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Abstract: Bioactive compounds in plants, which can be synthesized using
N-arylation methods such as the Buchwald-Hartwig reaction, are essential in
drug discovery for their pharmacological effects. Important descriptors are
necessary for the estimationof yields in these reactions. This study explores ten
metaheuristic algorithms for descriptor selection andmodel a voting ensemble
for evaluation. The algorithms were evaluated based on computational time
and the number of selected descriptors. Analyses show that robust perfor-
mance is obtained with more descriptors, compared to cases where fewer
descriptors are selected. The essential descriptor was deduced based on the
frequency of occurrence within the 50 extracted data subsets, and better per-
formance was achieved with the voting ensemble than other algorithms with
RMSE of 6.4270 andR2 of 0.9423. The results and deductions from this study
can be readily applied in the decision-making process of chemical synthesis by
saving the computational cost associated with initial descriptor selection for
yield estimation. The ensemble model has also shown robust performance in
its yield estimation ability and efficiency.

Keywords: Buchwald-Hartwig reaction; descriptor selection; machine
learning; metaheuristic algorithm; palladium-catalyzed cross-coupling reac-
tion; voting ensemble

1 Introduction

Synthesis of chemical reaction has become quite explored in recent research. It is a research
area interwoven with biomedical research since cross-coupling chemical reactions are used for
natural product synthesis and synthesis of bioactive compounds used in drug discovery and cancer
treatment. These interdisciplinary studies in the biological and chemical fields have produced
great ideas, innovations, and discoveries [1]. Some chemical compounds possess the ability to
inhibit the growth of cancer cells and have anti-tumour capabilities. Harnessing this advantage,
Zhou et al. [2] used the Buchwald-Hartwig (B-H) reaction to generate active compounds against
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breast cancer-causing tumour which is helpful for tumour growth suppression. Buchwald-Hartwig
reaction is a significant procedure used for the synthesis of N2-aryl-dG popularly known to cause
DNA adduct [3], and phenazine which possess intense antibacterial activity against chlamydia [4].
It is also used to yield poly (arylene–amine) from arylamines polymerisation [5], yield aryl
and heteroaryl chlorides in an aqueous condition free from solvent [6], and synthesise iron (II)
clathrochelate unit bearing secondary arylamine copolymers due to the strong compounds which
it yields. Surveys carried out by Gómez-Bombarelli et al. [7] and Rodrigues et al. [8] shows that
chemical space search and optimization, virtual screening, discovery of drug target, the prediction
of protein structures, chemical properties, gene-gene interaction, bioactivity of molecules in a
compound [9], and toxicity [10], are some of the ways predictive analysis has been applied to the
vast data produced in biochemical studies [11].

The search for valuable descriptors necessary for carrying out chemical reactions is related to
the idea of feature selection in machine learning. Due to the large number of descriptors often
generated for chemical reactions, it is imperative to identify the necessary descriptors which con-
tribute to the estimation of yields and are essential for accurate reactions [12]. Using algorithms
for selecting valuable subsets is more superior to using training data that are commercially avail-
able and probably contain several unwanted data [13]. Removal and elimination of descriptors that
are not relevant to a particular reaction activity can be done before carrying out computational
analysis [14–16]. However, exhaustive research and adequate knowledge are needed to know the
required descriptors to be selected [17].

Given the rate at which many studies focus on synthesizing bioactive molecules to dis-
cover novel pharmaceutical drugs and the yield generated from each reaction, efficiency will
be realized if the yield can be estimated within a short computational time. An insight into
the parameters which activate Buchwald-Hartwig Pd-catalyzed amination of aryl halides using
temperature-scanning reaction protocol gives a rapid description of complicated multistep cat-
alytic reaction [18]. Examples of palladium-catalyzed cross-coupling reaction implemented in some
recent studies are shown in Fig. 1.

Nature has inspired the development of several metaheuristic algorithms over the years. These
algorithms are modelled after the peculiar characteristics of either animals or plants, and it
is an active research area [19]. Due to their ability to efficiently explore ample configuration
space, metaheuristic algorithms can achieve near-optimal or optimal solutions [20]. The recent
metaheuristic algorithms can be used for optimization with machine learning algorithms [21] and
can achieve convergence with few mathematical operations [22] within reasonable computational
time [23]. However, quite many metaheuristic algorithms exist, and they cost computational time
for descriptor selection even before analysis of reaction for yield estimation.

Given the existence of many metaheuristic algorithms, we would like to explore ten different
nature-inspired metaheuristic algorithms for selecting descriptor subsets that are essential in esti-
mating B-H chemical reaction yield and construct a voting ensemble model with these extracted
descriptor subsets. The voting ensemble has shown good predictive ability in prediction across
several fields [24]. Through this, we can identify the essential descriptors that contribute to the
ensemble model’s performance in estimating yields. We will further juxtapose the performance of
the ensemble model on the extracted descriptor subsets and the full descriptors. The results from
our study proffer guidance for subsequent B-H reaction estimations for efficient computational
analysis.
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Figure 1: Examples of palladium-catalysed cross-coupling reaction and products. (A) Buchwald-
Hartwig amination, where BINAP stands for 2,2′-bis(diphenylphosphino)-1,1′ -binaphthyl; (B)
Yield generation from Buchwald-Hartwig’s reaction for Phenyl Benzoate under a 40 degrees
temperature; (C) Palladium-catalyzed cross-coupling amination of heteroarene in commercially
available drugs such as Buparlisib (anticancer drug), ZSTK474 (anticancer drug), Uptravi
(hypertension drug), and BuSpar (antidepressants drug); (D) Synthesis of bioactive molecules,
pharmaceutical drugs, and cell proliferation inhibitor from thioethers is preferably done using
palladium-catalyzed reaction; (E) Palladium-catalyzed amination of (hetero)aryl chloride carried
out with moisture, air and mild conditions. The reaction procedure was Pd-PEPPSI (pyridine-
enhanced pre-catalyst preparation, stabilization, and initiation)

2 Methods

2.1 Data Description and Preprocessing
For this study, we have collected cross-coupling Buchwald-Hartwig reaction data from

Ahneman et al. [25]. The dataset contains 3724 reactions. For each reaction, it is characterized by
120 descriptors and one resulting yield. The resulting yield is the independent variable for the pre-
dictive analysis. These 120 descriptors are the molecular, atomic, and vibrational descriptors that
were extracted for constituents of palladium-catalysed Buchwald-Hartwig cross-coupling of aryl
halides with 4-methylaniline under the condition of several additives with inhibitory properties.
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Some of the molecular descriptors used include the surface area, molecular weight, molecular
volume, hardness, electronegativity, dipole moment, and ovality. Nuclear Magnetic Resonance
(NMR) shift and electrostatic charge are some of the atomic descriptors, while the intensity and
frequency are the vibrational descriptors. A Glorius approach was used with Buchwald-Hartwig
cross-coupling as the model reaction to determine the structural interaction between heteroaryl
halides, aryl and isoxazoles. Together with the yield, a total number of 121 attributes are contained
in the entire dataset.

As much as data analysis is concerned, data preprocessing is vital due to the peculiarity of
real-world data. Data preprocessing is an essential step before data analysis. The data had some
cross-coupling reactions with no yield. Since the number of missing data is small, these reactions
with no yields were removed to maintain data consistency with the original dataset. The resulting
dataset with which estimation is to be made was left with 3719 reactions. The data was thereafter
standardized based on each column. That is, each column will have a mean of 0 and a standard
deviation of 1. The standard scaler for a sample x is evaluated based on Eq. (1).

Standardization, z= x− μ

σ
(1)

Mean,μ= 1
N

N∑
i=1

(xi) (2)

Standard Deviation,σ =
√√√√ 1
N

N∑
i=1

(xi− μ)2 (3)

where: x represents a descriptor in an instance,

xi is the i-th descriptor in the entire column, and

N is the number of instances.

2.2 Nature-Inspired Metaheuristic Algorithms Used for Selection of Descriptors
Global or near-optimal solutions are attained with metaheuristic algorithms within a rea-

sonable search time and computational cost [26]. In predictive analysis, the optimization of
hyperparameters for improved prediction is achieved by deploying metaheuristic algorithms to
solve non-convex, complex problems in large space [20]. A recent review reveals that robotics,
education, and disease diagnosis are domains where articles on metaheuristics algorithm get
frequently published [27]. We therefore examine ten metaheuristic algorithms in the selection of
descriptors for this reaction estimation study. They are Ant search algorithm [28], Bat search
algorithm [29], Bee search algorithm [30], Cuckoo search algorithm [31], Elephant search algo-
rithm [32], Firefly search algorithm [33], Flower pollination algorithm [34], Genetic algorithm
(GA) [35], Rhinoceros search algorithm [36], and Wolf search algorithm [37]. The parameters
used for the algorithms are given in Tab. 1. Some of the algorithms have related parameters.
Due to the number of parameters associated with each algorithm, we iteratively changed only the
population size geometrically and the number of iterations linearly. Other parameters remained
constant. Fig. 2 shows the process overview of the study.
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Table 1: Parameters used by each metaheuristic algorithm

Parameters Algorithms Values

Population size Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Genetic, Rhinoceros, Wolf

10, 20, 40, 80, 160

Number of iterations/
Maximum generations∗

Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Genetic∗, Rhinoceros, Wolf

10, 20, 30, 40, 50

Mutation type Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Rhinoceros, Wolf

Bit-flip

Mutation probability Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Genetic∗, Rhinoceros, Wolf

0.01, 0.033∗

Seed Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Genetic, Rhinoceros, Wolf

1

Chaotic coefficient Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Rhinoceros, Wolf

4.0

Chaotic mapping type Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Rhinoceros, Wolf

Logistic Map

Chaotic parameter type Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Rhinoceros, Wolf

Normal

Chaotic population type Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Rhinoceros, Wolf

Normal

Objective type Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Rhinoceros, Wolf

Merits

Accelerate type Ant, Bat, Bee, Cuckoo, Elephant, Firefly, Flower,
Rhinoceros, Wolf

Normal

Pheromone Ant 2.0
Evaporation rate of Tau Ant 0.9
Heuristic rate Ant 0.7
Loudness Bat 0.5
Frequency Bat 0.5
Radius damp Bee 0.98
Radius mutation Bee 0.8
Sigma rate Cuckoo 0.69657
Pa rate Cuckoo 0.25
Absorption coefficient Firefly, Wolf 0.001
Beta min Firefly, Wolf 0.33
Pollination rate Flower 0.33
Crossover probability Genetic 0.6
Escape probability Wolf 0.8

Note: ∗Marked parameters and values are for Genetic Algorithm only.

2.3 Evaluation Metrics
We determine the most important descriptor based on the frequency of appearance in the new

data subsets. We evaluated the ensemble model using a 5-fold cross validation which was repeated
5 times and shuffled. Two criteria were used for the evaluation of the models.

Root Mean Square Error (RMSE) which is the square root of the Mean Square Error (MSE)
is the standard deviation of the errors from prediction, also known as residuals, that is, the
difference between the actual and the observed values, or the distance between the regression line
and the data points. The data’s concentration around the best fit line or regression line can be
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determined from the RMSE. It can be determined based on Eq. (4).

RMSE =
√∑N

i=1 (ŷi− yi)2

N
(4)

where: ŷi is the predicted value,

yi is the observed value, and

N is the number of instances.

R-Squared (R2) is also known as the coefficient of determination. It indicates the explained
variability of the data: how the relationship between a factor and another factor can determine
its variability. It is a fraction of the total variation in y, which was captured by the model, and
also a measure of how close each data point fits the regression line. It analyses how the difference
in the second variable can explain the difference in one variable. It is scaled between 0 and 1 and
is given by Eq. (5).

R2 = 1−
(∑N

i=1 (ŷi− yi)2∑N
i=1 (yi− yi)2

)
(5)

Figure 2: Process overview for descriptor selection with metaheuristic algorithm and yield
estimation

3 Result and Discussion

We used the Waikato Environment for Knowledge Analysis, Weka 3.9.5 [38] to implement the
selection of descriptors based on the algorithms. Weka is a Java-based platform for data analysis
and machine learning algorithms. We were able to generate 50 new data with different descriptor
subsets. Afterwards, analysis on these new data was implemented using Python 3.6 with Scikit
library. We also used MATLAB R2020b for coding and plotting some figures. All analyses in this
study were carried out on a Windows 10 64-bit Operating System, x64-based processor computer
with 64GB RAM. Processor specification is Intel (R) Core (TM) i7-9700 K CPU @ 3.6 GHz.

3.1 Smaller Iteration and Population Size Generate Large Descriptor Subsets
Using the ten nature-inspired metaheuristic algorithms with the parameters given in Tab. 1,

per algorithm, we generated five new data each with different descriptor subsets chosen by the
algorithms. We considered the impact of the running time on the number of iterations; hence
we increased the number of iterations linearly from 10, 20, 30, 40, to 50, and increase the
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population size geometrically from 10, 20, 40, 80 to160. We maintained all other parameters
for each algorithm but changed the number of iterations and population size five times to
create a variety of descriptor subset based on these parameters. A total of 50 different datasets
was generated as a result. The resulting number of selected descriptors is given in Tab. 2.
The codes, datasets, and equivalent selected descriptors represented by numbers are provided in
https://github.com/Olutomilayo/Yield_Estimation.

Table 2: Computational time and descriptors selected by different parameter

Algorithm No. of
iteration

Population
size

No. of
selected
descriptors

Selected descriptors Time
taken
(mins)

Ant 10 10 52 4, 5, 6, 8, 20, 21, 22, 24, 27, 29, 32, 34, 35, 36, 41, 42, 45,
48, 51, 52, 54, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 73, 76,
77, 78, 81, 84, 87, 89, 91, 93, 95, 99, 100, 101, 104, 106,
107, 112, 115, 118, 120

0.30

20 20 52 3, 4, 6, 9, 10, 12, 13, 16, 18, 20, 24, 29, 32, 36, 37, 41, 43,
44, 45, 48, 51, 56, 57, 60, 63, 64, 66, 67, 68, 69, 70, 71, 72,
77, 81, 87, 88, 89, 91, 92, 96, 98, 99, 101, 106, 107, 108,
110, 112, 113, 118, 119

1.22

30 40 27 2, 10, 17, 18, 20, 22, 24, 33, 37, 42, 45, 52, 60, 68, 70, 71,
72, 81, 88, 92, 99, 103, 105, 106, 110, 115, 117

2.73

40 80 40 3, 5, 8, 9, 12, 16, 17, 20, 24, 25, 37, 39, 48, 56, 59, 60, 63,
64, 65, 70, 71, 74, 75, 77, 81, 83, 85, 87, 88, 92, 100, 103,
105, 109, 110, 112, 114, 117, 118, 120

7.70

50 160 34 4, 5, 7, 8, 10, 11, 13, 17, 22, 24, 34, 37, 43, 45, 56, 59, 61,
64, 68, 72, 74, 76, 82, 83, 84, 87, 88, 89, 91, 97, 107, 108,
110, 115

16.73

Bat 10 10 78 2, 4, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 22, 24, 25, 26, 28,
31, 34, 35, 36, 37, 38, 42, 43, 45, 47, 48, 50, 51, 52, 56, 57,
59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 76, 77,
78, 81, 82, 83, 84, 85, 88, 91, 92, 93, 95, 96, 97, 98, 99, 100,
101, 103, 106, 107, 109, 110, 112, 113, 114, 117, 118, 120

0.22

20 20 51 1, 5, 8, 11, 12, 13, 20, 22, 24, 25, 28, 29, 30, 32, 33, 34, 35,
37, 38, 44, 48, 49, 51, 53, 57, 60, 61, 63, 64, 65, 68, 69, 72,
77, 78, 79, 82, 91, 92, 96, 98, 104, 105, 107, 108, 110, 112,
113, 114, 117, 120

0.60

30 40 31 9, 13, 15, 18, 20, 24, 25, 28, 33, 42, 44, 51, 52, 53, 62, 64,
66, 67, 69, 82, 87, 88, 90, 94, 96, 98, 103, 107, 114, 118, 120

1.50

40 80 67 5, 6, 8, 13, 14, 17, 18, 20, 22, 24, 26, 27, 28, 29, 30, 31, 33,
34, 35, 36, 37, 39, 42, 43, 45, 48, 50, 51, 54, 55, 57, 60, 61,
62, 64, 65, 66, 67, 68, 71, 74, 77, 78, 81, 83, 84, 88, 89, 91,
93, 95, 96, 97, 98, 99, 103, 104, 106, 107, 109, 110, 112,
113, 114, 115, 116, 120

5.57

50 160 50 2, 4, 7, 8, 10, 11, 12, 13, 17, 19, 22, 24, 25, 32, 34, 35, 37,
38, 45, 46, 47, 48, 49, 51, 52, 53, 54, 57, 65, 66, 68, 72, 74,
77, 81, 83, 85, 88, 91, 93, 95, 99, 100, 103, 106, 108, 110,
115, 117, 120

13.47

Bee 10 10 39 4, 6, 13, 17, 20, 22, 23, 24, 25, 26, 44, 48, 56, 57, 58, 59, 60,
64, 66, 69, 70, 72, 76, 81, 88, 91, 92, 93, 95, 97, 99, 101,
105, 106, 109, 113, 117, 119, 120

0.17

20 20 27 2, 8, 12, 16, 24, 27, 29, 31, 38, 47, 52, 59, 64, 68, 70, 72, 85,
92, 99, 100, 103, 104, 105, 108, 111, 114, 118

0.47

30 40 12 4, 13, 24, 47, 49, 56, 81, 82, 89, 100, 117, 118 1.10
40 80 5 24, 39, 67, 70, 101 2.62
50 160 15 1, 6, 15, 24, 28, 45, 65, 68, 69, 81, 93, 107, 115, 116, 119 6.80

(Continued)

https://github.com/Olutomilayo/Yield_Estimation
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Table 2: Continued

Algorithm No. of
iteration

Population
size

No. of
selected
descriptors

Selected descriptors Time
taken
(mins)

Cuckoo 10 10 54 2, 4, 7, 8, 10, 12, 13, 17, 19, 22, 24, 25, 28, 29, 34, 35, 36,
37, 38, 42, 43, 45, 47, 48, 56, 57, 59, 61, 62, 63, 64, 65, 68,
71, 72, 73, 77, 81, 82, 85, 93, 94, 95, 97, 98, 100, 101, 106,
107, 113, 114, 117, 118, 120

0.15

20 20 40 2, 6, 8, 10, 13, 22, 24, 25, 31, 36, 37, 44, 45, 47, 50, 52, 54,
57, 59, 60, 64, 66, 71, 77, 81, 91, 92, 94, 95, 96, 97, 99, 101,
106, 107, 112, 113, 117, 118, 120

0.50

30 40 32 5, 6, 7, 14, 18, 19, 20, 22, 24, 31, 36, 37, 38, 42, 47, 51, 57,
60, 62, 71, 74, 83, 84, 89, 92, 97, 98, 100, 101, 103, 106, 113

1.40

40 80 34 3, 4, 7, 8, 18, 22, 24, 36, 43, 45, 51, 52, 57, 59, 63, 65, 66,
70, 71, 73, 77, 78, 81, 86, 88, 91, 93, 98, 99, 101, 102, 104,
110, 120

4.00

50 160 31 7, 10, 11, 12, 13, 18, 20, 24, 25, 27, 30, 36, 38, 39, 40, 48,
50, 56, 60, 62, 73, 76, 83, 85, 93, 99, 102, 104, 110, 111, 117

8.87

Elephant 10 10 61 2, 4, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 22, 24, 25, 26, 28, 31,
34, 35, 37, 38, 42, 47, 48, 50, 51, 52, 56, 57, 59, 60, 61, 62,
66, 70, 71, 72, 77, 81, 82, 83, 85, 88, 92, 93, 94, 95, 98, 99,
100, 101, 103, 106, 107, 110, 113, 114, 117, 118, 120

0.18

20 20 55 1, 2, 8, 9, 12, 13, 16, 19, 20, 23, 24, 27, 37, 38, 41, 43, 44,
45, 47, 50, 51, 57, 58, 59, 64, 65, 70, 73, 74, 75, 76, 81, 82,
83, 84, 85, 86, 89, 92, 93, 94, 95, 97, 98, 100, 101, 102, 104,
107, 108, 109, 111, 112, 113, 120

0.68

30 40 59 2, 4, 6, 8, 12, 13, 17, 18, 19, 20, 22, 24, 25, 26, 29, 31, 32,
33, 34, 35, 37, 38, 40, 42, 43, 44, 46, 47, 49, 51, 55, 57, 60,
64, 69, 71, 72, 73, 74, 75, 76, 77, 78, 81, 83, 88, 89, 91, 93,
95, 96, 99, 103, 104, 108, 112, 113, 114, 120

1.83

40 80 45 2, 4, 5, 6, 12, 15, 19, 24, 26, 28, 30, 31, 32, 36, 37, 44, 45,
49, 52, 54, 55, 57, 58, 59, 63, 64, 67, 68, 69, 74, 79, 82, 84,
88, 90, 91, 92, 93, 95, 96, 97, 104, 106, 108, 117

4.70

50 160 41 2, 4, 7, 8, 9, 10, 13, 14, 19, 20, 24, 33, 34, 35, 36, 37, 38, 40,
42, 43, 45, 48, 50, 52, 53, 62, 64, 66, 67, 71, 74, 79, 80, 83,
85, 92, 93, 106, 108, 109, 113

11.00

Firefly 10 10 71 2, 4, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 22, 24, 25, 28, 29,
31, 34, 35, 36, 38, 40, 42, 43, 45, 47, 48, 50, 51, 52, 56, 57,
59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 76, 77, 78, 82,
84, 88, 90, 91, 92, 95, 97, 98, 99, 100, 101, 103, 106, 107,
108, 109, 110, 112, 113, 114, 117

0.15

20 20 60 2, 4, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 22, 24, 28, 34, 36,
38, 42, 43, 48, 49, 51, 52, 54, 56, 57, 59, 60, 61, 63, 64, 68,
70, 72, 77, 78, 81, 82, 85, 87, 88, 92, 93, 95, 96, 97, 98, 99,
103, 104, 105, 106, 107, 109, 110, 117, 118, 120

0.60

30 40 55 6, 8, 10, 12, 13, 14, 16, 18, 19, 20, 24, 25, 31, 36, 42, 45, 47,
48, 50, 52, 55, 56, 57, 59, 60, 61, 63, 64, 65, 71, 72, 74, 76,
77, 81, 82, 84, 85, 87, 88, 91, 92, 93, 95, 96, 97, 98, 100,
101, 103, 105, 106, 107, 112, 116

1.67

40 80 55 2, 4, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 22, 24, 25, 28, 30,
42, 43, 47, 48, 50, 51, 52, 56, 57, 59, 60, 61, 65, 67, 68, 71,
72, 73, 74, 76, 77, 83, 90, 91, 93, 95, 99, 101, 103, 106, 110,
112, 114, 117, 118, 119, 120

4.47

(Continued)
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Table 2: Continued

Algorithm No. of
iteration

Population
size

No. of
selected
descriptors

Selected descriptors Time
taken
(mins)

50 160 53 1, 2, 4, 6, 7, 9, 14, 17, 18, 19, 20, 22, 24, 25, 29, 31, 34, 38,
41, 43, 45, 47, 52, 55, 61, 63, 64, 66, 69, 70, 72, 75, 78, 82,
83, 84, 86, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105,
107, 108, 109, 114, 120

10.60

Flower 10 10 38 3, 4, 7, 8, 10, 13, 14, 15, 16, 19, 22, 24, 25, 30, 38, 43, 44,
49, 50, 58, 60, 61, 63, 66, 68, 79, 85, 86, 89, 92, 93, 95, 97,
107, 109, 110, 112, 116

0.12

20 20 15 4, 5, 7, 16, 20, 24, 25, 35, 38, 43, 51, 57, 63, 64, 101 0.38
30 40 19 3, 4, 12, 15, 17, 18, 22, 24, 29, 37, 43, 48, 52, 54, 62, 72, 74,

91, 98
0.92

40 80 10 2, 6, 20, 22, 24, 56, 62, 82, 90, 106 1.70
50 160 8 6, 20, 24, 40, 54, 85, 97, 105 4.47

Genetic 10 10 70 2, 4, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 22, 24, 25, 26, 28,
31, 35, 36, 37, 38, 40, 42, 43, 45, 48, 50, 51, 52, 53, 56, 57,
59, 61, 62, 64, 65, 66, 68, 70, 71, 72, 73, 74, 76, 78, 81, 83,
84, 85, 88, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108,
109, 110, 112, 117, 118, 120

0.13

20 20 34 3, 7, 8, 14, 19, 22, 24, 25, 30, 33, 34, 35, 36, 39, 42, 43, 45,
46, 49, 50, 58, 61, 62, 68, 70, 75, 78, 83, 97, 103, 107, 116,
117, 120

0.50

30 40 41 2, 3, 8, 9, 14, 15, 18, 19, 22, 24, 28, 31, 34, 35, 43, 45, 46,
47, 49, 50, 62, 63, 64, 65, 66, 67, 68, 70, 72, 75, 76, 82, 84,
92, 93, 94, 97, 101, 105, 106, 119

1.57

40 80 46 1, 2, 4, 7, 18, 22, 23, 24, 26, 28, 29, 32, 34, 35, 39, 42, 44,
47, 49, 50, 51, 52, 54, 55, 56, 60, 61, 62, 70, 78, 79, 80, 82,
85, 86, 87, 91, 93, 98, 99, 100, 104, 106, 110, 112, 113

4.45

50 160 44 5, 7, 8, 12, 13, 15, 18, 22, 24, 26, 31, 33, 35, 38, 40, 41, 43,
44, 45, 46, 47, 48, 50, 53, 54, 55, 57, 65, 68, 75, 76, 79, 87,
88, 89, 90, 92, 95, 99, 100, 103, 105, 106, 111

11.93

Rhinoceros 10 10 56 4, 6, 8, 10, 12, 13, 19, 22, 23, 24, 26, 28, 31, 33, 34, 36, 37,
42, 43, 46, 47, 48, 50, 54, 55, 56, 60, 62, 64, 65, 68, 70, 72,
78, 79, 81, 83, 84, 85, 92, 93, 95, 97, 98, 100, 101, 104, 106,
107, 108, 109, 110, 112, 114, 116, 117

0.17

20 20 45 4, 6, 7, 11, 13, 17, 18, 19, 22, 23, 24, 26, 27, 34, 35, 38, 51,
54, 56, 57, 60, 61, 62, 65, 68, 71, 76, 77, 78, 79, 81, 83, 84,
88, 93, 95, 97, 99, 101, 106, 113, 114, 117, 118, 120

0.62

30 40 39 6, 9, 13, 16, 22, 24, 25, 31, 32, 33, 36, 37, 42, 43, 47, 48, 51,
52, 55, 56, 60, 64, 69, 71, 72, 73, 76, 78, 82, 88, 93, 94, 95,
96, 97, 102, 112, 115, 117

1.63

40 80 36 3, 8, 9, 13, 19, 22, 24, 25, 28, 30, 34, 36, 42, 50, 52, 56, 57,
59, 63, 64, 66, 73, 77, 78, 80, 82, 83, 88, 97, 98, 105, 107,
109, 110, 118, 120

4.47

50 160 44 2, 5, 6, 7, 9, 11, 14, 19, 20, 24, 25, 26, 27, 28, 29, 33, 34, 35,
45, 47, 49, 51, 52, 53, 56, 58, 65, 66, 70, 71, 72, 79, 83, 88,
89, 91, 92, 96, 97, 101, 106, 107, 109, 112

10.67

(Continued)



4754 CMC, 2022, vol.70, no.3

Table 2: Continued

Algorithm No. of
iteration

Population
size

No. of
selected
descriptors

Selected descriptors Time
taken
(mins)

Wolf 10 10 63 3, 4, 6, 7, 9, 13, 14, 15, 18, 22, 24, 25, 26, 28, 29, 30, 31, 32,
33, 34, 35, 36, 42, 44, 45, 46, 47, 50, 56, 57, 60, 62, 63, 64,
69, 70, 71, 72, 73, 74, 82, 83, 84, 85, 91, 92, 93, 95, 97, 98,
99, 101, 102, 103, 105, 107, 110, 111, 112, 113, 117, 118,
120

3.58

20 20 49 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 20, 24, 27, 28, 30, 31, 32, 34,
37, 39, 43, 44, 45, 50, 52, 57, 59, 60, 63, 65, 67, 73, 74, 76,
77, 81, 83, 88, 92, 93, 95, 97, 98, 104, 107, 108, 112, 113,
120

11.60

30 40 47 2, 7, 12, 13, 14, 16, 17, 18, 22, 24, 27, 30, 33, 36, 37, 43, 44,
45, 52, 53, 55, 56, 59, 60, 61, 64, 66, 73, 77, 85, 86, 87, 89,
91, 92, 94, 98, 99, 101, 102, 103, 106, 109, 110, 112, 113,
118

35.53

40 80 53 1, 2, 7, 9, 11, 14, 16, 17, 19, 20, 22, 24, 26, 28, 31, 32, 34,
36, 40, 42, 43, 45, 49, 50, 55, 56, 65, 66, 69, 71, 72, 73, 76,
81, 85, 86, 88, 91, 93, 94, 95, 100, 102, 106, 108, 109, 110,
111, 112, 113, 116, 118, 119

109.05

50 160 52 1, 2, 4, 5, 7, 9, 11, 12, 13, 16, 17, 19, 20, 22, 24, 28, 30, 34,
37, 38, 40, 42, 46, 48, 51, 52, 60, 63, 68, 70, 73, 74, 77, 82,
84, 90, 92, 93, 94, 96, 97, 98, 99, 102, 108, 109, 112, 113,
116, 117, 118, 119

263.75

To effectively analyze the time taken by the algorithms, we create a plot of the time taken
against the algorithms according to the number of iterations and the population size in Tab. 2. In
Fig. 3, we notice that for all the algorithms, a gradual increase in running time occurs according
to the increase in population size and number of iterations. However, we discover that the wolf
search algorithm takes even longer running time than other algorithms. The time taken for 20
iterations and 20 population size is higher than the time taken for 50 iterations and 160 population
size of other algorithms, except ant search algorithm and genetic algorithm. This can be linked
to the fact that the search agents in the wolf algorithm require cooperation. Although the search
agents search the problem space in random groups, an individual solution is provided to the
problems [37], which causes an increased runtime.

Flower pollination algorithm on the other hand has a generally small run time across all
examined iterations and population sizes. Fig. 3B shows the consistency in reduced runtime exhib-
ited by this algorithm. Due to the benefit of the insect pollinators travelling long distance, there is
an ability to have a larger problem space explored while choosing similar solutions. This improves
the rate of convergence [34]. In general, a fair trade-off between the number of iterations, time
complexity and performance are encouraged when choosing an algorithm for the selection of
descriptors.

Out of a total of 120 descriptors in the entire dataset, we consider the number of descriptors
selected by each algorithm based on the different parameters. With this analysis, we can quickly
determine the descriptors which are frequently selected by the algorithms. Based on the techniques
used by different metaheuristic algorithms, we expect peculiarity in the descriptors selected by
each algorithm. We notice a general downward trend in the number of selected descriptors as
the number of iterations and population size increases in Fig. 4. Apart from some occasional
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increase in the number of selected descriptors for some algorithms, we established that for all the
algorithms, the number of selected descriptors at ten iterations and ten population size is higher
compared to any other number of iterations and population size. The flower pollination algorithm
and bee search algorithm having the lowest runtime also has the smallest number of selected
descriptors. This will be considered in their yield estimation efficiency.

Figure 3: The runtime of each algorithm according to the number of iterations and population
size. (A) The high runtime of wolf algorithm is evident, compared to other algorithms. (B) Vivid
display of all algorithms except wolf algorithms

Figure 4: Number of selected descriptors of each algorithm according to parameter change

3.2 Efficacy of Lesser Number of Iterations and Population Size
We investigated the impact of descriptor selection on the estimation of yields. With the 50

new data having different descriptor subsets, we apply the voting ensemble method, which uses the
averaging technique for prediction. The voting ensemble was compared with gradient boosting,
multilayer perceptron, and random forest, which were also its base regressors. We implemented
these using 5-fold cross-validation which we repeated five times. Hence, each model was trained
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and tested twenty-five times with shuffled data. This repetition enables different sections of the
data to be used for training and testing and helps to overcome the introduction of bias in the
model. The resulting performance is reported in Tab. 3.

Table 3: Result of machine learning and voting ensemble on the different descriptor subset

Algorithm No. of
iteration

Population
size

Gradient
boosting

Multilayer
perceptron

Random forest Voting

Mean
RMSE

Mean
R2

Mean
RMSE

Mean
R2

Mean
RMSE

Mean
R2

Mean
RMSE

Mean
R2

Ant 10 10 8.5073 0.8989 9.5172 0.8734 7.5037 0.9213 7.4176 0.9231
20 20 8.5357 0.8983 7.6025 0.9190 7.3047 0.9255 6.8069 0.9353
30 40 11.1434 0.8262 13.3506 0.7510 12.8525 0.7694 11.6157 0.8113
40 80 8.4411 0.9004 10.2178 0.8544 7.7557 0.9161 7.5708 0.9199
50 160 8.6659 0.8950 12.5876 0.7787 7.6648 0.9179 8.1774 0.9066

Bat 10 10 8.2301 0.9054 8.2843 0.9042 7.3824 0.9239 6.8244 0.9350
20 20 8.3695 0.9023 7.6534 0.9183 7.2947 0.9256 6.6978 0.9374
30 40 9.0643 0.8854 10.2759 0.8525 7.8899 0.9132 8.0335 0.9099
40 80 8.4323 0.9007 7.9864 0.9111 7.5471 0.9204 6.9977 0.9316
50 160 8.2712 0.9044 8.2601 0.9049 7.2819 0.9259 6.8261 0.9349

Bee 10 10 8.6643 0.8952 9.6141 0.8709 7.5754 0.9199 7.4445 0.9227
20 20 9.0294 0.8860 10.3361 0.8508 7.8223 0.9146 8.1976 0.9061
30 40 9.1398 0.8834 19.6314 0.4629 7.7398 0.9164 10.0705 0.8586
40 80 18.5025 0.5225 21.6133 0.3487 18.5046 0.5224 18.8511 0.5045
50 160 14.5451 0.7041 16.6462 0.6132 17.2120 0.5864 15.3326 0.6716

Cuckoo 10 10 8.2169 0.9057 7.3318 0.9248 7.2458 0.9267 6.5654 0.9398
20 20 8.5698 0.8974 8.0593 0.9091 7.3608 0.9243 6.9338 0.9328
30 40 8.8491 0.8905 9.4785 0.8745 7.9367 0.9121 7.6568 0.9181
40 80 8.6741 0.8949 10.3476 0.8505 7.7039 0.9171 7.7741 0.9155
50 160 8.3918 0.9017 8.3198 0.9034 7.6071 0.9192 7.0559 0.9304

Elephant 10 10 8.2149 0.9058 8.5008 0.8992 7.2607 0.9263 6.8545 0.9344
20 20 8.2367 0.9054 7.4714 0.9221 7.3245 0.9250 6.6743 0.9378
30 40 8.3119 0.9035 7.3069 0.9253 7.2857 0.9259 6.6231 0.9387
40 80 8.5134 0.8988 7.4041 0.9236 7.4458 0.9226 6.7629 0.9361
50 160 8.2590 0.9047 7.7363 0.9165 7.3311 0.9249 6.7160 0.9370

Firefly 10 10 8.2229 0.9056 7.1112 0.9295 7.2557 0.9265 6.5093 0.9409
20 20 8.3670 0.9022 10.3096 0.8507 7.4167 0.9232 7.4597 0.9222
30 40 8.5949 0.8968 9.3238 0.8786 7.6640 0.9179 7.3249 0.9250
40 80 8.4751 0.8998 10.6742 0.8405 7.5118 0.9212 7.4296 0.9229
50 160 8.3679 0.9023 7.6013 0.9194 7.0615 0.9302 6.7128 0.9371

Flower 10 10 8.2736 0.9044 7.5336 0.9207 7.1289 0.9289 6.6015 0.9391
20 20 8.6253 0.8961 10.1139 0.8571 7.4594 0.9222 7.6901 0.9175
30 40 8.6515 0.8954 9.0383 0.8859 7.5977 0.9194 7.4281 0.9229
40 80 9.1456 0.8832 15.8197 0.6506 7.9919 0.9107 9.3468 0.8779
50 160 9.7527 0.8673 19.4629 0.4719 9.4067 0.8765 10.8970 0.8344

Genetic 10 10 8.2753 0.9044 7.9909 0.9107 7.3761 0.9240 6.7449 0.9364
20 20 8.2768 0.9043 8.4540 0.9003 7.2376 0.9268 6.9149 0.9332
30 40 8.3370 0.9028 9.7230 0.8682 7.5522 0.9203 7.2371 0.9268
40 80 8.3049 0.9036 8.4237 0.9009 7.2380 0.9267 6.9322 0.9329
50 160 8.3739 0.9020 7.0774 0.9301 7.5829 0.9198 6.6148 0.9389

(Continued)
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Table 3: Continued

Algorithm No. of
iteration

Population
size

Gradient
boosting

Multilayer
perceptron

Random forest Voting

Mean
RMSE

Mean
R2

Mean
RMSE

Mean
R2

Mean
RMSE

Mean
R2

Mean
RMSE

Mean
R2

Rhinoceros 10 10 8.4383 0.9007 8.0127 0.9104 7.4889 0.9216 6.9559 0.9324
20 20 8.4810 0.8996 8.0967 0.9087 7.4517 0.9225 6.9575 0.9325
30 40 8.9248 0.8886 10.5479 0.8445 7.8078 0.9149 8.0160 0.9103
40 80 8.3370 0.9029 11.3302 0.8186 7.5376 0.9207 7.6574 0.9178
50 160 8.3827 0.9019 7.7717 0.9158 7.3959 0.9236 6.7855 0.9358

Wolf 10 10 8.3796 0.9020 7.1290 0.9291 7.3628 0.9244 6.6221 0.9388
20 20 8.4139 0.9012 7.4214 0.9232 7.6750 0.9177 6.7690 0.9360
30 40 8.6846 0.8947 7.4217 0.9231 7.3578 0.9244 6.8131 0.9352
40 80 8.4519 0.9002 9.7876 0.8654 7.4978 0.9215 7.3916 0.9236
50 160 8.2819 0.9042 8.1810 0.9067 7.3422 0.9247 6.8614 0.9342

On average, it is revealed that majority of the datasets gotten from metaheuristic algorithms
with ten iterations/population size and twenty iterations/population size produced better perfor-
mance on the machine learning algorithms. In Fig. 4, we have shown that more descriptors were
selected with these parameters. These values show the possibility of obtaining optimal solutions
even with a lower number of iterations, enabling the option of limiting runtime while achieving
optimal performance. We also show the performance of the voting ensemble being suitable for
the estimation of yields across the datasets. Comparing the performance with the other base
regressors and especially random forest (which is also an ensemble method) used in Science [25],
voting ensemble had better performance in estimating the yields. Overly gross error in some of
the base regressors affected the performance of voting on some dataset. Therefore, an appropriate
combination of regressors should be made when a voting ensemble is used.

3.3 Analysis of Important Descriptors
We ranked the 120 descriptors according to the number of times they were selected in the

new data subsets. In other words, according to the newly generated 50 datasets, which comprise
of different subsets of descriptors, we rank the descriptors based on the number of times they
appear. The name of the descriptors and the corresponding number of appearances is available in
a sorted manner in https://github.com/Olutomilayo/Yield_Estimation. The top descriptor appeared
in 34 data subsets, while the next one appeared in 25 data subsets. This shows their importance
and contribution to yield estimation from reactions. We also used random forest to rank all the
descriptors according to their importance. Since random forest splits a tree based on the most
important descriptor, it is a good algorithm for ranking descriptors according to their importance
and contribution to the models’ performance. The top 20 descriptors are displayed in Fig. 5. From
the two analyses, we deduce that aryl halide-based descriptors significantly influence the yield of
the reactions. We however note that without the presence of the additional descriptors such as
additives, ligands and bases, the model does not produce a good yield. This means that although
the aryl halides are essential for the reaction, all other descriptors are also important. Aryl
halide, as a class of functional compound, is popularly known and used in medicinal chemistry.
It is particularly essential for the arylation and modification of aromatic core and palladium

https://github.com/Olutomilayo/Yield_Estimation
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cross-coupling. Cross-coupling of amines with aryl halides or pseudo halides is common [39].
Without the aryl halide, no reaction will be prompted, and the palladium catalyst assists in
the instantaneous reaction. Other factors, such as oxidative addition, also influence aryl halides’
reactivity [40]. Base and additives are also crucial in a reaction as well as aryl halide and the
catalyst.

Figure 5: Top 20 descriptors ranked with random forest according to their importance

3.4 More Descriptors are Needed for Yield Estimation
As selecting a specific number of descriptors is quite subjective, we created two other datasets

with different descriptor subset for further analysis. From the sorted descriptors, we created a
dataset with descriptors having a frequency greater than 11 (that is, out of the 50 combinations
of metaheuristic parameters, they were selected at least 12 times). We chose a number slightly
greater than half of the original descriptors; hence a new dataset with 70 descriptors was extracted
(hereafter referred to as 70_Desc). We also considered the Cuckoo and Firefly algorithm with ten
iterations and ten population sizes. Based on the large number of descriptors initially selected
by these algorithms and their performances in Tab. 3, we created a dataset with a combination
of descriptors from both algorithms (hereafter referred to as CuckFire). Using the same 5-fold
cross-validation repeated five times each, we applied the machine learning algorithms and voting
ensemble on the entire dataset with the complete descriptors and on two extracted datasets.

Tab. 4 and Fig. 6 shows the performance of the machine learning algorithms and voting
ensemble based on the different datasets. We report the consistency of the voting ensemble
across the three examined datasets. As published in Science, Random forest recorded a better
performance over the other methods with which it was examined [25]. In this study, the voting
ensemble has demonstrated even better performance using the same dataset. Considering that
RMSE is at its lowest and R2 at its highest when the entire dataset with full descriptors is used,
we deduce that the overall performance of yield estimation is better when more descriptors are
used. In Skoraczyński, et al. [41], a need for the development of more descriptors was stated. The
environment under which a reaction is conducted is based on the catalysts, reagents, solvents used
(all of which are the chemical components), and the temperature at which the reaction is carried
out [42].
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Table 4: Result of machine learning and voting ensemble on the full descriptor and new subsets

Dataset Gradient boosting Multilayer perceptron Random forest Voting

Mean
RMSE

Mean R2 Mean
RMSE

Mean R2 Mean
RMSE

Mean R2 Mean
RMSE

Mean R2

All 8.1946± 0.3 0.9062± 0.007 6.9304± 0.4 0.9329± 0.008 7.2645± 0.4 0.9262± 0.008 6.4270± 0.3 0.9423± 0.006
70_Desc 8.2365± 0.3 0.9052± 0.008 8.0728± 0.3 0.9090± 0.008 7.3905± 0.3 0.9237± 0.007 6.7822± 0.3 0.9357± 0.006
CuckFire 8.2220± 0.2 0.9057± 0.006 7.2181± 0.3 0.9273± 0.006 7.2581± 0.3 0.9264± 0.006 6.5590± 0.2 0.9399± 0.005

Figure 6: Plot showing the performance of the voting ensemble across three datasets. (A) RMSE
of the algorithms. (B) R2 of the algorithms

4 Conclusion

In this study, we have explored ten nature-inspired metaheuristic algorithms for the selection
of descriptors in B-H reaction. We compared these algorithms in terms of time complexity and
the number of selected descriptors. We have also identified and enumerated the essential descriptor
based on its frequency in the 50 different data subsets. We implemented a voting ensemble and
compared it with three other machine learning algorithms.

Based on several analyses which have been conducted in this study, the essential descriptors
are identified, and the results establish that more descriptors are essential for estimating the
yield of reactions. With the variety of metaheuristic algorithm implemented, the five changes in
parameters, the 50 extracted datasets with a variety of descriptors subsets, the dataset extracted
with the 70 most selected descriptors, and the combination of descriptors from the Cuckoo and
Firefly algorithm, the performance of the machine learning algorithms and voting ensemble were
better with the entire dataset having full descriptors. These results show that although some
descriptors might be more important for analysis, more descriptors are important and significant
for model training in estimating yields from B-H reaction. The voting ensemble method also
performed better than other machine learning methods with which it was compared. Although
our work considers ten nature-inspired metaheuristic algorithms for selection of descriptor subsets
in Buchwald-Hartwig reaction estimation, there exist several other metaheuristic algorithms which
can be examined for selection of descriptors. Analysis of different algorithms for other type of
chemical reactions can be performed in future work. Voting ensemble can also limited by the
base regressors, this necessitates careful selection of base regressors. The results and deductions
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from this study can be readily applied in chemical synthesis by saving the computational cost
associated with initial descriptor selection and making voting ensemble suitable for yield estima-
tion in B-H reactions. We however believe that metaheuristic algorithms may be more suited for
high-dimensional datasets and intend to investigate it in further studies.
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