in orthology. According to the best
of our knowledge, there hardly exists any tool to annotate the English text (comments/reviews)
for SA.

Recent studies like [46–48], have witnessed that researchers are annotating the text manually
and some of them by using TextBlob [49–52]. There exist tools like PDFAnno [41], MyMiner [39],
BtableRAT [32] for text annotation, but no literature has witnessed text annotation for sentiment
analysis at the aspect level. Manual annotation of reviews is a very hectic and time taking task [12]
e.g., this research has figured out that on average 5.6 s are required to annotate one review.

This study presents a corpus of 369,436 reviews, annotated through N-gram based proposed
technique. If the manual annotation were performed, it might have taken 2.07 million seconds
(574.68 h) i.e., approximately 24 days to annotate. Manual text annotation is the bottleneck in
NLP because it is very time consuming [12]. To overcome this bottleneck, this study presents an
automated annotation technique for the English text using N-Gram based technique at the aspect
level. The technique is also validated with Cohen’s Kappa Coefficient value. After the validation of
the technique, the entire corpus is annotated at the aspect level using the N-gram based proposed
technique.

3 Corpus Generation

A quality corpus needs systematic collection and thorough preprocessing which can further
be divided into three sub-tasks named data collection, preprocessing and data annotation. Details
can be seen below:

3.1 Dataset Collection
Data is a vital part of any analysis. No analysis can be performed without data. To collect

data and to build a gold-standard dataset, the top ten songs are selected [50]. Details can be seen
in Tab. 1.

3.2 Preprocessing
Data quality directly affects data analysis [18]. To separate reviews carrying targeted aspects

and to get processed data, different preprocessing techniques are applied like aspect filtration, data
integration, lowercasing, emojis’ removal and string size standardization. Details are as below.
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Table 1: Songs and number of reviews scraped

No Singer Song Title Views Reviews

S1 Justin Bieber Sorry 3,203,542,747 816,063
S2 Katy Perry Roar 2,932,210,456 638,490
S3 Ed Sheeran Shape of You 4,449,412,646 910,006
S4 Taylor Swift Shake It Off 2,832,020,062 517,249
S5 Shakira Chantaje 2,455,461,250 380,955
S6 Rihanna Calvin Harris-This Is What You Came 2,275,349,039 287,379
S7 Eminem Love The Way You Lie ft. Rihanna 1,868,708,629 523,115
S8 Natti Natasha Ozuna Criminal 1,889,274,387 259,644
S9 Maroon 5 Sugar 3,047,850,854 342,142
S10 Enrique Iglesias Bailando ft. Descemer Bueno, Gente De Zona 2,774,918,985 211,363

3.2.1 Aspect Filtration
In this study, five aspects/features (lyrics, music, song, video and voice) are targeted for auto-

annotation of reviews. Reviews that contain these aspects are separated by applying filters and
saved in CSV file format. Total 4,886,406 reviews are scraped and after aspect level filtration, the
obtained number of record is 369,436.

The pre-processing extracted 7916 reviews for lyrics, 49238 for music, 199248 for the song,
106127 for video and 6907 for voice. Dataset is now in fifty data files, details can be viewed in
Fig. 1.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Lyrics 920 816 1264 1722 247 559 2351 15 217 212

Music 7940 5524 7437 9734 1080 2830 13206 118 4406 1330

Song 36168 26399 37368 32337 4358 13423 32926 510 14155 5309

Video 20029 20065 12103 20069 5504 4067 17431 1132 7184 5163

Voice 1246 1317 658 926 331 734 1961 39 855 158
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Figure 1: Number of reviews per song per aspect after aspect level filtration
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3.2.2 Data Integration
The data from ten different files of one aspect are gathered in one file. As this study covers

the five different aspects which resulted overall five files, one for each aspect and we call them
sub-dataset. Each sub-dataset is named after one aspect e.g., sub-dataset—Voice.

3.2.3 Lowercasing
The case though has no special impact on the analysis of the data but when the same data

is presented in different cases then it has adverse effects [48] e.g., algorithms will consider “Yes”
and “yes” two different values. Therefore, to overcome this effect, whole data is converted into
lowercase.

3.2.4 Noise Removal
It is reported, time and again, that noise directly affects the classification results [51]. It was

noted that collected data contained a lot of noise like white spaces, special characters, punctuation
signs, etc. that has nothing to do with the analysis. To improve the quality of data all these
characters were removed.

3.2.5 Remove Number
The dataset contained English text and numbers as well. This study is to analyze English text.

The extra data increase computational power and also diverse the results [49]. To address the said
problems, all numbers are removed.

3.2.6 Remove the Emoji’s
Emoji’s is a popular way to show one’s feelings. It is widely used by e-users to show their

feelings towards the entity. They leave their sentiments using emoji‘s [52]. This study only focused
on the text, therefore, emoji’s are removed from the dataset.

3.2.7 Trim String Size
In the dataset, there were several reviews of extraordinary length. For example in sub-

dataset—Lyrics, a review had 11,487 number of tokens. In the same way in sub-dataset—Music
there was a review that had 9,914 tokens. Such lengthy reviews are outliers and have a bad impact
on classification [53]. To overcome the issue length standardization is applied. To improve the
quality of data, to have the least impact of data loss maximum length size is defined as 150 for
all sub-datasets except for lyrics (due to the very small number of reviews).

To resolve this issue the string size of sub-dataset—Lyrics is trimmed to 300 tokens that
cover the 77.68% data and for the rest of the sub-datasets the max string size is defined as 150
characters. The rest of the details can be seen in Tab. 2.

Table 2: Trimming ratio

Aspect Lyrics Video Music Voice Song

String size (in characters) 300 150 150 150 150
Captured data 77.68% 81.28% 77.67% 88.00% 89.50%
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Average reduction in tokens in sub-datasets—Lyrics, Music, Song, Video and Voice is 47.85%,
43.23%, 27.36%, 54.10% and 84.25% respectively. Details of tokens before and after preprocessing
can be seen in Fig. 2.

23,52,407

84,02,990

1,59,62,658

1,26,39,362

42,69,028

12,26,830

47,70,486

1,15,95,811

58,01,640

6,72,323

Lyrics Music Song Video Voice

Number of Tokens Before Preprocessing Number of Tokens After Preprocessing

Figure 2: Number of tokens, before and after preprocessing

3.3 Data Annotation
Being the static part, data annotation is a process of categorizing the text (e.g., instance,

review or comment) into positive, neutral or negative based upon its subjectivity. Previous studies
showed different ways to annotate the data i.e., auto-annotation, semi-annotation and as well as
manual annotation. Many automated tools are witnessed to annotate the image and video data.

Very few tools exist to annotate text data, especially, there is no automated tool exists to
annotate the English text for sentiment analysis. Generally, manual annotation is used to label
text data. Details can be seen in the subsequent section.

3.3.1 Manual Annotation
In manual annotation, each review is labelled according to its subjectivity, manually. Each

review is labelled by reading it one by one and assigned class according to its behaviour as
positive, neutral or negative. Following the process explained in [54] manual annotation process
was divided into four steps.

In step-I, to annotate the reviews manually, the guidelines are prepared. In step-II, three
volunteers were contacted to annotate the data. To start with they were given basic training based
upon the guidelines. In step-III, the dataset was given to the annotators for annotation. The
conflicts were resolved using an inter-annotator agreement. Finally, in step-IV, the computational
value of the inter-annotator agreement was calculated using Kappa-statistics. The details of all
steps are as below:

Annotation Guidelines Preparation

In the light of guidelines for each class—positive, negative and neutral, presented in different
research works [55–57] are mapped on the current problem. Details are as below:

Guidelines for Positive Class

A review will be assigned “Positive”
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• If it shows positive sentiments [53].
• If its behaviour is both neutral and positive [53,58].
• If there exists some positive word(s) in the sentence [59] e.g., good, beautiful, etc.
• If there exist illocutionary speech act like wow, congrats and smash classified as posi-

tive [60].

Examples: In “best music yet” the word “best” clearly shows the positive polarity of the
aspect—music. In another review “his voice it’s so soft and cool,” the behaviour is positive towards
aspect—voice.

Guidelines for Negative Class

A review will be assigned “Negative”

• If it shows negative sentiments [55].
◦ If the use of language is abusive [1].
◦ If the behaviour is un-softened [59].

• If there exist some negative word(s) in the sentence [60] e.g., bad, ugly, annoying, etc.
• If there exist negation, in a review e.g., not good.

Examples: In “music is trash,” the word trash expresses the polarity i.e., negative of the review
for the aspect—music. In, “this is the stupid voice,” the word “stupid” shows negative sentiments
of the reviewer on aspect—voice.

Guidelines for Neutral Class

A review will be assigned “neutral”

• If it is not showing any positive or negative sentiments [56].
• If a review has a piece of realistic information [57].
• If a review has both positive and negative sentiments [61].

Examples: In “that music going too far away” the subjectivity of the review isn’t clear so it
will be annotated as neutral. In, “the video is neither good nor bad,” in the review both sentiments
are present so it will be annotated as neutral.

Training of Annotators

For the manual annotation the help of three volunteers was pursued, let’s call them A, B and
C. The volunteers were graduates, well familiar with reviews and concepts of annotation and had
a good grip on the English language. Three hours of the hands-on training session was conducted
to explain the guidelines and discuss possible issues with them.

Conflict Resolution

For conflict resolutions, a short sample dataset of 100 reviews was created let’s call it SSD100.
SSD100 was given to the first two annotators—annotator A and annotator B. Once they com-
pleted the annotation, a short meeting was arranged to resolve the conflicts by involving the third
annotator too. After the conflict resolution, SSD100 was given to the annotator C for annotation.

3.3.2 Problems Faced During Manual Annotation
Though volunteers were very cooperative but still the process faced few problems as listed

below:

(i) Training
(ii) Individual’s perception
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(iii) Clash removals
(iv) Confidence level

Even after 3 h of hands-on practice, still, annotators were consulting the trainers for the
resolution of the issues. There was a big issue of an individual’s perception. 5.33% of manual
annotations, done by three annotators, was still updated by the trainer. During the annotation
process, they were also asked to mention their confidence level (1–10) regarding their annotated
label. The average confidence was 90.50%. It took almost 6 h to annotate 3700 reviews with
an average of 5.6 s per review. This showed that manual annotation even with qualified and
trained annotators is not perfect and unseen and unreported lags always remain there. A sample
of annotated data is shown in Tab. 3.

Table 3: Sample annotated data

Reviews Class

very melodious voice Positive
I love justin bieber voice Positive
your voice is so cute Positive
superb voice i like it Positive
even their voices Neutral
is it me or is this voice about selena Neutral
why is this my first time hearing his voice Neutral
hello everyone is sut voice here Neutral
his voice Neutral
im addicted of his voice Negative
her voice so annoying Negative
the voice is addictive Negative
this is stupid voice Negative

4 Proposed Technique for Auto-Annotation

To overcome the hectic and time-consuming process of manual annotation, this study has is
presented a new fully automated technique for text annotation (at aspect level) based upon the
language modelling technique of N-gram.

4.1 N-Gram
Models that assign probabilities to sequences of words are called language models (LMs).

N-gram is one of the simplest models that assign probabilities to sentences and sequences of
words. An N-gram is a sequence of N words. For example in a sentence “Best song ever justin. . .”
a 2-gram (or bigram) is a two-word sequence like “Best song,” “song ever,” or “ever justin,” and a
3-gram (or trigram) is a three-word sequence of words like “Best song ever,” or “song ever justin.”
N-gram model estimates the probability of the last word of an n-gram given the previous words,
and also assign probabilities to entire sequences, thus the term N-gram is used to mean either the
word sequence itself or the predictive model that assigns it a probability.
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For the joint probability of each word in a sequence having a particular value
P(W =w1, X =w2, Y =w3, . . . ;Z = wn) we’ll use P(w1, w2, w3, . . . , wn).

Applying the chain rule to the words

P(wn1)= P(w1)P(w2 |w1)P(w3 |w2
1) . . .P(wn |wn−1

1 )=
n∏

k=1

P(wk |wk−1
1 ) (2)

where wn1 is w1, w2, w3, . . . , wn and P(wx | wy1) is conditional probability of occurrence of wx
given the occurrence of w1, w2, w3, . . . , wy.

For Bi-gram i.e., N = 2 Eq. (2) can be updated as

P(wn1)= P(w1)P(w2 |w1)P(w3 |w2) . . .P(wa |wa−1) . . .P(wn |wn−1)=
n∏

k=1

P(wk |wk−1) (3)

4.2 Re-Definition of Ps
This research is redefining P’s to solve the problem in hand. We need to find the polarity

of the text having n-words i.e., w1, w2, w3, . . . , wn, we define it as P(wn1). The polarity will be
counted if the behavior of the word is with respect to the aspect. So the polarity is being checked
in the form of pair of words, out of which one is supposed to be aspect. P(wx |wy) defines the
two words polarity where wx is aspect and wy can be anything. If wy is positive then the polarity
of these two words’ combination would be positive and if wy is negative then the polarity of these
two words combination would be negative else neutral.

The polarity of two-word combination is required to be checked for all occurrences of
wy where 1≤ y≤ n and y �= x. To find the aspect in all words of the text wx is varied from 1 to
n. Hence we have Eq. (2) to express all this where:

P(wn1)=P(w1)P(w1 |w2)P(w1 |w3) . . .P(w1 |wn)
.P(w2)P(w2 |w1)P(w2 |w3) . . .P(w2 |wn)
.P(w3)P(w3 |w1)P(w3 |w2) . . .P(w3 |wn)
. . .

. . .

.P(wn)P(wn |w1)P(wn |w2) . . .P(wn |wn−1) (4)

=
n∏

k=1

P(wk)P(wk |w1)P(wk |w2) . . .P(wk |wn−1) (5)

=
n∏

k=1

k−1∏
i= 1
i �= k

P(wk |wk−1
1 ) (6)

where wn1 is w1, w2, w3, . . . , wn
where wk is the aspect
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P(wx) is the occurance of aspect

P(wx |wy) is the polarity of occurrence of aspect, wx, given the occurrence of wy
We define the value of P as below:

P(wx)=

⎧⎪⎨
⎪⎩
p if wx ∈Bagp
n if wx ∈ Bagp
1 if wx /∈Bagp and Bagn

(7)

And

P(wa |wa−1)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p, if wa=Aspect and wa−1 ∈Bagp
n, if wa=Aspect and wa−1 ∈Bagn
p, if wa �=Aspect and if wa and wa−1 ∈ Bagp
n, if wa �=Aspect and if wa ∈ Bagp and wa−1 ∈ Bagn
n, if wa �=Aspect and if wa or wa−1 ∈ Bagn
1, otherwise

(8)

where Bagp and Bagn, are bag of positive words and bag of negative words respectively (the list
of these words can easily be found online (e.g., GitHub) that can then be updated according to
the tokens).

For a complete sentence, this will result in an expression like

pxny where 0≤ x,y≤ n (9)

Irrespective of the powers, px is assigned 1 and ny is assigned −1

P(wn |wn−1)= pxny=
{
1, label= positive

−1, label= negative
(10)

For example, if the value of P(wn |wn−1)= p3n2 we will assign p3 = 1 and n2 =−1.

In this way, nearest words are associated with the targeted aspect and after computing its
value, a label is assigned. To understand, Eq. (8) is explained, condition by condition, through
examples as below:

Example: p, if wa =Aspect and wa−1 ∈Bagp
The value p will be assigned to P(wa |wa−1), if wa is an aspect and wa−1 is a word that

belongs to the bag of positive words. E.g., in “justin bieber you have amazing voice” if we check
the value of P(wa |wa−1) at highlighted words then it will be p as wa=Voice, which is an aspect
and wa−1 = amazing which belongs to bag of positive words.

Example; n, if wa =Aspect and wa−1 ∈Bagn
The value n will be assigned to P(wa |wa−1), if wa is an aspect and wa−1 is a word that

belongs to the bag of negative words. E.g., in “justin bieber you have annoying voice” if we check
the value of P(wa |wa−1) at highlighted words then it will be n as wa=Voice, which is an aspect
and wa−1 = annoying which belongs to bag of negative words.



4998 CMC, 2022, vol.70, no.3

Example: p, if wa �=Aspect and if wa and wa−1 ∈Bagp
The value p will be assigned to to P(wa |wa−1), if wa is not an aspect and wa and wa−1 is a

word that belongs to the bag of positive words. E.g., in “love justin bieber voice look is so amazing”
if we check the value of P(wa |wa−1) at highlighted words then it will be p as wa �=Voice, which
is not an aspect and wa & wa−1 belongs to bag of positive words.

Example: n, if wa �=Aspect and if wa ∈Bagp and wa−1 ∈Bagn
The value n will be assigned to P(wa |wa−1), if wa is not an aspect and wa is a word that

belongs to the bag of negative words and wa−1 is a word that belongs to the bag of negative
words. E.g., in “ad to say but justin biebers voice is lighter not good as baby old justin bieber” if we
check the wa that belongs to the bag of positive words where wa−1 is belongs to bag of negative
words.

Example: n, if wa �=Aspect and if wa or wa−1 ∈Bagn
The value n will be assigned to P(wa |wa−1), if wa is not an aspect and wa and wa−1 is a

word that belongs to the bag of negative words. E.g., in “three billion viewers of justin hates i want
to hear his voice” if we check the value of P(wa |wa−1) at highlighted words ‘hates’ then it will be
n as wa �=Voice , which is not an aspect and wa & wa−1 belongs to bag of negative words.

Example: 1, &otherwise

If the review not having any word that belongs to the bag of positive nor from the bag of
negative words, the value 1 is assigned to that type of reviews which is labelled as neutral. E.g.,
in “the october from bangladesh who are with me rise your voice” not any single word that belongs to
the bag of positive words or belongs to the bag of negative words, the polarity of all these types
of reviews is declared as neutral.

5 Validation of Proposed Technique

The technique is validated using Cohen’s Kappa statistics. It is a statistic that is used to
indicate the inter-rater reliability between the annotators [62]. According to Cohen’s Kappa, the
value of Kappa >90% indicates almost perfect agreement between the annotators [63]. Tab. 4
presents the details of the interpretation of different levels of values of Cohen’s Kappa.

Table 4: Interpretation of cohen’s kappa

Value of Kappa Level of agreement

40%–59% Weak
60%–79% Moderate
80%–90% Strong
Above 90% Almost perfect

To prove the efficacy of the proposed technique, the inter-annotator agreement is calculated
using Cohen’s Kappa statistics. For this purpose, three experiments were conducted. Two on
SSD100 and one on sub-dataset—Voice. The details of the experiments are shown in Tab. 5.
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Table 5: Comparison of kappa statistics value

Dataset Dataset size Annotation type Annotation type Kappa statistics

SSD100 100 Manual (three annotators) 0.852843%
SSD100 100 Manual Auto 0.909699%
Voice 6907 Manual Auto 0.957139%

5.1 Experiment 1
In this experiment, SSD100 was used for the manual annotation. This experiment was

conducted during the training of Annotators—A, B and annotator C. Kappa value i.e., inter-
annotator agreement between the three annotators was calculated (the value appeared 85.28%).

5.2 Experiment 2
In this experiment, the annotation results of SSD100 using manual annotation and using

the based proposed technique are compared and the Kappa Statistics value is calculated. The
estimated value of Kappa is 90.96%. The level of agreement using the value of Kappa are shown
in Tab. 4.

5.3 Experiment 3
In this experiment the sub-dataset—Voice is annotated once with manual annotation tech-

nique and then using the proposed technique. Kappa Statistics value is calculated to validate the
reliability of the results of the proposed technique. The value appeared to be 95.71%. This proves
that the proposed technique is giving results as good as manual annotation even with far less
computational cost. The details of the Kappa value of different sizes of datasets can be seen in
Tab. 5.

The remaining sub-datasets of four aspects are also annotated using N-gram based proposed
technique. Details of all sub-datasets can be seen in Tab. 6.

Table 6: Number of reviews regarding each aspect

Sub-dataset Size

Lyrics 7916
Music 48238
Song 199248
Video 106127
Voice 6907
Total 369436

It took almost 2 min 53.45 s in annotating complete dataset of size 369,436 reviews of
24534205 tokens with an average of 0.46963 milliseconds per review and 7.07 microseconds per
token If it was attempted manually then it had taken approximately 14 weeks, 1 day and 7 h
while working 40 h a week with the average of 5.6 s per review and 23.44 microseconds per token.
Fig. 3 explains the difference between the two. The Proposed technique completes the task in few
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seconds the manual might had taken days and weeks. In terms of the expected time of manual
annotation, the proposed technique is efficient with a ratio of 1:11934.28.

Proposed Manual (Expected)

Lyrics 4.01 44316

Music 21.37 275724

Song 93.52 1115784

Video 51.4 594324

Voice 3.15 38664

Total 173.45 86202
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Figure 3: Comperison of time between manual and proposed technique

6 Conclusion

This study also established that manual annotation is too subjective. It is not as good as it is
supposed to be. Unknowingly inaccuracies do exist. This research has presented a new technique
to annotate large datasets as good as manual annotation and even with far less computational cost
in comparison to manual annotation. The dataset of English text reviews is scraped, preprocessed
and annotated manually as well as using the proposed technique. This technique may benefit in
multiple ways. It does not need additional resources—financial as well as human. It is very efficient
and requires very less time without any additional cost. The performance ratio of manual to
proposed i.e., 1:11934.28 shows its efficiency. If the complete dataset were annotated manually
then it might had have taken approximately 2.07 million seconds, 14 weeks, 1 day and 7 h while
working 40 h a week (i.e., 575 h) but this technique has done the same with 173.53 s (2 min
and 53.45 s). The high value of Kappa statistics i.e., 95.71% shows and validates the reliability of
results generated by proposed technique. Machine learning and deep learning algorithms can be
applied to the datasets, one with manual annotation and other with this proposed technique, to
extend this analysis and study the variation in the two techniques.
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