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Abstract: Energy and security remain the main two challenges in Wireless
Sensor Networks (WSNs). Therefore, protecting these WSN networks from
Denial of Service (DoS) and Distributed DoS (DDoS) is one of the WSN
networks security tasks. Traditional packet deep scan systems that rely on open
field inspection in transport layer security packets and the open field encryp-
tion trend are making machine learning-based systems the only viable choice
for these types of attacks. This paper contributes to the evaluation of the use
machine learning algorithms in WSN nodes traffic and their effect on WSN
network life time. We examined the performance metrics of different machine
learning classification categories such asK-Nearest Neighbour (KNN),Logis-
tic Regression (LR), Support Vector Machine (SVM), Gboost, Decision Tree
(DT), Naïve Bayes, Long Short Term Memory (LSTM), and Multi-Layer
Perceptron (MLP) on aWSN-dataset in different sizes. The test results proved
that the statistical and logical classification categories performed the best
on numeric statistical datasets, and the Gboost algorithm showed the best
performance compared to different algorithms on average of all performance
metrics. The performance metrics used in these validations were accuracy,
F1-score, False Positive Ratio (FPR), False Negative Ratio (FNR), and the
training execution time. Moreover, the test results showed the Gboost algo-
rithm got 99.6%, 98.8%, 0.4% 0.13% in accuracy, F1-score, FPR, and FNR,
respectively. At training execution time, it obtained 1.41 s for the average of all
training time execution datasets. In addition, this paper demonstrated that for
the numeric statistical data type, the best results are in the size of the dataset
ranging from3000 to 6000 records and the percentage between categories is not
less than 50% for each category with the other categories. Furthermore, this
paper investigated the effect of Gboost on the WSN lifetime, which resulted
in a 32% reduction compared to other Gboost-free scenarios.
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1 Introduction

Wireless network technology is the main nucleus in the development of the Internet of Things
(IoT). That is because wireless networks are the main key in the transfer of interactive data
between devices and humans or devices-to-devices [1]. These devices are part of automation and
control systems, embedded systems, Wireless Sensor Networks (WSN) and others that share their
information in various environments without need of human intervention. Each application using
these devices mostly consist of three layers, which comprise; the perception, the network and the
application [2]. Application and network layers are mostly executed in high-power devices, while
the perception layer is executed in low-power devices to keep them running for as long as possible,
especially with the use of limited battery life systems.

The perception level consists of several WSN nodes that communicate with each other using
various radio frequencies that are capable of performing different sensing, recording, calculating,
and tracking activities [3]. These WSN nodes are considered as mini-computers that are charac-
terized by low computing speed, restricted bandwidth, limited memory space, and limited battery
life. In addition, 6LoWPAN and Zigbee are two protocols used extensively in WSN networks in
between physical layer and Media Access Control (MAC) layers of IEEE 802.15.4 [4].

However, since the WSN nodes are designed to operate in various untrusted surroundings,
which are not periodically monitored. This makes the WSN nodes vulnerable to various security
attacks, especially if they are related to important and sensitive data [5]. Moreover, with regards
to WSN nodes boundaries, i.e., CPU power and energy [6], it is sometimes difficult to provide
a charger for them in these conditions. Therefore, the drawbacks of WSN nodes and their
dependence on public wireless networks contribute to many problems in the WSN architecture.
One of these issues applies to security, privacy, and availability in the perception layer. In the
area of security, the main issue is protecting the data connection between WSN nodes against
spoofing and eavesdropping by illegal WSN node modification alteration [7,8]. In WSN node
availability, via sinkhole, wormhole, Sybil, hello flood, and Denial of Service (DoS) attacks, an
attacker can disable it by interfering with data packet transmission [3]. DoS attacks can waste
WSN nodes resources and lose their data packets within the networks. Therefore, in this paper,
we will focus on slowing down Distributed (DDoS) and DoS in WSN networks within minimum
power consumption and good accuracy in defining both attacks [9]. Moreover, DoS or DDoS
attacks focus on depleting WSN node resources through allowing them to receive unnecessary or
authorized packets for that WSN node. These events force WSN nodes to reject the network’s
services to the legitimate WSN nodes, and this type of attack can occur in any layer of WSN
model system [10].

Due to the risk of this type of attack on WSN networks, intrusion detection technique
is the best defense for DDoS attacks [11]. Intrusion detection is divided into signature-based
and anomaly-based. In anomaly pattern, the technique needs to monitor network connectiv-
ity in a regular manner and compare the ongoing WSN networks activities with the current
normal behaviour traffics [9,11]. Therefore, various techniques have been used to improve the
performance of DoS detection in both active and passive methods. Supervised machine learning
algorithms are one such technique used to predict and classify DDoS attacks. The Logistic Regres-
sion (LR), decision Tree (DT), artificial neural networks, Support Vector Machine (SVM), deep
learning, and K-Nearest Neighbour (KNN) are common algorithms for this [12]. The authors
in [1,2,13–17] used different techniques related to deep learning mechanism, and their results
regarding to detection accuracy, mean squared error, and sensitivity showed good performance,
but none of them discussed the effect of their proposal on WSN networks such as nodes power
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consumption and network lifetime. Moreover, other publications were using regular networks
traffic datasets instead of WSN nodes datasets [18]. Other algorithms for detecting DDoS have
been proposed in [19], the work used authentication policy to remove DoS attacks by splitting the
WSN nodes into clusters and linking all cluster WSN nodes in a single authentication message. In
addition, the work in [20,21] showed that machine learning techniques (LR, SVM, and DT) are
suitable for real-world deployment rather than deep learning mechanism, because deep learning
algorithms need massive training data in order to be able to give high-accuracy results in classi-
fication process. Therefore, the process of implementing these capabilities on training operations
via the WSN network node is a waste of time and effort [14].

A different other technique related to the incorporation of WSN nodes clustering mechanism
and machine learning in DDoS detection has been proposed in [22,23]. Furthermore, the authors
in [24] used a SVM based on spatiotemporal and attribute correlations on data collected from
WSN nodes. However, no publication has yet discussed the effect of the above algorithms on
WSN networks using the same simulation and dataset. Furthermore, as the WSN nodes have
limited power and CPU, anti-DDoS measures should be simple and fast. Therefore, the main
contribution to this work is the use of new WSNs environments with performance analysis of
the machine and deep learning algorithms of the WSN network dataset as well as their effect on
WSN network lifetime. The major contributions of this work are summarized as follows:

(1) We proposed a new WSN network environment which combined WSN nodes clustering
technology, authentication, key management [25] and WSN-Dataset [23] to help detect DoS
attacks and study the effect of this detection on WSN node power consumption.

(2) Analyzing the effect of dataset size on performance of machine learning classification tech-
niques. The original dataset was divided into different subsets, decreasing in size (number
of records).

(3) Analyze the effect of DoS anomaly detection performance on WSN network lifetime.

The remainder of our paper is organized as follows. Section 2 provides an overview of
related work in WSN networks, DoS attacks, and machine learning techniques. Section 3 explains
methodology, environmental development, the cluster management, the machine learning test and
the decision-making. Section 4 discusses data collection and organization. Section 5 discusses
implementation and evaluation for complexity analysis in machine learning techniques and WSN
networks lifetime. Finally, the conclusion and future work of the paper is given in Section 6.

2 Background and Related Works

In this section we will provide a literature review and technical background for the WSN
networks and clustering efficiency in WSN networks, intrusion detection in WSN networks, and
machine learning algorithms in intrusion detection.

2.1 WSN Networks Overview
WSN network is a radio access spectrum that uses 2.4 GHz which is designed to work in low

power, low range, and low processor circumstances. The Internet Engineering Task Force (IETF)
standardized it under the name of IEEE 802.15.4 [26]. Moreover, the Zigbee and 6LoWPAN
are two protocols used to manage WSN networks and transfer data to Access Point (AP). Both
protocols use the Media Access Network (MAC) and physical IEEE 802.15.4 (Perception) layers
as illustrated in Fig. 1. Meanwhile, the difference between them is the 6LoWPAN introduces IPv6
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and Low Power and Lossy Networks (RPL) protocol to capture WSN nodes and forward their
data to edge AP [27].

Figure 1: The architecture of WSN networks [26]

As shown in Fig. 1, the WSN networks are responsible for drawing the network topology and
routing table in the perception layer using different protocols [26] as explained earlier. Each WSN
node associates with the set of its neighbouring peers WSN nodes, then the WSN node starts
collecting data from different locations and forwarding the data to the network layer (edge-AP).
This process of routing is done either using RPL protocol in 6LoWPAN or Distance Vector (DV)
protocol in Zigbee. For data transmission protocol, a User Datagram Protocol (UDP) is used to
reduce the packet’s complexity and reduce CPU overhead. Moreover, to secure data transmission
over UDP, the Datagram Transport Layer Security (DTLS) protocol is used on top of UDP [28].

2.2 DoS in WSN Networks
As mentioned previously, the main objective of the DDoS attack is to affect the network’s

availability by disrupting services and network performance. Therefore, the effect of this type of
attack varies by each network layer stack [7]. Since wireless sensor networks have five network
layers stack, each layer has a different type of attacks [11,29]. The attached Tab. 1 shows each
layer and type of DoS it represents.

Table 1: Taxonomy of WSN network DoS attacks

WSN network layers Description

IEEE 802.15.4 layer Jamming tempering scheduling (TDMA)
IEEE 802.15.4 MAC layer Collision exhaustion
Network or routing layer Blackhole grayhole hello
Transport layer Flooding

The Blackhole and Grayhole DDoS attacks affect the routing protocol in layer three by
declaring the attacker node itself as the cluster head, and we will discuss the cluster head
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functionality in detail in the clustering management subsection. Whereas, the Flooding attack
affects the WSN network availability by sending a large number of advertising messages to cluster
heads. In a scheduling attack (e. Time-Division Multiple Access (TDMA)), the effect is related to
physical and MAC layers’ activity by changing the broadcast channel schedule to unicast channel
schedule. This change leads to packets collision and later data loss [23].

Numerous researchers try to reduce DDoS or DoS in WSN networks. In [19], the authors
used the Message Authentication System (MAS) algorithm to localize and remove DoS. The
proposal divides the WSN nodes into various clusters and each cluster head uses the MAS
algorithm to distinguish between legitimate and phishing messages. In [30,31], the authors refined
the k-means clustering scheme for detecting DDoS and misdirection attacks. In [32], the authors
used user-behaviour learning analysis in a home WSN network to detect abnormal attacks.
Furthermore, authors in [16] used Restricted Boltzmann Machine-based Clustered IDS (RBC-
IDS), a deep learning-based methodology to track critical infrastructure using three hidden layers
for potential intruders. Furthermore, authors in [33] used Genetic algorithm with Multi-Layer
Perceptron (MLP) to enhance anomaly detection performance. Authors in [23] created a dataset
for WSN networks and used an artificial neural network algorithm to detect and classify four
types of DoS attacks. Moreover, in [34], the authors proposed an optimization algorithm called
an adaptive-chicken swarm to cluster WSN nodes and then used a VSM classifier to detect
DoS attacks in each cluster. However, this work will focus on analysing DoS attacks detection
performance rather than anti-attacks measures.

2.3 Machine Learning in Intrusion Detection Approach
Machine learning is the mechanism that automatically enhances or learns from an analy-

sis or experience and works without directly configuring it. Its divide between supervised and
unsupervised learning. Supervised learning characterized into classification and regression.

Classification is categories into statistical learning (SVM and Bayesian), logic-based (DT),
instance-based (KNN), and perceptron-based (Recurrent Neural Network (RNN), Long Short
Term Memory (LSTM), Convolutional Neural Network (CNN), MLP, and artificial neural net-
works). In addition, the main responsibility of this type of learning technique is to create a model
that describes the relationships and dependency ties between input features and expected objective
outcomes [12]. Therefore, supervised learning can solve various problems of the WSN network,
fault and anomaly detection being one of them. Tab. 2 depicts various categories of detection
approaches and machine learning techniques that are used in detection attacks in WSN networks.

Table 2: Taxonomy of machine learning approaches in detection attacks

Classification categories Machine learning approaches References

Statistical-based Bayesian
• Gaussian [35,36]
• Non-Gaussian [37,38]
SVM [18,39]

Logic-based DT [40,41]
Gboost [42]

Instance-based KNN [43]
Deep learning-based DLDM [22]

LSTM [17]
MLP [23,44]



4926 CMC, 2022, vol.70, no.3

In a simple review of the functioning of supervised algorithms, which we will deal with in
this study, the KNN works based on the manifold hypothesis. If the majority of the neighbors
of the sample are from the same class, then the sample is likely to be from that class as well.
As a result, the categorization outcome is limited to the top-k closest neighbors. The efficiency of
KNN models is heavily influenced by the parameter k. The smaller k, the more complicated the
model is, and the greater the chance of overfitting. The bigger k, on the other hand, the simpler
the model and the lower the fitting ability [43]. Moreover, the Naïve Bayes works on the basis
of probability distribution and the trait independence hypothesis. The probability distribution for
distinct classes are calculated for each sample, then the maximum probability class is assigned to
the sample [11,29]. The probability distribution is illustrated as Eq. (1).

P(X = x|Y = ck)=
n∏

i=1

P(Xi = xi|Y = ck) (1)

where P is the probability of class Ck producing the term xi..

Another classifier that will be considered in our work is the DT, which works on the basis
of the chain of rules in the tree topology. The tree topology gives it the speed to exclude
the redundant features and generate child nodes from the root node. However, some advanced
algorithms, such as Random Forest and Gboost, consist of multiple decision trees [42]. In the
linear model, the LR technique is considered a variant of it, and the probabilities of different
classes are calculated using the parametric logistic distribution, which is shown in Eq. (2) [29]

P(Y = k|x)= eωk∗x

1+ ∑k−1
k eωk∗x

(2)

where sample x is categorized in the extreme probability class.

Moreover, in our work we also used another type of traditional supervised algorithm named
SVM. In SVMs, the goal is to locate a maximum-margin separating hyperplane in the n-
dimensional feature vector. Since the separation hyperplane is controlled by a small number of
service vectors, SVMs can produce satisfying results even with small-scale training data. SVMs,
on the other hand, are susceptible to noise around the hyperplane [12].

In deep learning technology, the MLP uses the propagation learning in two phases: forward
and back during the training phase. In the forward neural step, input data is given to each neuron
of the hidden layer. The activation value of each hidden neuron and output node is calculated.
An error is generated by the disparity between the output target and the specific target value. The
error is propagated back from the output layer to the input layer in the back-propagation step,
and weights between output neurons and hidden neurons are changed. Weights are updated using
the gradient descent approach [44]. Moreover, another different type of deep learning that also
uses backpropagation is LSTM. It is an automated development of a RNN through facilitating
memory recall of previous data. Moreover, LSTM solved the vanishing gradient problem found
in RNN. LSTM is well suited for classifying, processing and forecasting time series due to time
delays of unknown duration [17].

However, in this paper we will analyze the WSN networks traffic based on aforementioned
machine learning classifications to see how it performs in detecting DoS attacks on WSN
networks.
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3 Methodology and Environmental Development

The proposal environment consists of three processes. The first is to aggregate WSN nodes to
multiple clusters and each cluster has Cluster Head (CH) in a mobile WSN nodes environment.
In the following process, a Machine Learning Testing (MLT) approach is used to analyse traffic in
each CH node to distinguish between normal and abnormal coming packets. In the last process,
CH will make a decision based on the second process results. The overall architecture of our
proposal is depicted in Fig. 2.

Figure 2: The proposed WSN networks environment

As depicted in Fig. 2, the WSN nodes (n1, n2,. . ., nN), where N is the number of WSN nodes
within the Edge AP. The WSN nodes sense the environment and collect relevant data. Then the
sensed data are sent to the Edge AR via the CH. The WSN nodes are assumed to be mobile
and can move in different directions. At the beginning, the CH is chosen based on several criteria
such as the WSN node energy, the distance between the nodes and the number of neighbouring
nodes. Once the CH is chosen and the clusters are formed, data begins to be transmitted and the
CH starts analysing it.

3.1 Clustering Management
Cluster technology contributes to reducing the energy consumption of WSN nodes by choos-

ing the appropriate neighbouring WSN node to transmit data through it to AP. Thus, the trans-
mission and reception of data from the neighbouring nodes, which has weak signal strength to
increase the power consumption in both WSN nodes (transmitter and receiver). Therefore, many
studies have used different combinations of techniques in selecting CH such as [15–17,34,45,46],
but most of them do not have an optimal solution. In this work we will use the clustering
management that was proposed in [25]. Their proposal is based on the low complexity calculation
and supports the WSN nodes mobility. However, we will alter their clustering algorithm to cover
minimum and maximum of ordinary WSN node numbers in each cluster to avoid complexity
analysis in each CH. The altered clustering algorithm is presented in Fig. 3.



4928 CMC, 2022, vol.70, no.3

Figure 3: The clustering management algorithm [25]

The parameters d, dT, ET , w, and ω represent the distance between WSN nodes, the distance
threshold, the WSN node energy threshold, the average distance between candidate CHs and
adjacent nodes, and the weight of CHs selection, respectively by the flowchart. However, all these
parameters were explained in detail in [25]. The algorithm starts by continuous verification (period
of time) of the distance between each WSN node (n) and its CH. Since the WSN nodes are
moving at a low speed of about 5 m/s, the distance will be checked once per second [47]. If the
distance begins to approach the distance threshold value (dT ), the WSN node begins to search for
the closest CH to pair with it. A WSN node sends a Join_Request message to target the CH, then
sends the Release_Request message to its source CH. This process uses WSN mobile nodes that
lead to the reassembling and regrouping process. For instance, the n moves away from the linked
CH and when the distance between them becomes less than dT , n starts looking for the nearest
CH, if there is no close CH, n initiates the process of creating a new CH between the adjacent
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WSN nodes and then asks them to join. On other hand, if the CH moves away from its linked
WSN nodes, it has a few of them (c), where c is the lower WSN nodes number that are linked
with each CH. CH will release the linked WSN nodes and become a regular WSN node in order
to join to the nearest CH. In addition, the released WSN nodes will also search or create new
cluster groups. The last scenario is when the CH has a number (m) of linked ordinary WSN
nodes, in which case the target CH will not accept the new connection and the WSN node starts
to repeat the same scenario to find a closer CH or to create a new CH group.

3.2 Machine Learning Testing Approach
In this step of our proposal environment, we select various machine learning classification

schemes such as KNN, LR, SVM, Gboost, DT, Naïve Bayes, LSTM, and MLP. Next, we train
these algorithms through the WSN traffic dataset [23] that we chose and then test. The algorithm
that has the best performance metrics will be determined to be a MLT approach (see Fig. 4) in
each CH node.

Figure 4: Make a decision in each CH

3.3 Decision Making
At this process of our proposal environment, the CH monitors the number of duplicate

suspicious packets, if there is a confirmation of duplication, the CH node will cut off the
connection with the suspicious WSN node, add WSN node information to its blacklist, and send
a broadcast message to the all neighbour CHs and AP informing them about the suspicious WSN
node information. This process is illustrated in Fig. 4.

Based on Fig. 4, each data Packet that Comes (CP) will be scanned, if it is labelled as 1, CH
will count it as a suspicious packet and then count the number of times it repeats for a period
of time. Next, if the CP.count exceeds α (threshold value), the CH will execute the broadcast
command and disconnect the connection with that MAC node, where α is the maximum number
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of suspicious beam at time (t). This process gives an opportunity to reduce the false negative rate
in our work by confirming the attack process.

4 Data Collection

In this work, we are testing it using the WSN network dataset. In network traffic datasets
there are three types: the CICDDoS2019 [48], BoT-IoT [49], and WSN-DS [23]. However, the
CICDDoS2019 and BoT-IoT were collected from different device types (servers, sensors, routers,
and switches) while the WSN-SD was collected from the WSN network environment whose
environment is close to ours. WSN-SDcontains four different classes based on the DoS attack
types: Flooding, Blackhole, Grayhole, TDMA, and Normal. As with our goals to reduce node
power consumption and move the defense decision to Edge AP, we are converting these four types
of DoS attacks into one class that is labelled as “1” and the label “0” will be normal. In addition,
the WSN-SD was collected through the LEACH routing protocol which is different from standard
RPL, however this dataset still works with our modified clustering management algorithm. As the
WSN-SD dataset contains 19 features, we have removed five of them (id, time, distance to CH,
distance to base-station, and data sent to base-station) to be compatible with our environmental
approach.

Moreover, we are spitted the WSN-DS dataset into six different subsets to see the effect of
data size on the performance of machine learning algorithms. The first dataset contains all records
of the original dataset. As illustrated from Tab. 3, the attacked data is less than normal data by
88.6%. Furthermore, this percentage of the attacking data is distributed as 33% Blackhole, 11%
Flooding, 35% Grayhole, and 21% TDMA. Therefore, in the rest of datasets we will look at these
ratios to keep the same context.

The second dataset is discounted 40% from the original WSN-DS dataset in each label
category, as each category contains different data records. The third dataset is 40% discounted
from the second dataset in each label category. The fourth and fifth datasets are divided between
normal and attacked in a two-to-one ratio to allow analysis of the effect of the ratios of each
category on the training process. In dataset number six, records are divided between the two
in a one-to-one ratio due to the small number of records. The WSN-DS datasets description is
illustrated in Tab. 3.

Table 3: Datasets sizes

Datasets Total number Normal Attacked

Dataset1 205,804 184,343 21,461
Dataset2 133,383 120,223 13,160
Dataset3 27,593 24,025 3,568
Dataset4 5,026 3,152 1,874
Dataset5 3,102 2,068 1,034
Dataset6 408 214 194
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5 Implementation and Evaluation

In this section, we first discuss analyzing machine learning schemes in different WSN-DS
datasets. The simulation environment and experimental performance are discussed in relation to
machine learning algorithms, and then their results are analysed. In the second analysis, it will be
applied based on the best machine learning test algorithm that came out from the first analysis
to show its effect to the WSN network lifetime.

5.1 Complexity Analysis for Machine Learning Approaches
5.1.1 Experimental Environment

In this analysis, Python3.8 platform is used within Jupyter Notebook software [50] and they
operate on a Dell machine with a 1.8 GHz Intel Core i5 processor, 6MB cache, and 8 GB RAM.
Operating System is Ubuntu 19.4. The hyper parameters for these analyses are shown in Tab. 4.

Table 4: List of machine learning hyper parameters

Parameter Value

MLP As [23]
Learning rate 0.03
Momentum 0.2
Epochs 4001
Validation set 20
Consecutive errors 20
Hidden layer (10, 15, 10)
Activation logistic
Learning rate
Epochs 400
Verbose 2
Optimizer Adam
SVM
Kernel rbf
Random state 0
Gamma 0.1
C 1
Decision tree
Max depth 30
Criterion Entropy

5.1.2 Experimental and Performance Metrics
In this work, five performance metrics are utilized to analyse machine learning algorithms on

WSN-SD Datasets in different classification categories. The aims are the highest number of True
Positive (TP) and True Negative (TN) and low number of False Negative (FN) and False Positive
(FP). The number of TN indicates that the normal flows are expected as valid traffic, while
the TP is the likelihood of the irregular traffic being labelled as abnormal traffic. Furthermore,
the FN illustrates the likelihood of attack flows that are known as normal flows, while the FP
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represents the likelihood of normal flows predicted as attack flows. The False Positive Rate (FPR)
indicates the wrongly defined attack ratio and the inverse False Negative Rate (FNR) over the
cumulative sum of the incorrect forecast. In addition, accuracy is the percentage of accurate model
prediction for all types of predictions produced. Execution time represents the time taken in the
training process, measured in seconds. Moreover, F1-score is used to comprehensively measure the
accuracy of the model. The following Equations represent all of the performance metrics used in
this analysis:

Accuracy= TP+TN
TP+TN +FP+FN

(3)

F1− score= 2 ∗TP
2 ∗TP+FP+FN

(4)

FPR= FP
FP+TN

(5)

FNR= FN
FN+TP

(6)

The Percentage Value (PV) will measure accuracy and F1-Score against the optimal value
which is (1), and it will measure FPR and FNR against the optimal value which is (0).

5.1.3 Results
In subsequent analyses, we will review the results of the performance metrics of the machine

learning algorithms that we selected on the split WSN-DS datasets in Section 4, namely D1 to
D6. Figs. 5–12 show the effect of dataset size on machine learning algorithms. However, SVM
algorithms did not respond to the large datasets such as D1 and D2, and thus, no performance
metrics were found regarding these two dataset groups. Moreover, in Naïve Bayes technique, there
are three types of algorithms (Bernoulli, Multinomial, and Gaussian), we chose a Multinomial
algorithm because it provided the best results for performance metrics on the same WSN-DS
dataset.
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time
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Figure 6: LR analysis of different WSN-DS dataset sizes: (a) performance metrics, (b) execution
time

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

D3 D4 D5 D6

PV

WSN-DS

Accuracy F1-Score FPR FNR

0

20

40

60

80

D3 D4 D5 D6

T
im

e 
(s

)

WSN-DS

Execution time

Figure 7: SVM analysis of different WSN-DS dataset sizes: (a) performance metrics, (b) execution
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In KNN, the instance category will be expected based on some instance metrics. The distance
measure used in nearest neighbor methods for numerical features can be a simple Euclidean
distance. Since WSN-DS is close to this type of feature, the KNN showed good results in accuracy
and FPR in all different WSN-DS groups. The highest accuracy was at D3, D4, and D5 which
satisfied 100%, and the lowest FPR at all groups was close to 0 as shown in Fig. 5a. However,
the FNR showed a gradual decrease through decreasing the data size from D1 to D6. Moreover,
F1-Score also showed improvement when the data size decreased from D1 to D6. The execution
time also showed that the maximum training time for D1 is 1.8 s and gradually decreased to 0.025
s for D4, which is considered a good result for online use of DoS detection in WSN nodes.
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Figure 9: Gboost analysis of different WSN-DS dataset sizes: (a) performance metrics, (b) execu-
tion time
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Figure 10: Naïve bayes analysis of different WSN-DS dataset sizes: (a) performance metrics, (b)
execution time

LR is widely used in statistical models in many disciplines. It has been used frequently due to
its ease of use and accuracy. Since the WSN-DS data relationship is close to linear and there is
no missing data between its records, LR showed good results with respect to accuracy, F1-Score,
FRP, and FNR as shown in Fig. 6a. Furthermore, the accuracy showed almost no significant
changes in the sizing of the WSN-DS groups. This means that LR can be a good choice for
inspecting network traffic packets and obtaining high accuracy if the dataset size is small with
a linear relationship between them. Furthermore, processing a small amount of dataset reduces
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the CPU and power consumption of embedded devices. FPR and FNR showed good results in
the WSN-DS groups, both of which were close to 0 in the D4 dataset. In addition, the execution
time also showed that the maximum training time for D1 is 2.5 s and gradually decreased to 0.25
s for D4, which is consider a good result for online use of DoS detection in WSN nodes.
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Figure 11: LSTM analysis of different WSN-DS dataset sizes: (a) performance metrics, (b) execu-
tion time

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

D1 D2 D3 D4 D5 D6

PV

WSN-DS

Accuracy F1-Score FPR FNR

0

20

40

60

80

D1 D2 D3 D4 D5 D6

T
im

e 
(s

)

WSN-DS 

Execution time

Figure 12: MLP analysis of different WSN-DS dataset sizes: (a) performance metrics, (b) execu-
tion time

The idea of SVM is to find the optimal level of separation between two categories by
maximizing the margin between the closest points to the categories. However, the SVM has many
drawbacks such as high computations for train data, sensitive to noisy data, and unbalanced data
sets [18]. Therefore, due to the size of D1 and D2, the SVM was not working and we did not get
any results. Moreover, regarding converting all types of attack logs to 0 value, the output will be
a binary (0 or 1) and SVM gives better results in a different number of outputs. In addition, the
nature of WSN-DS is imbalanced between normal and attack categories. Since the normal range
covers more than 89% from all the data, and SVM gives better results when there is a diversity of
samples for each category. As results, the SVM came out with poor performance metrics. Accuracy
and F-Score showed unstable scores as the WSN-DS was moved from D3 to D6 as shown in
Fig. 7a. The highest accuracy achieved at D3 and then started gradually decreases. FPR and FNR
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also showed random results among the WSN-SD sets and were of high value. In execution time,
the algorithm consumed around 80 s to train D3 and then scaled back to close to 0 on the rest
of the datasets.

In DT, the attributes of the WSD-DS are determined by the internal nodes, and the branches
are the result of each test against each node. Thus, DT structure is simple and fast. In WSN-
DS, the DT came out with a good result in accuracy, F1-Score, FPR, and FNR in all datasets
as shown in Fig. 8a. The highest accuracy and F1-Score were at D5, and the lowest FNR and
FPR were at D5 as well. This means that DT can be a good choice for inspecting network
traffic packets and obtaining high accuracy if the dataset size is small with or without a linear
relation between them. Therefore, it is considered better than LR for checking network packets.
The execution time also showed that the maximum training time for D1 is 9 s and gradually
decreases to 0.20 s for D5, which is a good result of using DoS detection online as well.

The Gboost algorithm is an improvement of DT through discovering the unknown relation-
ship between continuous output and dimensional input. The WSN-DS sets showed good results
for all performance metrics such as DT. The highest accuracy and F1-Score were at D4 and D5,
and the lowest FNR and FPR were at D4 and D5 as shown in Fig. 9a. Moreover, it showed
lower execution time compared to DT and this makes it a better choice.

In Naïve Bayes, the fundamental assumption and point in making the prediction is the
independence between the attributes of the data set. It is easy to set up and especially useful
for large data sets. However, the Naïve Bayes showed good results when the size of WSN-DS
decreased from D1 to D6, and the highest accuracy score was at D2 while the F1-Score was not
the highest in that group as illustrated in Fig. 10a. Even more surprising is the execution time
that algorithm consumes, which is very little compared to similar algorithms. Therefore, it is very
good for packets that need direct monitoring with the possibility of obtaining good detection,
without paying attention to the volume of data to be analyzed.

Since LSTM is a type of deep learning technique, the process of training and testing will
be different from other machine learning algorithms called “shallow”. This type depends on the
perceptron layers and weights in order to discover the relationship between interrelated traits.
But the most disadvantage of these techniques is the time and power that goes into figuring
out these relationships. In general, in terms of inspecting WSN node packets, the time spent
on this algorithm was quite large as shown in Fig. 11b. In addition, Fig. 11a showed a slight
degradation of accuracy when datasets changed from D1 to D6. Therefore, this algorithm proves
that it needs a huge dataset to introduce good performance results. Moreover, The F1-score also
shows better results on D4 and D5 compared to other datasets. This is due to the percentage
between records labelled by Normal (0) and records labelled by attack (1) in each dataset. The
ratio of attack records in datasets D4 and D5 was one-to-two compared to the D1 and D2 as it
was 89% (Normal) to 11% (Attack). In addition, the Figure showed the best value for FPR when
the dataset is D1 and D2, and its value starts to deteriorate when the dataset changes to D3 and
continue, while the FNR starts to improve when the size of dataset becomes smaller, the FNR
value has moved from 0.25 in D1 to be 0 in D4. However, the LSTM shows good FNR values
compared to other algorithms. Finally, in terms of training execution time, LSTM takes a huge
time in the training process, and compared to optimization results, the cost is high for numerical
datasets compared to other machine learning algorithms.

Moreover, MLP shown in Fig. 12 results are similar to those of LSTM, with difference in the
execution time, which is much less. As for changing datasets, MLP also needs huge data in order
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to give results with higher accuracy. The F1-score starts to improve while resizing the dataset from
D1 to D4, due to the increased percentage of records that are classified as attacked compared to
normal records. FPR also showed good performance results while resizing the dataset size from
D1 to D3 and starting to increase as the dataset gets smaller and smaller. FNR also showed
acceptable performance results. However, the training time for MLP is very low compared to
LSTM but compared to other machine learning it is a huge execution time.

In relation to this type of data collected from network traffic, most of its features are
numeric statistical values [49]. Therefore, the statistical and logical machine learning techniques
will introduce good results in less training time. Therefore, Figs. 5, 8 and 9 show similar chart
curve results in all three Figures for most performance metrics (i.e., accuracy, F1-score, FPR
and FNR). In addition, the size of a WSN-DS dataset systematically influences the values of
these three algorithms’ performance metrics. The accuracy and F1-score start to increase when the
dataset changes from D1 to D4, then is nearly constant in size dataset between D4 and D5. After
that, the accuracy and F1-score start to decrease after D5 size. Furthermore, the FNR begins
decreasing from 0.12 at dataset D1 to 0.001 at D4 and then begins to increase after D5 size.
Besides, FPR also shows good results that are close to 0 and being 0 at D4 and D5. However, the
Gboost and DT algorithms show the best performance in the results of FNR compared to other
machine learning algorithms. Moreover, the same Figs in (5b, 8b, and 9b) show the degradation
in training time of machine learning algorithms while reducing the size of the datasets. However,
the differences in training times between these three algorithms are a bit close. The KNN shows
the lowest training time among them, followed by Gboost and finally DT.

In Figs. 6 and 10, the results of the performance metrics show the improvement when the
datasets are D4 and D5 as well. The accuracy and F1-Score show good results at different
datasets, but the FRP shows an unstable chart curve with respect to datasets sizes, and it is also
higher than Gboost, DT and KNN. Regarding training time, the Naïve bayes in Fig. 10b shows
the lowest execution time compared to other machine learning algorithms, while LR in Fig. 6b
shows lower execution time compared to DT and Gboost algorithms. In the SVM algorithm, the
performance metrics results show unstable accuracy, F1-score, FPR and FNR across all sizes of
datasets that were accepted for implementation. The training time for D3 was high compared to
other statistical algorithms, it was around 80 s.

Regarding the comparison of machine learning algorithms with each other in different
performance metrics models, Figs. 13–17 show these results in each dataset.

Based on Fig. 13, most machine learning algorithms show good performance results in accu-
racy on different datasets sizes, but the Gboost, DT and KNN are best for numerical network
traffic data. The accuracy in the KNN achieved the full score (1) in three datasets, D3, D4, and
D5, while the accuracy in both DT and Gboost achieved full score only once in the D5 dataset.
Moreover, the same Figure shows a slight similarity in accuracy scores between the MLP and
LSTM algorithms related to the sizes of datasets, and also the Fig. 13 shows that the accuracy in
MLP has the highest score (1) in the D2 dataset and better than LSTM algorithm. In addition,
with respect to the F1-score metric as shown in Fig. 14, Gboost, DT and KNN also introduced
the best results in different datasets sizes. The F1-score in the KNN, Gboost, and DT achieved
the full score (1) in two datasets, D4, and D5. As previously discussed, the D4 and D5 datasets
display the highest F1-score results across all datasets sizes due to the proportions distribution
among dependent variable categories.
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Moreover, the same Fig. 14 also shows slight similarity in F1-score results between MLP and
LSTM algorithms related to sizes of datasets, and also between DT and Gboost, as well as KNN
and LR.

Fig. 15 shows the comparison between machine learning algorithms related to FPR, and also
the Gboost, KNN, and DT introduced the lowest FPR results. The MLP offered a better FPR
compared to LSTM and LR. In FNR as illustrated in Fig. 16, Naïve Bayes introduced the lowest
performance results, then the DT and Gboost. However, the SVM offered the worst performance
values. Also, the MLP shows good results in FNR compared to LSTM, KNN, and LR.

Finally, in Fig. 17 divide the training execution time into two parts to allow its results
to be displayed across all machine learning algorithms. Since the LSTM consumed 17428.7 s
compared to Naïve Bayes consumed less than 0.05 s in the D1 dataset. The execution training
time consumed in D3 was 2278.67, 76.15, 8.419, 0.818, 0.556, 0.53, 0.515, and 0.016 s in LSTM,
SVM, MLP, LR, DT, Gboost, KNN and Naïve Bayes, respectively.
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Figure 13: Accuracy comparison between different datasets sizes and machine learning algorithms
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machine learning algorithms, (b) deep learning algorithms

However, based on this analysis in different machine learning algorithms using different WSN
datasets, we conclude that the numerical analysis of DoS in wireless sensor networks traffic does
not require complex deep learning algorithms to detect the attack packets. Moreover, a dataset
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containing between 3000 to 6000 records is sufficient to carry out the training process and obtain a
high-performance prediction, if the percentage of data between the labelled categories is sufficient
to differentiate these categories. In D4 and D5, the percentage between two labels (dependent
variable) are two-to-one, while in D1 it was from 88% to 11% (normal to attack).

In the next section, we will choose the Gboost algorithm to implement in WSN network
simulation. We select it based on the highest performance in accuracy, F1-score, FPR, and FNR
in all datasets and specially on D4 and D5. Moreover, it has an acceptable training execution time
in D4 and D5 which ranges from 0.14 s in D4 to 0.094 s in D5.

To implement this algorithm in WSN networks simulation, we need to find out the Gboost
output model from the training process. Therefore, as the dependent variable of the WSN-DS
dataset has two values (0 “Normal” or 1 “Attack”), the probability (P) represents the relationship
between the independent variables and dependent variables. Eq. (5) represents this probability [42]:

P= eβ0+β1x1+β2x2+β3x3+...+βnxn

1+ eβ0+β1x1+β2x2+β3x3+...+βnxn
(7)

where n is the number of WSN-DS dataset features, x is the WSN-DS feature, β0 is an intercept,
and β1, β2, βn are the regression coefficients for WSN-DS features. In addition, from the training
process of Gboost algorithm the regression coefficient values come out and the Gboost prediction
is ready for testing. The regression coefficient values for the Gboost are illustrated in Tab. 5.
Moreover, the Is_CH, Join_Req Received, Send_code, ADV_R, and ADV_S messages are among
the most important features related to the Gboost-DoS detection process.

Table 5: Gboost regression coefficient values

WSN-DS feature Value

Intercept −1.60
Is_CH 2.8
Who-CH 0
ADV_S 0.0024
ADV_R 0.0032
Join_S −0.06
Join_R 0.073
SCH_S −0.057
SCH_R −0.088
Rank −0.0015
Data_S −0.0053
Data_R −0.0018
Send_code 0.017
Expanded_energy −0.121

The probability of y from xn is calculated in Eq. (6).

P(y|x1 . . .xn)= 1
1+ e−(β0+β1x1+β2x2+β3x3+...+βnxn )

(8)

where y is a dependent variable (Label).
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5.2 Complexity Analysis for the WSN Networks Lifetime on Gboost Approach
In this section, we will analyse the impact of DoS detection by using the Gboost algorithm

on WSN network lifetime. The lifetime of the network is calculated when the power of some
WSN nodes reaches 0.

In the simulation environment, Contiki operating systems with Cooja simulator are used
to simulate WSN network architecture [51]. The modified 6LoWPAN protocol will be used as
discussed in [25] to manage and control the WSN node’s hardware and software. The simulation
is running on the same machine that was discussed in 5.1.1. The default parameters used in the
wireless networks architecture are plotted in Tab. 6, and some parameters values in the table are
taken from the values in [25].

Table 6: Simulation parameters used

Parameter value

WSN node size 60 m × 120 m
AP location X= 30, Y=90
Number of CHs Changeable
Number of WSN nodes 100
Simulation time 500 s
WSN node speed 5 meter/second
Message size 6400 bits
Control message size 200 bits
Initial energy (Joule) 1.5, 1.25, 1, 0.5
Two-ray ground propagation models 0.0013 PJ/bit/m4

Free space model 10 PJ/bit/m2

Power consumed by transmitter 50 nJ/bit
Transition power 20 nJ/bit
Power consumed by receiver 50 nJ/bit
Energy consumption per round 0.001 J
Energy consumption per packet inspection 0.001 J
Energy consumption per block size 0.001 J for 32 bits
Distance threshold 87 m

For the DoS detection evaluation using the ‘Gboost scheme’, we will simulate the first sce-
nario regarding reference parameters, encryption, and authentication processes, and then extract
the network lifetime. In the second scenario, we will add a Gboost-DoS detection mechanism
to the first scenario and run it to see the effect of monitoring and packet inspection in each
CH to the network lifetime. The Gboost-DoS output model is distributed to all WSN nodes and
each WSN node becomes a CH, it will start monitoring ordinary WSN node activities associated
with it in second and third WSN node layers, then find data features and calculate y for each
node. For each positive y, the CH will create a counter table for the WSN node that received
suspicious packets, and calculate from one to α, if counter reaches this value in period of time
(t), the CH will block this node and send broadcast message to other CHs and AP for this case.
Moreover, these counter tables are forwarded between CH nodes so that all of them are aware
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of these numbers, since the work environment is mobile and the WSN nodes can navigate and
share another CH. However, the idea of a counter table is important and is to reduce the FNR
in WSN networks.

In the simulation, the WSN nodes are initially spread with dimensions of 500 × 500 terrain
associated with nine CHs at the initial values as seen in Fig. 18. Next, the WSN nodes continue
to travel in a random direction at a rate of 5 meters per second. The initial energy of the WSN
node to 1.5 Joule and the simulation time set to 500 s to allow some of the WSN node’s energy
in the first scenario to reach 0.

Moreover, each ordinary node sends 64 packets per second to its CH node and each packet
size is 1000 bits. If the node is CH, the received packets will be forwarded to the neighbour
CH. Moreover, the monitoring of nodes packets activity occur in constant time interval, and the
statistical calculation for each DoS attack during these time intervals (t) will be the same data
features calculation of [23]. regarding to Gboost DoS detection model, we suppose that the energy
consumption per each packet inspection will be 0.001 J, and depends on this energy consumption
value the analysis effect of the Gboost DoS detection on the WSN network lifetime is illustrated
on Fig. 19.

Figure 18: Simulation WSN nodes

As illustrated from Fig. 19, the increment of initial power in WSN nodes increases the lifetime
of WSN networks in both scenarios. This resemblance is due to the positive relationship between
WSN node initial power and the duration time. Moreover, from the same Fig. 19, we observe that
the variation of the network lifetime between two scenarios increases with the increases in the
initial power of the WSN nodes. This variation increases from 35% to 59% when the WSN node
initial power increases from 0.75 to 1.5 J. The reason for the increase in this variance is due to the
increase in the rate of packets received by the CH nodes, which in turn will lead to an increase in
the rate of the inspection and verification messages. This in turn also leads to an increase in the
rate of power consumption within the CH nodes, and thus the result is a decrease in the lifetime
of networks. The results show the Gboost-detection algorithm decreases the network lifetime by
35%, 40%, 43%, and 59% compared to the Gboost-free scenario, respectively.
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Figure 19: Analysis the effect of Gboost algorithm on WSN network lifetime

6 Conclusion and Future Work

In this paper, we have analysed the performance of various machine learning algorithms
belonging to different classification categories (Statistical-based, Logic-based, Instance-Based, and
Deep Learning-based) on WSN-DS datasets to help detect DoS attacks. These machine learning
algorithms were KNN, LR, SVM, DT, Naïve Bayes, LSTM, and MLP. Moreover, the WSN-SD
was divided into different datasets to analyse the performance of these algorithms on each dataset
size. Furthermore, one of these algorithms was selected to analyse its functions on the lifetime
of the WSN network. Python 3.8 within Jumyter Network software has been used to obtain the
accuracy, F1-score, FPR, FNR, and training execution time for each algorithm. Cooja simulator
have also been used to obtain the WSN network lifetime and the simulation environment was
managed by the clustering management algorithm which was supposed in modern references.

The performance analysis results of the machine learning algorithms in WSN-SD show that
the dataset that collected from WSN network traffic are numeric statistical values. Therefore, the
statistical and logical classification algorithms have the best performance metrics, and Gboost
was the best based on the overall average of performance metrics in different WSN-DS datasets.
Moreover, a dataset containing between 3000 to 6000 records is sufficient to carry out the training
process and obtain a high-performance prediction, if the percentage of data between the labelled
categories is sufficient to differentiate these categories.

The Gboost improved the average of accuracy across all WSN datasets by 0.29%, 2%, 26%,
5%, 2%, and 0.8% compared to KNN, LR, SVM, Naïve Bayes, LSTM, and MLP, respectively.
In DT accuracy, it was very close to Gboost. In an average of F1-score, Gboost improved it
by 2%, 5%, 41%, 12%, 58%, and 58% compared to KNN, LR, SVM, Naïve Bayes, LSTM, and
MLP, respectively. Also DT in F1-score showed the similar result to Gboost. Furthermore, the
Gboost reduced the average FPR in all WSD-DS datasets by 87%, 97%, 27%, 89%, 86%, and
72% compared to LR, SVM, DT, Naïve Bayes, LSTM, and MLP. The KNN showed a 36% better
reduction compared to Gboost. In average FNR, the Gboost reduced it by 63%, 43%, 93%, 82%,
and 41% compared to KNN, LR, SVM, LSTM, and MLP, respectively. FNR in DT and Naïve
Bayes was 26% and 350% lower than Gboost. Finally, on average training execution time, Gboost
used less time compared to DT, SVD, LSTM, MLP at 32%, 927%, 9997%, and 913% respectively.
Moreover, the KNN, LR, Naïve Bayes used less average training execution time by 128%, 74%,
and 808% compared to Gboost, respectively. In network lifetime, the Gboost reduced it by 32%
compared to standard scenario.

In the future research, we intend to collect new WSN network dataset from 6LoWPAN
protocol and add new features related to packet drop per flow, packet size per flow, flow change
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ratio, and packet change ratio. Moreover, we can use the cumulative difference of correctly
classified states computed by the custom sniffer to generate a more solid conclusion regarding
the node state. Furthermore, to employ or suppose a lightweight mechanism determines the most
important features of datasets. The best features are selected before the training stage to improve
the performance machine learning algorithms output. Additionally, we need to examine the effect
of percentage size of each class in dependent variables on the performance of machine learning
algorithms.
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