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Abstract: There are various intense forces causing customers to use evaluated
data when using social media platforms and microblogging sites. Today, cus-
tomers throughout the world share their points of view on all kinds of topics
through these sources. The massive volume of data created by these customers
makes it impossible to analyze such data manually. Therefore, an efficient
and intelligent method for evaluating social media data and their divergence
needs to be developed. Today, various types of equipment and techniques are
available for automatically estimating the classification of sentiments. Senti-
ment analysis involves determining people’s emotions using facial expressions.
Sentiment analysis can be performed for any individual based on specific
incidents. The present study describes the analysis of an image dataset using
CNNswith PCA intended to detect people’s sentiments (specifically, whether a
person is happy or sad). This process is optimized using a genetic algorithm to
get better results. Further, a comparative analysis has been conducted between
the different models generated by changing the mutation factor, performing
batch normalization, and applying feature reduction using PCA. These steps
are carried out across five experiments using theKaggledataset. Themaximum
accuracy obtained is 96.984%, which is associated with the Happy and Sad
sentiments.

Keywords: Sentiment analysis; convolutional neural networks; facial expres-
sion; genetic algorithm

1 Introduction

The continuous increase in social awareness worldwide has been accompanied by an increase
in the popularity of social networks such as Twitter. Twitter is one of the most popular social
media platforms, where anyone can post tweets to freely express their thoughts and feelings about
anything. Low internet fees, inexpensive portable devices, and social responsibility have encouraged
people to tweet about various events. For these reasons, Twitter contains a massive amount of
data. Tweets cannot exceed 140 characters, meaning that people need to choose their words
carefully when expressing their sentiments. They can also augment their posts with images to
express their feelings.
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Sentiment analysis (or opinion mining) is the assessment of people’s opinions or emotions
from the text and image data that they provide through, for instance, their tweets. From any
given individual, sentiment analysis is based on the specific incident that they are expressing their
feelings about [1].

Facial identification comprises three phases: detecting a face, extracting its features, and
recognizing the face (Fig. 1). When analyzing facial expressions, much care must be taken to
enhance the process of capturing facial expressions that corresponds to human characteristics, as
this could provide an effective way for people to interact with facial recognition system.

Figure 1: Three main phases of face recognition

Accurate face recognition can be used for countless uses. The purposes of connecting the
regions of a face to various expressions include identifying people; controlling access; recording
mobile videos; and improving various applications like video conferencing, forensic applications,
interfaces between computers and humans, automatic monitoring, and cosmetology [2].

Many techniques are currently being used to improve face identification methods. Such tech-
niques are highly diverse in terms of what factors they consider—some techniques focus on
environmental features, whereas others might deal with direction, appearance, the effect of light,
or facial features [3].

Deep learning techniques play an essential role in the classification process. Deep learning
is a subcategory of machine learning that deals with the architecture of neural networks [4].
Various deep learning algorithms have been designed to solve many complex real-world problems.
Convolutional neural networks (CNNs) are relevant to the present study, as they are used for
classification purposes [5]. In this work, CNNs are used to classify images according to the
emotions or sentiment. A genetic algorithm (GA) is also used to perform a hyperparameter search
to determine which CNN performs the best for the task at hand. The GA’s hyperparameters are
tuned across five different experiments to attain optimal results.

The remainder of this article is presented as follows: Part 2 discusses the existing sentiment
analysis techniques. Part 3 describes the CNN model’s integration with the classification of the
GA. Part 4 presents and analyzes the simulation results. Part 5 presents the conclusions and
suggests future research endeavors.

2 Literatureq Review

The concept of face recognition has been widely evaluated since it is relevant to everyone, and
the corresponding techniques are easy to use, non-obtrusive, and can be extended if one is willing
to accept the extra cost. Many complementary concepts have also been developed throughout
the past two centuries through deliberations and research works. Such research shares similarities
with research in the fields of the survey, replacement with security (terminals), closed-circuit
television (CCTV) control, client validation, human-computer interfaces (HCIs), and intelligent
robots, among others.
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Several facial recognition techniques have been proposed, including techniques that recognize
face architecture. However, no consensus has been reached regarding which design is the best,
which is particularly important regarding original surroundings—for instance, determining PCA
and ABC by hybridizing them through their office or integrating a family—for enhancement
according to demands using a CNN. The determination made at the end of the presentation
utilizes the evaluations of false acceptance rate, false rejection rate, and accuracy [6].

Sentiment classification for movie reviews has been utilized through a hybrid classification
design. The incorporation of various characteristics and classification techniques, namely the naïve
Bayes-genetic algorithm (NB-GA), has been studied, and its accuracy has been assessed. The
hybrid NB-GA is more effective than the base classifier, and the GA remains more effective than
NB [7].

The polarity of a document is also an essential aspect of text mining. Future engineering
with tree kernels has been discussed previously [8]. This technique yields better results than other
techniques. The authors who proposed this technique defined two classification models (i.e., two-
way and three-way classification). In two-way classification, sentiments are classified as either
positive or negative; in three-way classification, sentiments are classified as either positive, negative,
or neutral.

The authors considered a tree-based technique for representing tweets in the tree kernel
method. The tree kernel-based model achieved the best accuracy and was the best feature-based
model. The results showed that this technique performed 4% better than a unigram model.

A hierarchical sentiment analysis approach can also be used for cascaded classification. The
authors cascaded three classifications—objective vs. subjective, polar versus non-polar, and positive
versus negative—to construct a hierarchical model. This model was compared with a four-way
classification (objective, neutral, positive, negative) model. The hierarchical model outperformed
the four-way classification model [9].

A domain-specific feature-based model for movie reviews has been developed by [10]. Here,
the aspect-based technique is used, which analyzes text movie reviews and assigns a sentiment
label to them based on the aspect. Each aspect is then aggregated from multiple reviews, and the
sentiment score of a specific movie is determined. The authors used a sentiment WordNet-based
technique for feature extraction and to compute document-level sentiment analysis. The results
were compared with those obtained using Alchemy API. The feature-based model provided better
results than the Alchemy API-based model.

In the short aspect, a wise sentiment result is better than a document-wise result. A sentiment
classifier model was previously constructed to classify tweets as positive, negative, or neutral. Spe-
cific face recognition techniques have also been involved in the design of holistic techniques based
on features, as well as hybrid techniques. These designs comprise principal component analysis
(PCA) and two-dimensional principal component analysis (2DPCA), derived from PCA [11].

A model has been developed using PCA, SVM, and the GA for facial recognition. This model
presented the highest accuracy (99%) on the face database of the Institute of Chinese Academy
of Sciences [12]. An automatic selection of a CNN architecture using a GA has been developed
for image classification. An experiment was conducted to estimate the accuracy of the models,
with the CNN-GA model achieving the highest accuracy (96.78%) [13].
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A genetic-based approach was designed to detect unknown faces via matching with training
images. The results yielded by this approach were compared with those provided by PCA and
LDA. The GA-based approach outperformed the PCA and LDA approaches [14].

In other work, a hybrid face recognition system was developed by combining CNNs and
SVM. The best CNN architectures were obtained with a GA. The last CNN layer was then
combined with SVM to optimize the results [15]. Other hybrid designs comprise techniques based
on modular Eigenfaces [16]. In addition, researchers have clustered k-means and their derivations
for face recognition applications due to their computation efficiency. Autoencoders, including deep
autoencoders [17], have been employed broadly and remain complex aspects of face recognition.
Although CNN-based techniques require a long training time, they have become the most broadly
used techniques for all image processing simulations and facial recognition applications because
of their favorable spatial feature consideration capabilities.

Very few works have investigated the use of CNNs and GAs for facial recognition purposes.
Therefore, in this work, CNNs are implemented with a GA to improve facial recognition results.
Also, a mutation factor change analysis has not yet been done in sentiment analyses in previous
works. A detailed description of the methodology is given in the next section.

The main contributions made in this paper are as follows:

• Sentiment analysis is an essential topic of significant relevance in the modern world. This
paper describes the use of CNNs with GAs for sentiment analysis.
• This paper serves as a reference for anyone who wants to work on the advancement of

CNNs and GAs.
• A comprehensive study of changes in five mutation factors shows how varying the mutation

factor in the GA affects a CNN’s accuracy.
• The final model provides favorable results for feature reduction using PCA. The results show

that dimensionality reduction significantly improves accuracy.

3 Proposed Methodology

Coding and translating techniques were integrated for the proposed technique. Initially, the
data were processed and modified to correlate the dataset with the proposed method.

Fig. 2 provides the architectural design for the proposed sentiment analysis. The primary task
was to design a CNN capable of localizing human faces and accurately classifying their facial
emotions. Faces were broadly classified as either Happy (positive emotion) or Sad (negative emo-
tion). The main problem faced when training deep learning architectures is the proper selection of
hyperparameters, which ultimately governs the overall prediction capabilities of the model. This
process of hyperparameter selection was inspired by the real-world natural evaluation process in
which a species becomes more powerful and adaptive through a continuous process of mutation
and natural selection.

The models were defined such that the hyperparameters represented a unique signature of
the models, similar to the DNA of real-world individuals. The complete model training process is
outlined as follows:

1. A group of random models with unique hyperparameter combinations was generated as
the first-generation models [18].

2. All models were trained with the facial emotion recognition dataset, and each model’s
accuracy was calculated as its fitness score.
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3. Top-performing models from the previous generation were selected. New models were then
generated from these top-performing models by combining their hyperparameters.

4. For the newly generated models (i.e., the next generation), the process is repeated (starting
from step 2) until the desired model is obtained.

Figure 2: Overview of the architectural design

3.1 Dataset
The dataset was taken from a Kaggle facial expression recognition challenge [19]. The dataset

contained cropped 48x48 greyscale face images with the corresponding emotion collected from
multiple sources, including social media, movies, and the Internet. The overall dataset was divided
into seven emotion categories (Angry, Disgust, Fear, Happy, Sad, Surprised, and Neutral). The
Happy and Sad subsets (See Fig. 3) of the dataset were the most suitable for the current task.
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Figure 3: Sample of image dataset (Happy and Sad)

3.2 Dataset Pre-Processing
The Happy and Sad subclasses of the dataset were used as positive and negative sentiments,

respectively, during training. Six thousand samples were randomly selected from the dataset for
each class. These samples were eventually used for the purposes of training and validation. The
sampled dataset was split into 80% training and 20% validation subsets by random selection.
The images’ pixel values were also normalized within the range of 0–1 and divided by 255, thus
making the data input into the model more generalizable. This process, in turn, improved the
processes of learning and regulating the model weights [20].

3.3 General CNN Architecture
The overall CNN architecture was divided into three blocks, with each block containing two

convolution layers and one MaxPooling layer. These blocks were then followed by a Flattened
layer and a Dense layer, which were finally linked with two nodes of the Dense layer, each
representing a class from our dataset (i.e., positive and negative). The basic block used in the
model architecture is depicted below in Fig. 4.

Figure 4: CNN model architecture block

The convolution layers used in the blocks use “same padding” to ensure that the input and
output image sizes of these convolution layers are the same. As a result, the output of each block
is just half of the input size (e.g., 48x48xc1 → block → 24x24xc2). In this way, we ensured a
proper input size was available for the next block regardless of the filter size and filter counts
used in the block.

The output image dimensions for any given padding value p are derived with the given
formula seen in Eq. (1) [21].

Output image dimension= n+ 2p− f
s

+ 1 (1)

where

n → input image dimension, p → padding to be used, f → filter size in the same dimension,

s → filter stride value for the same direction
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When the above formula is implemented on both input image dimensions (i.e., height and
width), the output image size is calculated using Eq. (2).

Input Image

(n1xn2)
∗ Filter

(f1xf2)
=>

Output Image(⌊
n1+ 2p1− f1

s1
+ 1

⌋
x

⌊
n2+ 2p2− f2

s2
+ 1

⌋)
(2)

where

subscript 1 → values corresponding to the first dimension of the images (height),

subscript 2 → values corresponding to the second dimension of the images (width)

In cases where the padding is the same for both dimensions, the required image output size
should be the same as that of the input size, as shown in Eq. (3).

Same Padding=> ninput image= noutput image (3)

Therefore, to keep the input image and output image size equal for each convolution layer, the
padding value needs to be updated dynamically according to the corresponding filter size, input
and output image size, and filter stride value.

The padding value required to implement the same padding can be derived using Eq. (4) [22].

Prequired = s(n− 1)+ f − n
2

(4)

Since the Convolution2D layers used the same padding as described above, the input image
and the output filter map size were the same for both Convolution2D layers in the block. Finally,
these layers were followed by the MaxPooling layer, which concluded the output of the layer.

Using the output image dimension formula, we can define the output image size for the
blocks, as the input image size and output image size were the same for the Convolution2D layers.
Also, the input image size for the MaxPooling layer was the same as that of the input image size
of the block.

For the MaxPooling layer, filter size → (2x2), filter stride → (2x2), padding → 0.

Therefore, the output image dimension formula is derived as Eq. (5) [23].

MaxPooling output size = n+ 2p− f
s

+ 1 = n
2

(5)

Using a MaxPooling layer with the above configurations reduces the input image size to half
its original size by combining the output results of the Convolution2D layers with the same
padding, followed by the MaxPooling layer. The resulting output image size can be calculated
using Eq. (6).

Input Image
(n1, n2, nc)

=>
Block
(fs, fc)

=>
Output Image(n1

2 ,
n2
2 , fc

) (6)

where

n1→ input image height, n2→ input image width, nc→ number of channels in the input
image,
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fs→ filter size for the block, fc→ filter count for the block

The above equation clarifies that the block output image’s dimensions are halved in both
dimensions (height and width) with each block’s operation on the input image. Also, the channel
count is interchangeable with the block’s total filter count value.

Only the filter size and filter count are needed for the blocks to function completely. Therefore,
a block can be uniquely defined based solely on the values of these two parameters. The same
square filter size and filter count are used in the Convolution2D layers. The MaxPooling2D layer’s
kernel/filter size is fixed to 2x2.

Since the CNN architecture comprises three blocks (see Fig. 5), a CNN model’s complete
architecture can be defined if the filter sizes and filter counts of each block are known. These
filter sizes and filter counts represent the genes of the CNN model or individual.

Figure 5: Model gene visualization

The filter sizes and filter counts depicted in the above figure are represented with the help of
two Python lists—one for filter sizes and another for filter counts. The list’s length is equivalent
to that of several blocks (three blocks in the present case). Based on the above figure, the model
gene can be represented as follows:

((Filter_size_1, Filter_size_2, Filter_size_3), (Filter_count_1, Filter_count_2, Filter_count_3))

3.4 Genetic Algorithm Approach
The primary task of the GA approach is to find the best filter size and filter count com-

bination or gene (collectively). This combination is that which produces the best results for the
problem at hand when used to generate a CNN.

Steps

1. Random initialization of population
• Random filter size and filter count values are determined from the given selection range.
• The population size is maintained at 10 individuals.

2. Training of individuals
• Individuals are trained with the given training dataset.
• TensorFlow’s early stopping callback is also employed to stop training if the validation
loss has not decreased over the last 10 epochs.
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3. Calculating individuals’ fitness
• Each individual’s validation accuracy is considered as its fitness.

4. Selecting the top-performing individuals based on their fitness
• The top four individuals are selected based on their fitness scores.

5. Repopulating the population with the selected individuals
• Ten combinations are generated from the top four individuals to generate 10 new child
individuals.

6. Repeating the process from step 2 to step 5 until an individual with the desired fitness is
obtained

4 Performance Analysis

This section describes the simulation analysis performed for face sentiment recognition using
the proposed CNN-GA.

4.1 Simulation Arrangement
A complete simulation has been carried out for the proposed CNN-GA using a Python tool

in which the architecture has been considered. The experiment has been done using a PC with
Windows 10 OS, 4GB RAM, and Intel I5 processor.

4.2 Experimental Analysis
The proposed CNN-GA is simulated based on the true negative rate (TNR), true positive rate

(TPR), and accuracy. All of this is evaluated using the classification report of the best model.
The ROC-AUC curve for the best model is also shown. The classification report describes the
accuracy, recall, precision, F1 score, and support. These values can be calculated with a confusion
matrix [24]. The formulas used to calculate accuracy, recall, precision, and F1 score are as follows:

Accuracy: Accuracy resolves the proximity for detection by the classifier, which is determined
by Eq. (7).

Accuracy= TP+TN
TP+FP+FN +TN (7)

A true positive (TP) occurs when a value is predicted to be positive and is later confirmed to
be positive in an AI model. A false positive (FP) occurs when a value is predicted to be negative
but is later shown to be positive in an AI model. A true negative (TN) occurs when a negative
value is predicted and later confirmed by an AI model. A false negative (FN) occurs when a value
is predicted to be positive but is later shown to be negative in an AI model.

Mean generation fitness: This parameter provides an overview of the overall performance of
all individuals in a specified generation during GA training as shown in Eq. (8).

MeanGeneration Fitness=
∑
indivisual fitness

total number of individuals in generation
(8)
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Pseudo Code for the CNN-GA:

Pseudo Code 1 Proposed Genetic Algorithm
Input: Population Size Pmax, Max Generations Gmax, Mutation Factor mf
Output: Best Hyperparameter Configuration gene
1 set n to 0
2 set best_individual to None
3 Pn ← Initialize initial population (Pseudo Code 2)
4 while n<Gmax do:
5 Pn ← Train all individuals in the population
6 best_gen_individual ← Calculate fitness for all individuals in Pn
7 if fitness of best_gen_individual> best_individual then:
8 set best_individual to best_gen_individual
9 end if
10 Qn ← Filter out top-performing individuals from Pn
11 Pn+1 ← Regenerate population by crossover on Qn (Pseudo Code 3)
12 Pn+1 ← Mutate mf subset of Pn+1 (Pseudo Code 4)
13 n← n + 1
14 end while
15 Return gene of best_individual

Pseudo Code 1 determines the overall approach followed by the GA to find the best-
performing hyperparameter configuration. The code starts with the initialization of an initial
population of randomly generated individuals with constrained parameters. After this, all individ-
uals are trained, and their capabilities and performance are verified. Next, a new generation of
individuals is formed via the crossover and mutation of the best-performing individuals from the
previous generation. During this process, the best-performing individual is defined as that whose
gene or hyperparameter configuration is the best for the problem at hand. This individual’s track
is kept.

4.3 Simulation Results
The architecture is simulated with different hyperparameters to obtain better results. Five

different experiments are conducted to improve the accuracy of the model. The models are
compiled using the ‘adam’ optimizer. As techniques ranging from basic to advanced are considered
in this work to increase the model’s accuracy, it is understandable that the models evolved across
generations of the GA-based approach.

Experiment 1: All default values

The configurations used for this initial baseline experiment for the GA training are:

population_size = 10, max_filter_size = 20, max_filter_count = 100, max_generations
= 10, max_epochs = 20, mutation_factor = 0.7, num_blocks = 3, needed_fitness = 0.9

Results obtained:

The best model had a fitness value of 0.847 with gene ((5, 1, 1), (72, 83, 101)). The maximum
mean generation fitness obtained was 0.6437. The ratio of dummy individuals to total individuals
was 92:100.
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Observations:

Since the problem starts as a two-class classification problem, the individuals always predict
a single class—by doing this, they can easily achieve 50% accuracy. We refer to these individuals
as dummy individuals. Due to the high mutation factor (i.e., 70%), variance was high among the
repopulated individuals. Therefore, a significant part of the population was unable to properly
receive their parents’ genes.

As a result, all models had approximately 50% accuracy (dummy individuals). Since the
maximum filter size was 20, the block’s input size was sometimes smaller than the filter size.
Because those blocks served as identity layers (i.e., they merely sped up the transfer of input
into output without applying filters), they contributed nothing to individuals’ fitness. Only 8%
of individuals learned properly; all others were dummy individuals. The result is weak child
generations.

Experiment 2: Mutation factor 0.3

In this experiment, we tried to solve the problem presented in Experiment 1 (i.e., the high
number of dummy individuals). This was a problem because dummy individuals cannot specialize
well in the classification problem at hand. This problem was resolved by reducing the mutation
factor from 0.7 to 0.3 (i.e., 30% of the individuals in the new generation were mutated).

Configuration used for the GA:

population_size = 10, max_filter_size = 20, max_filter_count = 100, max_generations = 10,
max_epochs = 20, mutation_factor = 0.3, # earlier = 0.7, num_blocks = 3, needed_fitness = 0.9

Results obtained:

The best model in this experiment had a fitness value of 0.8894 with gene ((2, 6, 6), (93, 29,
16)). The maximum mean generation fitness obtained was 0.8626. The ratio of dummy individuals
to total individuals was 11:100.

Observations:

By reducing the mutation factor, we obtained a high number of learner individuals that
could efficiently classify emotions. After further observations of the results, we saw that many
individuals remained the same as we moved on to higher generations due to the low mutation
factor. The whole process depended substantially on the first generation’s genes, which did not
help the population acquire different genes (which, in turn, could have led to better results).

Experiment 3: Mutation factor 0.6

Reducing the mutation factor limited the GA’s ability to generate high-performing mutated
individuals. Therefore, the properties of generated individuals resembled those of randomly gen-
erated individuals. Therefore, in this experiment, a mutation factor of 0.6 was selected (i.e., 60%
of the generated individuals were mutated).

The configurations used in this experiment are as follows:

population_size = 10, max_filter_size = 15, max_filter_count = 100, max_generations = 10,
max_epochs = 20, mutation_factor = 0.6, # default = 0.7, num_blocks = 3, needed_fitness = 0.9

Results:

The best model in this experiment had a fitness value of 0.8794 with gene ((3, 2, 6), (101, 64,
16)). The maximum mean generation fitness obtained was 0.7983. The ratio of dummy individuals
to learner individuals was 31:100.
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Observations:

These configurations provide better results in terms of the learner and dummy individ-
ual counts. In this case, 69% of the individuals were capable of learning and classifying our
dataset—however, we still failed to achieve the desired fitness. The problem associated with having
redundant blocks serve as identity layers was also reduced when the max_filter_size was decreased.
While investigating the reason underlying lower accuracy, we looked into the training and valida-
tion losses of the individuals, which showed high overfitting in the individuals toward the training
data.

Experiment 4: Mutation factor 0.6 and batch normalization

As observed in Experiment 3, we achieved a reasonable dummy-to-learner ratio, and the
problem of blocks working as identity layers was also reduced. Even so, the individuals exhibited
overfitting, resulting in high training accuracy (approx. 96–98%) and low validation accuracy (80–
83%). In order to overcome this problem, we added batch normalization and dropout layers in
the blocks (see Fig. 6). At this point, the blocks were as follows:

Figure 6: Modified CNN model architecture block with additional regularization layers

Configurations used for the GA in this experiment:

population_size = 10, max_filter_size = 12, # default = 20, max_filter_count = 100,
max_generations = 10, max_epochs = 20, mutation_factor = 0.6, # earlier = 0.7, num_blocks =
3, needed_fitness = 0.9

Results obtained:

The best model in this experiment had a fitness value of 0.8738 with gene ((2, 3, 6), (93, 38,
16)). The maximum mean generation fitness obtained was 0.8536. The ratio of dummy individuals
to total individuals was 0:100.

Observations:

After adding batch normalization, all of our models became learners, which is a strong sign
that the population generates better next-generation individuals, thus indicating an upward trend
in mean generation fitness. However, even upon observing the training accuracy and validation
accuracy, the individuals were still overfitting. When the best individual from this experiment
was tested with real-world images, it could not classify the sentiments correctly, showing poor
generalization of the individuals.

Experiment 5: Using the Happy and Sad subsets

After a thorough investigation, it was found that the overfitting was due to an insufficient
Angry subset of the original dataset. Experiment 4 was performed (with the same configurations
imposed on the Happy and Sad subsets of the original dataset) to overcome this. This yielded
very promising results, as the best individual’s fitness was 0.9038.
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The following configurations were applied to the GA:

population_size = 10, max_filter_size = 15, # default = 20, max_filter_count = 100,
max_generations = 10, max_epochs = 20, mutation_factor = 0.6, # default = 0.7, num_blocks
= 3, needed_fitness = 0.9

Results:

The best model in this experiment had a fitness value of 0.9054 with gene ((3, 4, 16), (101,
98, 101)). The maximum mean generation fitness obtained was 0.8687. The ratio of dummy
individuals to total individuals was 2:100.

Observations:

• The overfitting problem was reduced by shifting to the Happy and Sad subsets of the
dataset.
• The model generalized well to real-world images.

Generalized results:

• Fig. 7 below depicts the mean generation fitness values of all the experiments in a sin-
gle graph. As can be seen, the overall results and learning abilities increased with each
experiment when we used optimized GA configurations.

Figure 7: Mean generation fitness with all mutation factors
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4.3.1 Model’s Hyperparameter Space Visualization with PCA
Hyperparameter optimization is a very time-consuming process because the overall parameter

space to be traversed (i.e., the space that mirrors the probability space used for probability calcu-
lations) is so vast that it is impossible to test all possible hyperparameter combinations. Assuming
that a hypothetical model has x hyperparameters that govern the model’s overall performance,
the number of possible combinations of hyperparameters is the total number of possible discrete
values multiplied by the number of parameters.

In this study, the possible hyperparameter combinations for the provided parameter ranges
are depicted in Tab. 1.

Table 1: Hyperparameter, range, and total discrete values for all possible combinations

Hyperparameter Range Total discrete values

Filter size 1 [1,20] 20
Filter size 2 [1,20] 20
Filter size 3 [1,20] 20
Filter count 1 [1,100] 100
Filter count 2 [1,100] 100
Filter count 3 [1,100] 100
Total possible combination 8,000,000,000

Due to the massive number of possible combinations, it is crucial to employ an appropriate
hyperparameter optimization technique that efficiently finds the best possible combination from
among all possible combinations in a way that satisfies the problem at hand.

The grid search and random search methods cover most of the parameter space following a
structured approach. Still, these approaches sometimes miss the best-performing parameter region
due to a lack of information about the model’s fitness in different regions. Our GA approach
overcomes this problem by traversing the parameter space while considering the model’s fitness.
In other words, the GA approach focuses on regions with high model fitness (see Fig. 8).

The first generations of the GA are randomly initialized. As a result, hyperparameter combi-
nations were selected randomly from the overall hyperparameter space, as in the random search
approach. The following generation’s individuals were then generated based on the performance
of the models of previous generations, which helped the individuals traverse the parameter space
in a more performance-centric manner.

The GA’s performance in the hyperparameter search within this parameter space can be better
understood if all models are depicted in a single graph. In such a graph, each point represents
a model’s unique gene or set of hyperparameters (similarly to the depictions of the grid search
and random search methods presented in the above figure). Considering three blocks per model
with one filter size and one filter count per block, a model can be uniquely represented as the
combination of the six hyperparameters considered in this research. Because six hyperparameters
(or, to put it another way, six-dimensional values) are required to represent a single model, it is
impossible to visualize such values on a 2D plane.
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Figure 8: Assuming a two-hyperparameter model, the traditional hyperparameter optimization
techniques (i.e., grid search and random search) traverse the hyperparameter space as depicted in
the figure. Each point in the figure represents a unique hyperparameter combination formed by
the intersection of specific hyperparameter values from the corresponding axis, thus resembling a
unique model configuration selected using the respective approach

Figure 9: The reduction of six-dimensional data to two-dimensional data (named Reduced Hyper-
parameter 1 and Reduced Hyperparameter 2) with the help of PCA for the sake of visualizing
the model’s hyperparameter combinations on a 2D plot

PCA was performed based on these six hyperparameters to transform the six-dimensional data
into two-dimensional data. Thus, the same model can be represented using just two values instead
of six while retaining most of the important information (Fig. 9).
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Based on the obtained two-dimensional values, all models obtained by the GA hyperparam-
eter search are plotted into the 2D plot presented in Fig. 10. The figure provides a visualization
of how the GA can traverse the parameter space.

Figure 10: A plot of all hyperparameter combinations generated and analyzed by the GA after
being reduced into two-dimensional data. Hyperparameter combinations generated in the respec-
tive experiments are depicted with corresponding colors

Final Model Training with Best Model Genes:

Considering all experiments together, the best-performing model was that with genes ((3, 4,
16), (33, 98, 101)) in Experiment 5, as it had a fitness value of 0.9054. When the model with these
gene values was trained individually for significant epochs, it achieved 96.984% accuracy when
compared to the best model. The ROC curve, precision-recall curve, and classification report for
this best model are as follows:

Confusion Matrix:

The accuracy can be calculated using Eq. (7) from the normalized confusion matrix (Fig. 11)
as follows:

Accuracy= 0.96+ 0.97
0.96+ 0.035+ 0.025+ 0.97

Accuracy = 96.984%

Precision-Recall Curve and ROC Curve:
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Figure 11: Confusion matrix

The precision-recall curve corresponding to the result is given in Fig. 12. The ROC-AUC
curve reflecting the accuracy is depicted in Fig. 13.

Figure 12: Precision-recall curve
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Figure 13: ROC curve with AUC

Tab. 2 summarizes the hyperparameters and experiments.

Table 2: Hyperparameters and best fitness for each experiment

Hyper
parameters and
results

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Population size 10 10 10 10 10
Max filter size 20 20 15 12 15
Max filter count 100 100 100 100 100
Max generations 10 10 10 10 10
Max epochs 20 20 20 20 20
Mutation factor 0.7 0.3 0.6 0.6 0.6
Num blocks 3 3 3 3 3
Needed fitness 0.9 0.9 0.9 0.9 0.9
Best fitness 0.847 0.8894 0.8794 0.8738 0.9054
Dummy
individuals vs.
total individuals
ratio

92:100 11:100 31:100 0:100 2:100

4.3.2 Comparison with Previous Works
A comparison shows that where your work exists. A result of 96.984% is obtained for a binary

classification of Happy and Sad images from a set of experiments where the GA hyperparameters
are changed to find the best CNN architecture. The results of experiments should be compared
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only when they have the same setup and are performed in the same environment. Nevertheless,
comparisons between the current results and those of other works are presented in Tab. 3.

Table 3: Comparisons with previous works

Authors/Research Method Dataset Accuracy

M. Govindrajan [6] Hybrid NB-GA Movie review data 93.80%
Arash Rijhtegar et al. [15] CNN-SVM with GA Yale 94.67%
Yanun Sun et al. [13] Auto CNN with GA CIFAR10 96.78%
Proposed Work CNN-GA with PCA [18] 97%
Yu Xin Yang et al. [25] SR-CNN LFW 98.98%
Hui Zhi et al. [12] Genetic algorithm Face database of chinese academy 99%

5 Conclusion

This paper developed an algorithm in which CNNs are combined with a GA, which can
generalize well to different CNN architectures. This results in a complete autonomous training
method that finds the best combinations of hyperparameter configurations for the problem at
hand. The research objective was successfully achieved by designing a generalized GA-based CNN
hyperparameter search strategy.

The proposed approach was examined using a Kaggle face sentiment dataset [18]. A compar-
ison with the top-performing approaches in the field revealed that this approach achieves up to
96.984% accuracy. Moreover, the proposed approach is automatic, making it easy to use, even for
users without comprehensive knowledge of CNNs or GAs.

The scope of advancement of this work is described as follows:

• In this study, the GA was applied only to filter sizes and filter counts for three blocks. The
experimental protocol can be performed on more hyperparameters in the future.
• Better algorithms can be employed for the crossover and mutation of new individuals.
• A better initialization technique of first-generation individuals could reduce overall training
time.
• A comprehensive discussion can be held regarding variations among crossover methods in
the GA so that sentiments can be analyzed more accurately.
• Sentiment analyses using different GAs (e.g., particle swarm optimization, honey bee
optimization, ant colony optimization) can be evaluated.
• Genetic evolutionary techniques, hill-climbing, simulated annealing, and Gaussian adapta-
tion could perhaps achieve better results through optimization.

The most notable limitations of this work are as follows:

• The GA-based hyperparameter search is quite a slow process when large parameter spaces
are involved.
• The improper initialization of first-generation individuals could lead to inefficient individ-
uals.
• The minimum and maximum limits for the parameter space play a vital role in convergence
speed.
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