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Abstract: The continuous monitoring of the machine is beneficial in improv-
ing its process reliability through reflected power function distribution. It is
substantial for identifying and removing errors at the early stages of produc-
tion that ultimately benefit the firms in cost-saving and quality improvement.
The current study introduces control charts that help the manufacturing con-
cerns to keep the production process in control. It presents an exponentially
weighted moving average and extended exponentially weighted moving aver-
age and then compared their performance. The percentiles estimator and the
modified maximum likelihood estimator are used to constructing the control
charts. The findings suggest that an extended exponentially weighted moving
average control chart based on the percentiles estimator performs better than
exponentially weightedmoving average control charts based on the percentiles
estimator and modified maximum likelihood estimator. Further, these results
will help the firms in the early detection of errors that enhance the process
reliability of the telecommunications and financing industry.

Keywords: Reflected power function distribution; exponentially weighted
moving average; extended exponentially weighted moving averages; modi-
fied maximum likelihood estimator; percentile estimator

1 Introduction

The scholars are anxious to know about the error tendency during the entire manufacturing
process to validate the pre-production testing results. It was expected during the machine instal-
lation process that the pre-testing results remain valid in the practical life, and also errors remain
in control for instance, laptop manufacturing, which passes through several processes. The final
product should be error-free when it is delivered to the market for sale as the complaints from
distributors and customers can harm the firm’s reputation. Therefore, companies follow a rigorous
monitoring procedure to identify and handle faults at the early stages. An efficient monitoring
system can minimize the likelihood of product failure and improves its quality. That is why
organizations paid attention to develop a system that can identify errors at an initial stage and
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keep them in control overtimes. In this way, it not only increases the efficiency of the product but
also enhances its productivity.

However, the underlying situation of the production process may not be as normal in practical
life as expected. That is why the error distribution of the manufacturing concerns is not normal
and often follows a reflected power function distribution (RPFD). Therefore, there is a need to
apply the RPFD under such real-life situations, where normal distribution failed to assess the error
patterns. The current study used the RPFD from Zaka et al. [1] in process analysis, reliability
testing, and error predicting. We also introduce control charts based on the assumptions that if the
number of errors follows the RPFD and there exists a non-random variation in the distribution,
then errors can be determined and handled at the initial stage. These control charts make the
monitoring process of a machine more reliable and also provides persistent results.

Previously scholars constructed control charts based on the normality assumption. How-
ever, few studies like Roberts [2] recommended including exponentially weighted moving average
(EWMA). Some studies currently discussed different control charts for real-life situations where
normality assumptions do not fulfil [3–15]. These real-life applications of the control charts
motivate scholars to explore them in non-normal cases where error patterns are unpredictable,
particularly in manufacturing concerns. It helps the practitioners in the early solution to the
errors that further lead to continuing the process without any interval, ultimately saving time and
cost. It also develops the customers’ confidence in the corporations through a continuous quality
improvement process.

Generally, statisticians deal with two types of data processing. The first type provides the
complete information about the variable of interest, while the second one often depicts misleading
or sometimes based on basic details about the study variables. The present study is conducted in
the first type of data when the process yields all the observations and follows the RPFD. However,
the second type of data is more appropriate for neutrosophic statistics and is used in the literature
to make the control charts. The scholars Aslam et al. [9–11], Aslam [12], Aslam et al. [13], and
Khan et al. [14,15] have provided empirical support to these arguments.

This study has an added advantage over existing papers on control charts; first, it is applicable
in most situations when the normality of any process is in doubt. We have found limited litera-
ture [2–15] discussing practical life scenarios. Thus, the current work may be a valuable addition to
the literature. Second, it can be extended to neutrosophic statistics by providing the control charts
when the process provides indeterminate data without assuming the normality of the process
distribution.

We have the following breakage of the manuscript: Section 2.1 provides us with the RPFD
and its estimators. Then, we have constructed an EWMA chart and presented it in Section 2.2,
and the EEWMA chart is developed in Section 2.6. Simulation study and real-life application are
discussed in Section 3, and then finally conclusion is drawn in Section 4.
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2 Materials and Methods

2.1 Proposed Process Monitoring for Reflected Power Function Distribution
Using Zaka et al. [1] and assuming x1,x2,x3, . . . ,xt being independent identically distributed

random variables follows the RPFD as given below

f (x)= γ (θ −x)γ−1

βγ
, θ −β < x< θ , and β, θ ,γ > 0

and

F (x)= 1− (θ−x)γ
βγ ,

where “θ” is the reflecting parameter. Also, γ , β are the shape and scale parameters. From Zaka
et al. [1], MMLM and PE estimators are defined below,

γ̂MMLM =
(

n(1+ ln(0.5))(
nln

(
θ − x̃

)−∑n
i=1 ln (θ −xi)

)
)
. (1)

and

γ̂PE =
ln
(
1−H
1−L

)
ln
(

θ−PH
θ−PL

) . (2)

where H = maximum percentile, L = minimum percentile and P = percentile

2.2 EWMA Control Chart Using PE

Using E
(
γ̂PE

) = γ . The shape parameter is estimated through PE, and EWMA statistic is
given as

EWPEt = λγ̂PE(t) + (1−λ)EWPEt−1, (3)

where EWPEt−1 represent the EWMA statistic for the preceding time. And λ is a smoothing
constant. We refer the Zaka et al. [16] to get the details on generalizing EWMA Statistics,

EWPEt = λγ̂PE(t)+(1−λ) λγ̂PE(t−1)+(1−λ)2 γ̂PE(t−2)+ . . .+(1−λ)t−1 λγ̂PE(1)+(1−λ)t EWPE0,

where

EWPE0 = γ , (4)

Using Zaka et al. [16], we get

E (EWPEt)= γ . (5)

Var (EWPEt)= λ2VPE
(
1−(1−λ)2t

1−(1−λ)2

)
.

Alternatively, we get

Var (EWPEt)=VPE
(
1− (1−λ)2t

)( λ

2−λ

)
. (6)
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The control limits are,

LCLEWPEt = γ −L ∗
√
VPE ∗ λ

(2−λ)

(
1− (1−λ)2t

)

CLEWPEt = γ

UCLEWPEt = γ +L ∗
√
VPE ∗ λ

(2−λ)

(
1− (1−λ)2t

)
,

where 1− (1−λ)2t tends to unity if t approach towards larger observation. The control limits are
defined below

LCLEWPEt = γ −L ∗
√
VPE ∗ λ

(2−λ)
(7)

CLEWPEt = γ (8)

UCLEWPEt = γ +L ∗
√
VPE ∗ λ

(2−λ)
. (9)

2.3 EWMA Control Chart Using MMLM
We define the EWMA statisticas

EWMMLMt = λγ̂MMLM+ (1−λ)EWMMLMt−1,

where γ̂MMLM is MMLM for the RPFD and EWMMLMt−1 is the statistic from previous time.
λ is a smoothing constant. Using (5) and (6), we get

LCLEWMMLMt = γ −L ∗
√
VMMLM

(
λ

2−λ

)(
1− (1−λ)2t

)
(10)

CLEWMMLMt = γ (11)

UCLEWMMLMt = γ +L ∗
√
VMMLM

(
λ

2−λ

)(
1− (1−λ)2t

)
. (12)

Var
(
γ̂MMLM(t)

)=VMMLM =E
(
γ̂MMLM− γ

)2
2.4 Algorithm Used for EWMA Control Charts Using PE and MMLM

We generate a random sample from the process following RPFD using the sample size of 150.
We then compute the estimate of the shape parameter using PE and MMLM alternatively and
get their means and variances. Finally, the control limits using PE and MMLM are computed,
and ARL is computed. We have fixed ARL0 = 500. Now we assume that the process parameter
is shifted from its true value. We take different shifts and computed ARL for shifted process and
called it ARL1. We have repeated this process 5000 times. Using the algorithm approach above,
it is observed that the EWMA chart is helpful in the detection of small shifts at the early stage
of the distribution. Here, we apply ARL criteria to compare the efficiency of an EWMA and
EEWMA for both estimation methods.
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From Tabs. 1–3 and Figs. 1–3, we observe an increasing behavior in ARL for the EWMA
control chart with an increase in the value of λ using PE and MMLM to estimate the distribution
parameters. We note that as λ gets close to 1, there is less variation in the ARLs. Also, from
Figs. 2 to 4, we note that the control chart based on PE performs better than the control chart
based on MMLM.

Table 1: ARLS for EWMA control charts using PE and MMLM (λ= 0.2)

Estimation methods Shift

0 0.40 1.20 2.40 3.60 4.80 6.00 7.20

PEL = 7.355 ARL 500.38 5.62 1.783 1.016 1 1 1 1
SDRL 496.529 2.5398 0.5159 0.1255 0 0 0 0
P10 53.8 3 1 1 1 1 1 1
P25 139.7 4 1 1 1 1 1 1
P50 362.0 5 2 1 1 1 1 1
P75 701.00 7 2 1 1 1 1 1
P90 1186.80 9 2 1 1 1 1 1

MMLML = 4.55 ARL 500.847 24.155 4.28 2.062 1.523 1.169 1.023 1.002
SDRL 496.8183 19.10534 1.6193 0.6054 0.46029 0.5000 0.4625 0
P10 60.00 7 2 1 1 1 1 1
P25 159.75 10 3 2 2 1 1 1
P50 345.00 19 4 2 2 2 1 1
P75 689.75 33 5 3 2 2 1 1
P90 1102.30 51 6 3 2 2 1 1

Table 2: ARLS for EWMA control charts for PE and MMLM estimators (λ= 0.6)

Shift

0 0.40 1.20 2.40 3.60 4.80 6.00 7.20

PEL = 12.15 ARL 500.47 6.199 1.267 1 1 1 1 1
SDRL 469.28 6.601 0.478 0 0 0 0 0
P10 54.0 2.0 1 1 1 1 1 1
P25 157.70 3.0 1 1 1 1 1 1
P50 356.49 6.0 1 1 1 1 1 1
P75 707.49 10.0 2 1 1 1 1 1
P90 1192.01 15.0 2 1 1 1 1 1

(Continued)
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Table 2: Continued

Shift

0 0.40 1.20 2.40 3.60 4.80 6.00 7.20

MMLML = 9.95 ARL 500.66 81.948 7.109 1.853 1.199 1.021 1.002 1
SDR 484.588 76.1125 5.71960 0.8591 0.40194 0.1455 0.044 0
P10 64.10 10.0 2 1 1 1 1 1
P25 154.175 26.0 3 1 1 1 1 1
P50 343.40 61.0 5 2 1 1 1 1
P75 692.15 114.0 9 2 1 1 1 1
P90 1174.14 183.1 15 3 2 1 1 1

Table 3: ARLS for P.E and MMLM estimators based EWMA control charts (λ= 0.75)

Estimation methods Shift

0 0.40 1.20 2.40 3.60 4.80 6.00 7.20

PEL = 6.72 ARL 500.77 8.437 1.233 1 1 1 1 1
SDRL 470.86 7.122 0.4700 0 0 0 0 0
P10 54.50 2.010 1 1 1 1 1 1
P25 156.85 4.020 1 1 1 1 1 1
P50 356.40 7.0 1 1 1 1 1 1 1
P75 698.85 13.0 1 1 1 1 1 1 1
P90 1162.3 20.11 2 1 1 1 1 1

MMLML = 11.80 ARL 500.86 98.398 9.961 1.965 1.188 1.016 1.002 1
SDR 492.29 93.3436 9.02157 1.070 0.4084 0.1255 0.044 0
P10 61.00 12.0 2 1 1 1 1 1
P25 149.75 30.0 4 1 1 1 1 1
P50 343.50 69.0 7 2 1 1 1 1
P75 692.25 141.0 14 2 1 1 1 1
P90 1178.8 215.2 22 3 2 1 1 1

2.5 The Traditional Extended Exponentially Weighted Moving Averages (EEWMA) Control Chart
When the distribution of the process is normal, the EEWMA control chart was introduced

by Naveed et al. [17]. The EEWMA control chart by Naveed et al. [17] is given as

Zt = λ1Tt−λ2Tt−1+ (1−λ1+λ2)Zt−1

where 0≤ λ1 ≤ 1 and 0≤ λ2 ≤ λ1. Tt−1 is represents the previous value of the variable and Zt−1
denotes the previous value of the statistic.

The mean and variance are given as

E (Zt)=μ
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And

var (Zt)= σ 2

[(
λ21+λ22

){ 1− (1−λ1 +λ2)
2t

2 (λ1−λ2)− (λ1−λ2)
2

}
− 2aλ1λ2

{
1− (1−λ1+λ2)

2t−2

2 (λ1−λ2)− (λ1−λ2)
2

}]

Figure 1: ARLS for EWMA control charts (λ= 0.2)

Figure 2: ARLS for EWMA control charts taking λ= 0.6



4788 CMC, 2022, vol.70, no.3

Figure 3: ARLS for EWMA control charts (λ= 0.75)

Figure 4: ARLS for MMLM and PE-based EEWMA control charts taking λ1 = 0.90,λ2 = 0.20

2.6 Proposed EEWMA Control Chart Using PE
The EEWMA statistic using PE of the shape parameter of the RPFD using Zaka et al. [1]

and Naveed et al. [17] is stated by

EEWPEt = λ1γ̂PE(t) −λ2γ̂PE(t−1) + (1−λ1+λ2)EEWPEt−1

taking t = 1, 2 and a= (1−λ1+λ2), we get

EEWPE2 = λ1γ̂PE(2) + (aλ1−λ2) γ̂PE(1) − aλ2γ̂PE(0) + a2EEWPE0

Let b= (aλ1−λ2) and solving

EEWPE3 = λ1γ̂PE(3) + bγ̂PE(2) + abγ̂PE(1) − a2λ2γ̂PE(0) + a3EEWPE0
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On generalizing above, we get

EEWPEt = λ1γ̂PE(t) + bγ̂PE(t−1) + abγ̂PE(t−2) + a2bλ2γ̂PE(t−3) + a3λ2γ̂PE(0) + . . .+ at−2bγ̂PE(1)

− at−1λ2γ̂PE(0) + atEEWPE0

By taking expectation and Replacing b= (aλ1−λ2) we get

E (EEWPEt)= γ
{
λ1

(
1+ a+ a2+ a3+ . . .+ at−1

)
−λ2

(
1+ a+ a2+ a3+ . . .+ at−1

)
+ at

}
E (EEWPEt)= γ

{
(λ1−λ2)

(
1+ a+ a2 + a3+ . . .+ at−1

)
+ at

}
By using geometric series, we get

E (EEWPEt)= γ

{
(λ1−λ2)

(
1− at

1− a

)
+ at

}

So, E (EEWPEt)= γ
{
1− at+ at

}
E (EEWPEt)= γ (13)

We know Var
(
γ̂PE(t)

)=VPE =E
(
γ̂PE− γ

)2 and solving we get

Var(EEWPEt)=VPE
{
λ21+ a2λ21− 2aλ1+λ22 + a4λ21− 2a3λ1

+ a2λ22+
(
a6λ41− 2a5λ31+ a4λ42

)
+ . . .+ a2(t−2)λ21− 2a2t−3λ1+ a2(t−2)λ22

+a2(t−1)λ22

}

Var(EEWPEt)=VPE

{(
λ21+λ22

)(1− a2t

1− a2

)
− 2aλ1λ2

(
1− a2t−2

1− a2

)}

Var(EEWPEt)=VPE

{(
λ21+λ22

)(1− (1−λ1+λ2)
2t

1− (1−λ1+λ2)
2

)
− 2aλ1λ2

(
1− (1−λ1+λ2)

2t−2

1− (1−λ1+λ2)
2

)}
(14)

The control limits are given as

UCLEEWPEt = γ +L

√√√√VPE

{(
λ21+λ22

)(1− (1−λ1+λ2)
2t

1− (1−λ1 +λ2)
2

)
− 2aλ1λ2

(
1− (1−λ1 +λ2)

2t−2

1− (1−λ1 +λ2)
2

)}

CLEEWPEt = γ

LCLEEWPEt = γ −L

√√√√VPE

{(
λ21+λ22

)(1− (1−λ1+λ2)
2t

1− (1−λ1 +λ2)
2

)
− 2aλ1λ2

(
1− (1−λ1+λ2)

2t−2

1− (1−λ1+λ2)
2

)}
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2.7 Proposed EEWMA Control Chart Using MMLM

Assuming E
(
γ̂MMLM

)= γ . The EEWMA statistic using MMLM of the shape parameter of
the RPFD using Zaka et al. [1] and Naveed et al. [17] is stated by

EEWMMLMt = λ1γ̂MMLM(t) −λ2γ̂MMLM(t−1) + (1−λ1+λ2)EEWMMLMt−1

The EEWMA statistic using the mean and variance given in (13) and (14). The control limits
are given as

UCLEEWMMLMt

= γ +L

√√√√VMMLM

{(
λ21+λ22

)(1− (1−λ1+λ2)
2t

1− (1−λ1+λ2)
2

)
− 2aλ1λ2

(
1− (1−λ1 +λ2)

2t−2

1− (1−λ1 +λ2)
2

)}

CLEEWMMLMt = γ

LCLEEWMMLMt

= γ −L

√√√√VMMLM

{(
λ21+λ22

)(1− (1−λ1+λ2)
2t

1− (1−λ1+λ2)
2

)
− 2aλ1λ2

(
1− (1−λ1 +λ2)

2t−2

1− (1−λ1 +λ2)
2

)}

2.8 Algorithm for EEWMA Control Charts Under PE and MMLM
We generate a random sample from the process following RPFD using the sample size of 150.

We then compute the estimate of the shape parameter using PE and MMLM alternatively and
get their means and variances. Finally, the control limits using PE and MMLM are computed,
and ARL is computed. We have fixed ARL0 = 500. we take different shifts and computed ARL
for shifted process and called it ARL1. We have repeated this process 5000 times.

Using the above algorithm, we observe the clear efficiency of EEWMA over EWMA using
PE and MMLM. The ARLs are presented in Tabs. 4 and 5 for both PE and MMLM. We observe
that for larger λ1, we get a large ARL value. We also see that EEWMA control chart increases
if the value of λ1 is increased. Also, we see from Figs. 4–6 that the ARLs for EEWMA under
PE remain less than ARLs for MMLM based EEWMA control chart. Additionally, we see that
PE provides more efficient control charts compared to the MMLM for monitoring a process that
follows RPFD.

3 Results and Discussion

The 50 observations are generated using RPFD. Half of which is generated for the process to
be in control and the other half are created by a shift of 0.40. We presented the estimates for the
shape parameter of RPFD using MMLM and PE are calculated in Tab. 6, Figs. 7 and 8, illustrate
the estimates from EEWMA. We see that PE-based on the EEWMA control chart detects an
out-of-control state earlier than MMLM.
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Table 4: ARLS for MMLM based EEWMA control charts

Estimation
methods

Shift

0 0.40 1.20 2.40 3.60 4.8 6.0 7.2

MMLM
λ1 = 0.30,
λ2 = 0.20
L = 4.30

ARL 507.848 14.388 3.363 1.571 1.11 1.006 1.001 1
SDRL 483.7063 8.5163 1.4089 0.5807 0.3130 0.0772 0.03162 0
P10 53.90 5 2 1 1 1 1 1
P25 157.50 9 2 1 1 1 1 1
P50 358.50 13 3 2 1 1 1 1
P75 712.25 19 4 2 1 1 1 1
P90 1117.50 25 5 2 2 1 1 1

MMLM
λ1 = 0.30,
λ2 = 0.60
L = 3.98

ARL 503.865 23.533 3.197 1.388 1.045 1.002 1 1
SDRL 511.57 20.6742 1.605 0.5307 0.2074 0.0446 0 0
P10 46.00 5 1 1 1 1 1 1
P25 149.75 9 2 1 1 1 1 1
P50 334.50 17 3 1 1 1 1 1
P75 712.25 33 4 2 1 1 1 1
P90 1159.00 52 5 2 1 1 1 1

MMLM
λ1 = 0.30,
λ2 = 0.75
L = 3.98

ARL 503.618 26.877 3.387 1.419 1.051 1.002 1.001 1
SDRL 512.5012 24.15486 1.768 0.55112 0.2201 0.0446 0.031 0
P10 46.90 5 1 1 1 1 1 1
P25 144.25 10 2 1 1 1 1 1
P50 329.5 19 3 1 1 1 1 1
P75 713.25 37 4 1 1 1 1 1
P90 1164.6 59 6 1 1 1 1 1

MMLM
λ1 = 0.5,
λ2 = 0.20
L = 8.80

ARL 506.836 14.863 3.211 1.464 1.067 1.003 1.001 1
SDRL 492.8587 9.447194 1.4527 0.5558 0.2501 0.0547 0.0316 0
P10 56.80 5 1 1 1 1 1 1
P25 153.75 8 2 1 1 1 1 1
P50 358.50 13 3 1 1 1 1 1
P75 707.00 19 4 2 1 1 1 1
P90 1124.10 27 5 2 1 1 1 1

MMLM
λ1 = 0.5,
λ2 = 0.60

ARL 502.748 36.614 3.661 1.453 1.059 1.002 1.001 1
SDRL 496.0317 34.778 2.1005 0.5693 0.2357 0.04469 0.0316 0
P10 53.90 6.0 1 1 1 1 1 1
P25 146.75 11.0 2 1 1 1 1 1
P50 337.50 25.0 3 1 1 1 1 1
P75 708.75 52.0 5 2 1 1 1 1
P90 1156.20 82.1 6 2 1 1 1 1

(Continued)
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Table 4: Continued

Estimation
methods

Shift

0 0.40 1.20 2.40 3.60 4.8 6.0 7.2

MMLM
λ1 = 0.5,
λ2 = 0.75,
L= 10.65

ARL 505.222 46.909 4.239 1.526 1.077 1.005 1.001 1
SDRL 495.0974 45.73822 2.846 0.6047 0.26672 0.07056 1.001 0
P10 60.0 6 1 1 1 1 1 1
P25 147.0 14 2 1 1 1 1 1
P50 337.5 33 4 1 1 1 1 1
P75 711.0 64 5 2 1 1 1 1
P90 1217.7 107 8 2 1 1 1 1

MMLM
λ1 = 0.90,
λ2 = 0.20,
L = 9.725

ARL 505.382 21.432 3.361 1.424 1.053 1.002 1.001 1
SDRL 515.024 17.76437 1.6695 0.5572 0.2241 0.0446 0.0316 0
P10 46.00 5 1 1 1 1 1 1
P25 142.00 9 2 1 1 0 1 1
P50 332.00 16 3 1 1 1 1 1
P75 712.25 29 4 2 1 1 1 1
P90 1160.10 46 6 2 1 1 1 1

MMLM
λ1 = 0.90,
λ2 = 0.60,
L = 4.14

ARL 503.865 72.193 5.892 1.666 1.12 1.006 1.001 1
SDRL 486.214 66.673 4.607 0.7368 0.3281 0.0772 0.03162 0
P10 64.9 9.0 2 1 1 1 1 1
P25 154.0 22.0 3 1 1 1 1 1
P50 343.5 53.0 5 2 1 1 1 1
P75 688.0 101.0 8 2 1 1 1 1
P90 1174.4 160.1 12 3 2 1 1 1

MMLM
λ1 = 0.90,
λ2 = 0.75
L = 12.00

ARL 506.2 92.447 8.418 1.816 1.146 1.007 1.001 1
SDRL 490.6586 86.438 7.653 0.9214 0.3561 0.08341 0.0316 0
P10 63.9 11.00 2.0 1 1 1 1 1
P25 155.0 29.00 3.0 1 1 1 1 1
P50 346.0 66.00 6.0 2 1 1 1 1
P75 693.0 132.25 11.0 2 1 1 1 1
P90 1178.7 206.00 18.10 3 2 1 1 1

Table 5: ARLS for PE-based EEWMA control charts

Estimation
method

Shift

0 0.40 1.20 2.40 3.60 4.8 6.0 7.20

PE
λ1 = 0.30,
λ2 = 0.20
L = 6.83

ARL 500.291 4.191 1.41 1 1 1 1 1
SDRL 493.5543 2.246 0.5120 0 0 0 0 0
P10 61.00 2 1 1 1 1 1 1
P25 139.75 3 1 1 1 1 1 1
P50 341.00 5 1 1 1 1 1 1
P75 666.50 6 2 1 1 1 1 1
P90 1190.50 8 2 1 1 1 1 1

(Continued)
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Table 5: Continued

Estimation
method

Shift

0 0.40 1.20 2.40 3.60 4.8 6.0 7.20

PE
λ1 = 0.30,
λ2 = 0.60,
L = 7.144

ARL 500.291 4.575 1.161 1 1 1 1 1
SDRL 515.416 2.604 0.3757 0 0 0 0 0
P10 51.00 2 1 1 1 1 1 1
P25 141.75 3 1 1 1 1 1 1
P50 349.50 4 1 1 1 1 1 1
P75 686.75 6 1 1 1 1 1 1
P90 1158.00 8 2 1 1 1 1 1

PE
λ1 = 0.30,
λ2 = 0.75,
L = 7.27

ARL 498.948 4.783 1.164 1 1 1 1 1
SDRL 505.03 2.938 0.375 0 0 0 0 0
P10 51.90 2 1 1 1 1 1 1
P25 141.75 3 1 1 1 1 1 1
P50 349.0 4 1 1 1 1 1 1
P75 681.0 6 1 1 1 1 1 1
P90 1170.4 9 2 1 1 1 1 1

PE
λ1 = 0.5,
λ2 = 0.20,
L = 7.00

ARL 506.48 4.814 1.28 1 1 1 1 1
SDRL 493.1145 2.4391 0.4602 0 0 0 0 0
P10 65.00 2 1 1 1 1 1 1
P25 145.75 3 1 1 1 1 1 1
P50 363.50 5 1 1 1 1 1 1
P75 673.50 6 2 1 1 1 1 1
P90 1232.20 8 2 1 1 1 1 1

PE
λ1 = 0.5,
λ2 = 0.60,
L = 7.35

ARL 502.326 5.104 1.294 1 1 1 1 1
SDRL 496.0043 3.5320 0.375 0 0 0 0 0
P10 60 2 1 1 1 1 1 1
P25 161 3 1 1 1 1 1 1
P50 349 4 1 1 1 1 1 1
P75 648 7 1 1 1 1 1 1
P90 1195 10 2 1 1 1 1 1

(Continued)
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Table 5: Continued

Estimation
method

Shift

0 0.40 1.20 2.40 3.60 4.8 6.0 7.20

PE
λ1 = 0.5,
λ2 = 0.75,
L = 7.44

ARL 503.405 5.456 1.166 1 1 1 1 1
SDRL 480.0373 4.0849 0.37760 0 0 0 0 0
P10 52.00 2 1 1 1 1 1 1
P25 150 3 1 1 1 1 1 1
P50 361.00 4 1 1 1 1 1 1
P75 703.25 7 1 1 1 1 1 1
P90 1195.20 10 2 1 1 1 1 1

PE
λ1 = 0.90,
λ2 = 0.20,
L = 7.25

ARL 503.174 4 1.228 1 1 1 1 1
SDRL 490.6912 2.519 0.429 0 0 0 0 0
P10 56.00 2 1 1 1 1 1 1
P25 142.75 3 1 1 1 1 1 1
P50 363.00 4 1 1 1 1 1 1
P75 708.25 6 1 1 1 1 1 1
P90 1185.40 8 2 1 1 1 1 1

PE
λ1 = 0.90,
λ2 = 0.60,
L = 7.59

ARL 503.452 6.589 1.18 1 1 1 1 1
SDRL 471.5114 5.013 0.3996 0 0 0 0 0
P10 50.90 2 1 1 1 1 1 1
P25 150.75 3 1 1 1 1 1 1
P50 366.50 5 1 1 1 1 1 1
P75 708.50 9 1 1 1 1 1 1
P90 1172.60 13 2 1 1 1 1 1

PE
λ1 = 0.90,
λ2 = 0.75,
L = 7.66

ARL 505.005 8.112 1.191 1 1 1 1 1
SDRL 478.2393 6.746 0.4274 0 0 0 0 0
P10 52.0 2 1 1 1 1 1 1
P25 155.0 3 1 1 1 1 1 1
P50 353.0 6 1 1 1 1 1 1
P75 712.50 11 1 1 1 1 1 1
P90 1192.0 17 2 1 1 1 1 1
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Figure 5: ARLS EEWMA control charts(λ1 = 0.50,λ2 = 0.75)

Figure 6: ARLS EEWMA control charts (λ1 = 0.90,λ2 = 0.75)

Table 6: Simulated results for LCL and UCL based on proposed EEWMA

MMLM based EEWMA PE-based EEWMA

λ1 = 0.90 λ2 = 0.75 λ1 = 0.90 λ2 = 0.75

L = 12 L = 7.66

EEWMMLMt LCL UCL EEWPEt LCL UCL

2.792763 0.2380000 3.802000 2.174939 1.389540 2.630460
2.757910 0.1320048 3.907995 2.055011 1.352634 2.667366

(Continued)
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Table 6: Continued

MMLM based EEWMA PE-based EEWMA

λ1 = 0.90 λ2 = 0.75 λ1 = 0.90 λ2 = 0.75

L = 12 L = 7.66

EEWMMLMt LCL UCL EEWPEt LCL UCL

2.890396 0.1240272 3.915973 1.884097 1.349857 2.670143
2.031693 0.1234880 3.916512 1.851996 1.349669 2.670331
1.607408 0.1234533 3.916547 1.845604 1.349657 2.670343
2.457326 0.1234511 3.916549 2.209770 1.349656 2.670344
2.706825 0.1234509 3.916549 2.468172 1.349656 2.670344
2.578589 0.1234509 3.916549 2.109744 1.349656 2.670344
2.277098 0.1234509 3.916549 2.124111 1.349656 2.670344
2.033351 0.1234509 3.916549 2.082389 1.349656 2.670344
2.089141 0.1234509 3.916549 2.135626 1.349656 2.670344
2.007338 0.1234509 3.916549 1.958650 1.349656 2.670344
2.080522 0.1234509 3.916549 1.994993 1.349656 2.670344
1.995012 0.1234509 3.916549 2.039405 1.349656 2.670344
1.985600 0.1234509 3.916549 1.999159 1.349656 2.670344
2.404916 0.1234509 3.916549 1.954418 1.349656 2.670344
1.881724 0.1234509 3.916549 2.070869 1.349656 2.670344
2.660258 0.1234509 3.916549 2.120229 1.349656 2.670344
2.194834 0.1234509 3.916549 2.278065 1.349656 2.670344
2.066108 0.1234509 3.916549 2.277322 1.349656 2.670344
2.170824 0.1234509 3.916549 2.277124 1.349656 2.670344
1.925193 0.1234509 3.916549 2.230325 1.349656 2.670344
1.711615 0.1234509 3.916549 2.109841 1.349656 2.670344
2.086559 0.1234509 3.916549 2.112682 1.349656 2.670344
2.466933 0.1234509 3.916549 2.196142 1.349656 2.670344
3.217173 0.1234509 3.916549 2.478410 1.349656 2.670344
3.268923 0.1234509 3.916549 2.428640 1.349656 2.670344
3.453694 0.1234509 3.916549 2.249904 1.349656 2.670344
2.431717 0.1234509 3.916549 2.218243 1.349656 2.670344
1.925132 0.1234509 3.916549 2.212262 1.349656 2.670344
2.943783 0.1234509 3.916549 2.649364 1.349656 2.670344
3.242825 0.1234509 3.916549 2.959301 1.349656 2.670344
3.089214 0.1234509 3.916549 2.529532 1.349656 2.670344
2.728023 0.1234509 3.916549 2.546798 1.349656 2.670344

(Continued)
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Table 6: Continued

MMLM based EEWMA PE-based EEWMA

λ1 = 0.90 λ2 = 0.75 λ1 = 0.90 λ2 = 0.75

L = 12 L = 7.66

EEWMMLMt LCL UCL EEWPEt LCL UCL

2.436000 0.1234509 3.916549 2.496781 1.349656 2.670344
2.502835 0.1234509 3.916549 2.560622 1.349656 2.670344
2.404841 0.1234509 3.916549 2.348429 1.349656 2.670344
2.492511 0.1234509 3.916549 2.391968 1.349656 2.670344
2.390080 0.1234509 3.916549 2.445245 1.349656 2.670344
2.378799 0.1234509 3.916549 2.396851 1.349656 2.670344
2.881183 0.1234509 3.916549 2.343292 1.349656 2.670344
2.254360 0.1234509 3.916549 2.482961 1.349656 2.670344
3.187066 0.1234509 3.916549 2.542158 1.349656 2.670344
2.629467 0.1234509 3.916549 2.731320 1.349656 2.670344
2.475245 0.1234509 3.916549 2.730486 1.349656 2.670344
2.600721 0.1234509 3.916549 2.730273 1.349656 2.670344
2.306430 0.1234509 3.916549 2.674169 1.349656 2.670344
2.050553 0.1234509 3.916549 2.529708 1.349656 2.670344
2.499746 0.1234509 3.916549 2.533056 1.349656 2.670344
2.955474 0.1234509 3.916549 2.633164 1.349656 2.670344

Figure 7: Proposed EEWMA control chart using MMLM (L = 12, λ1 = 0.90 and λ2 = 0.75)
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Figure 8: Proposed EEWMA control chart using PE (L = 7.66, λ1 = 0.90 and λ2 = 0.75)

3.1 Real-Life Application
The Real-life data is taken from the operation side of the telecommunication industry, where

errors in the software frequently occurred regarding the billing amount, dispatch issue, contact and
login details. The per-day frequency of errors in the software is reported below: 1124, 1013, 1187,
1153, 1141, 1051, 1178, 1145, 1124, 1132, 1141, 1136, 1241,1301, 1214, 1421, 1258, 1109, 1321,
1121,1114, 1021, 1131, 1142, 1165, 1184. The data followed the RPFD and plotted for EEWMA
control charts under MMLM and PE, as shown in Figs. 9 and 10.

Figure 9: Graph of real data of the EEWMA control chart under MMLM when L = 12, λ1 =
0.90 and λ2 = 0.75

We have constructed EEWMA control charts on real-life data under MMLM and PE. For
example, in Figs. 9 and 10, we see that EEWMA under PE predicts the process shift at early
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levels compared to EEWMA under MMLM, which indicates that EEWMA under PE provides a
better explanation of the distributions when the underlying process is based on RPFD.

Figure 10: Graph of real data of the EEWMA control chart under PE when L = 7.66, λ1 =
0.90 and λ2 = 0.75

3.2 Earnings Per Share (EPS) of the National Refinery Ltd
Real-life data for earnings per share (EPS) of the National Refinery Ltd. were taken from the

State Bank of Pakistan (SBP) report for non-financial companies from the year 1984–2019. The
data in Tab. 7 followed the RPFD and plotted for EEWMA control charts under MMLM and
PE, as shown in Figs. 11 and 12.

Table 7: State Bank of Pakistan (SBP) report for non-financial companies from the year 1984–
2019

Years 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

EPS 0.8 1.8 1.8 1.8 1.8 6.96 3.09 4.3 2.9 4.5 4.9 3 2.2

Years 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

EPS 7.4 7.3 10.3 10.8 11.2 12.4 16.9 26.7 30.2 52.8 61.4 73.96 22.37

Years 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

EPS 37.81 88.16 34.68 33.96 12.03 46.38 96.14 100.61 22.14 108.7

We have constructed EEWMA control charts on real-life data under MMLM and PE. For
example, in Figs. 11 and 12,

We see that EEWMA using PE better predicts the process shifts using less samples as compare
to MMLM. So it can be used effectively for Earning per share data.
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Figure 11: Graph of real data of the EEWMA control chart under MMLM when L = 12, λ1 =
0.90 and λ2 = 0.75

Figure 12: Graph of real data of the EEWMA control chart under PE when L = 7.66, λ1 =
0.90 and λ2 = 0.75

4 Conclusions

This study is conducted to develop the control charts in a real-life situation that does not
follow a normal distribution by employing statistical methods. The main findings of the study
are:

• It discussed the application of the RPED in the production process of telecommunications
and finance.

• It has applied two memory-based control charts and suggested that EWMA and EEWMA
based on PE and MMLM are better estimators when the underlying distribution follows
the RPFD.

• Further, we compared the performance of each control chart with a PE-based EEWMA
control chart. We concluded that PE-based control charts are an effective estimator for the
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early deduction of machine errors. It can even identify minor shift errors more efficiently
than MMLM-based estimators if a distribution works under the RPFD function.

• These results can be beneficial for scholars and practitioners of the diversified field of
management and applied sciences. It will help them design the strategies to cope with the
errors during the production process that improves product quality and eventually cause
high returns.

Data Availability: The data used to support the findings of this study are included in the article.
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