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Abstract: Coronavirus (COVID-19) infection was initially acknowledged as
a global pandemic in Wuhan in China. World Health Organization (WHO)
stated that the COVID-19 is an epidemic that causes a 3.4% death rate. Chest
X-Ray (CXR) and Computerized Tomography (CT) screening of infected
persons are essential in diagnosis applications. There are numerous ways to
identify positive COVID-19 cases. One of the fundamental ways is radiology
imaging through CXR, or CT images. The comparison of CT and CXR scans
revealed that CT scans are more effective in the diagnosis process due to
their high quality. Hence, automated classification techniques are required to
facilitate the diagnosis process. Deep Learning (DL) is an effective tool that
can be utilized for detection and classification this type of medical images.
The deep Convolutional Neural Networks (CNNs) can learn and extract
essential features from different medical image datasets. In this paper, a CNN
architecture for automated COVID-19 detection from CXR and CT images is
offered. Three activation functions as well as three optimizers are tested and
compared for this task. The proposed architecture is built from scratch and the
COVID-19 image datasets are directly fed to train it. The performance is tested
and investigated on the CT and CXR datasets. Three activation functions:
Tanh, Sigmoid, and ReLU are compared using a constant learning rate and
different batch sizes. Different optimizers are studied with different batch
sizes and a constant learning rate. Finally, a comparison between different
combinations of activation functions and optimizers is presented, and the
optimal configuration is determined. Hence, the main objective is to improve
the detection accuracy of COVID-19 from CXR and CT images using DL by
employing CNNs to classify medical COVID-19 images in an early stage. The
proposed model achieves a classification accuracy of 91.67% on CXR image
dataset, and a classification accuracy of 100% on CT dataset with training
times of 58 min and 46 min on CXR and CT datasets, respectively. The best
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results are obtained using the ReLU activation function combined with the
SGDM optimizer at a learning rate of 10~ and a minibatch size of 16.

Keywords: COVID-19; image classification; CNN; DL; activation functions;
optimizers

1 Introduction

The epidemic of COVID-19, which appeared in Wuhan city in China, results in pneumonia
with fever and cough as the main indications of infection. A study performed on CT images to
detect the disease infection proved that the detection rate from CT images is better than that from
the RT-PCR. So, a chest CT scan was recommended [1-5].

Classification is an essential process in learning tasks, and it is a fundamental problem in
the recognition area, which aims to classify medical images into several different categories. The
classification of medical images includes two main steps. Firstly, the most helpful image features
are extracted. Secondly, these features are used in building the models for dataset classification.
Usually, specialists use their feature extraction experience to categorize medical images into dif-
ferent categories, making the classification sometimes tricky and time-wasting. Recently, DL has
arisen due to its high quality and vast application domains in several research areas, especially for
classifying medical images since pre-processing or feature extraction is not required before training
the model. A CNN is one of the latest progressions in machine learning (ML) area. It can be
used for the analysis of medical images.

With the massive growth of neural networks and DL, finding an optimum model architecture
for each application is necessary. Much work has been carried out to achieve the desired perfor-
mance level and to obtain the best accuracy in any classification task. Activation layers such as
Sigmoid, Tanh, and ReLU define the non-linearity of the neuron output [6,7]. A CNN comprises
several layers ordered as the input layer, convolution layer, activation layer, fully-connected layer,
classification layer, and output layer. Moreover, as machine learning algorithms are optimized,
a significant improvement in their performance can be achieved. Therefore, finding a suitable
activation function and optimizer are basic tasks [0,7].

The objective of this work is to carry out comparisons between different activation functions
and different optimizers for the classification of CXR and CT image datasets for COVID-19
detection. The CNNs have proved efficient performance in the classification of medical images.
Therefore, this paper presents a CNN model for COVID-19 detection from CXR and CT images
with a new training strategy. This strategy depends on the proper selection of the optimizer and
the activation function. The rest of this paper is structured as follows. Section 2 summarizes the
related work in this field. Section 3 gives short notes about the CNN. Section 4 describes the
materials and methods used in the paper. Section 5 illustrates the proposed model architecture.
Section 6 shows the experimental results and discussions. Section 7 provides the conclusions.

2 Related Work

The World Health Organization (WHO) has stated that COVID-19 rapidly spread in several
countries worldwide. Early detection of COVID-19 cases can significantly control the spread
of this virus. Much work has been performed on this topic due to its importance. This paper
depends on DL to automatically detect COVID-19 from CXR and CT images. The performance
of different classifiers is investigated to determine the optimum one [I-3]. The CXR and CT
images can be used to detect COVID-19 cases. The CNN is one of the most popular and effective
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tools that identify COVD-19 from medical images [1-3]. Several review studies have been presented
to highlight recent contributions to COVID-19 detection [8-16]. Several works used radiology
images to identify and classify COVD-19 cases. Zheng et al. [13] proposed a DL model to classify
pneumonia. Xu et al. [14] presented a model to classify pneumonia from CXR images based on
compressed sensing (CS) with a deep transfer learning model. Sethy et al. [17] used the SVM
classifier to classify the features acquired from several CNN models applied on CXR images. They
achieved the best performance using the ResNet50 model with SVM.

Wang et al. [18] suggested transfer learning model called COVID-Net to detect COVID-19
from CXR images. Their model achieved 92.4% accuracy for three classes: Normal, Non-COVID
pneumonia, and COVID-19. Hemdan et al. [19] applied DL models to detect COVID-19 from
CXR images and suggested a model called COVIDXNet. Their model achieved a 0.95 AUC value
and a 0.96 sensitivity. Additionally, there is an online service to diagnose COVID-19 from CT
images [20]. Wang et al. [21] used a CNN based on the Inception network model to identify
COVID-19 cases from CT images. loannis et al. [22] proposed a DL model using 224 confirmed
COVID-19 images. The authors of [23] proposed a model to classify COVID-19, influenza, and
healthy CT image cases. Their model achieved an accuracy of 86.7%. In [24], the authors proposed
a learning model to separate the main features in CT images in a pre-processing stage. Their model
achieved accuracies of 89.5% and 79.3% with and without the pre-processing stage, respectively.
Ozturk et al. [25] suggested a model that classifies CXR COVID-19 images. Their model has
been applied to classify three main classes: COVID, No-COVID, and pneumonia, and achieved
a classification accuracy of 87.02%. Alsharman et al. [26] used CNNs to classify CT COVID-19
images. They used a pretrained Google-Net CNN architecture and achieved an accuracy of
82.14%.

Table 1: Overview of the recent work using deep learning techniques for medical image
classification

Study Image No. of images Classifier Accuarcy
modality

Ref. [22] CXR 224 COVID-19 (+)/700 Pneumonia/ VGG-19 93.48
504 Healthy

Ref. [18] CXR 53 COVID-19 (+)/5526 COVID-19 (—)/ COVID-Net 924
8066 Healthy

Ref. [17] CXR 25 COVID-19 (+)/ 25 COVID-19 (-) ResNet50 + SVM 95.38

Ref. [19] CXR 25 COVID-19 (+)/25 Normal COVIDX-Net 90.0

Ref. [21] CT 195 COVID-19 (+)/258 COVID-19 (—) M-Inception 82.9

Ref. [25] CXR 125 COVID-19 (+)/500 Pneumonia/500 DarkCovidNet 87.02
No-Findings

Ref. [13] CT 313 COVID-19 (+)/229 COVID-19 (-) UNet + 3D Deep 90.8

Network

Ref. [14] CT 219 COVID-19 (+)/224 Viral pneumonia/ ResNet + Location 86.7
175 Healthy Attention

Ref. [15] CT 107 COVID-19 (+)/74 COVID-19 (—) SVM 99.68%

Ref. [26] CT 349 COVID-19 (+)/No-finding GoogleNet 82.14

Ref. [20] CT 88 Covid-19 (+)/101 bacterial pneumonia/ Deep pneumonia 94%

86 normal

system
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The DL growth has a significant effect on the medical field due to the better ability to classify
medical images. Several image classification techniques can give radiologists another opinion. The
recent research works on medical image classification are summarized in Tab. 1.

In this paper, a DL model is presented to classifty COVID-19 CXR and CT images. The
proposed model has been trained from scratch without using any feature extraction approaches.
It has been trained with 1000 CXR and 1000 CT medical images. One of the essential advantages
of well-trained DL models is that they can extract features that are not apparent to the human
eye. Hence, accurate classification can be performed.

3 Convolutional Neural Networks (CNNs)

Recently, DL has arisen due to its efficiency in a variety of application domains in several
research areas, especially for classifying medical images since pre-processing or feature extraction
is not required before the training process. The CNN has gained a significant importance, and
it was utilized in most of the state-of-the-art applications. They were extensively used to detect
and identify diseases in different medical images. The main difference between a CNN and an
ANN is that the CNN has a large number of hidden layers. So, the CNN constitutes a deep
architecture. It consists of several stacked layers ordered as input layer, convolution layer, pooling
layers, activation layer, fully-connected layer, classification layer, and output layer.

The input layer enhances the image using pre-processing such as normalization and scaling.
The convolution layer convolves the image with several suitably adjusted filters. This convolution
results in feature maps. Then, the pooling layers are used to minimize the dimensions of the
generated feature maps. Pooling is carried out using a window with a proper stride. Either max-
pooling or average pooling is used. In max pooling, the maximum value is chosen.

On the other hand, in average pooling, the average value is estimated and used. The activation
functions define the non-linearity of the model. Finally, the fully-connected layer is the output
layer that clarifies the classification result using the SoftMax classifier to determine the image
class.

3.1 Activation Functions

The appropriate activation functions must be carefully chosen, because they significantly affect
the neural network performance. The main target of activation functions is that they provide non-
linearity to their input. There are three famous activation functions, namely, Sigmoid, Tanh, and
ReLU. These functions are used and studied in this work. They are summarized as follows:

e Logistic Curve (Sigmoid)
The Sigmoid function is defined as follows:

1
1 4+e>

o(x)= )

The sigmoid activation function converts its input range from [—oo; +oo] to [0; 1]. The
main disadvantage of the sigmoid is that it is computationally expensive, and it cannot solve the
problem of vanishing gradients.



CMC, 2022, vol.70, no.3 4377

e Hyperbolic Tangent ( Tanh)

The Tanh is a non-linear function. It converts the range of the input to [—1, 1]. It can be
defined as:

2
Tanh(x) = m —1 (2)

An advantage is that Tanh has steeper derivatives than the sigmoid function. On the other
hand, it cannot solve the vanishing gradient problem.

e Rectified Linear Units (RelLU)

The RelLU is the most common activation function, and is the mostly-used one. Using the
ReLU function in a model makes it easier to train and often achieve better performance. The
ReLU function is defined as follows:

0 if x<O
ReLU = (3)
x if x>0

The main advantage of the ReLU function is that it contains no exponential terms or
divisions, which results in increased the computation speed. However, it easily overfits. The benefits
and limitations of different employed activation functions examined through the simulation tests
are summarized in Tab. 2.

Table 2: Summary of advantages and disadvantages of the examined activation functions

Activation Function Advantages Disadvantages
*  Avoided when initializing a network with

' ¢ Easy to understand.

Sigmoid ¢ Used primarily on shallow networks. small random weights. .
1 e T lue is in the i lof e It suffers sharp damp gradients, slow
a(z) = TFe-7 ts output value 1s in the mterval o convergence, and non-zero centered

e s [0,1]. output.

The activation value does not vanish. *  Gradient updates not in the same direction.

e Zero-centered output.

iaﬂf'l-ll( ) : i/;pglzfd]em of 1is obtained with 0 e Like sigmoid, it suffers from vanishing
ann\xr ’ adi
e Its derivative is steeper. gradient problem.
*  More efficient due to the wide range.
il ¢ No exponentials or divisions result in
ReLU increased computation speed. It easily overfits
max((], I) ¢ Sparsity in the hidden units and output ¥ ’

= " values between zero and maximum.

3.2 Optimizers
e Stochastic Gradient Descent with Momentum (SGDM )

Optimization of the model greatly contributes to minimizing the loss function. The SGDM
is one of the powerful and most-commonly used optimizers. It is an improvement of the SGD
optimizer. It depends on the current gradient and the past momentum to estimate the momentum
in each dimension. It also accumulates the gradient of the past steps to determine the direction
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to go. The SGDM optimizer saves the update at each iteration and decides the following update
as a function of the current gradient and the previous momentum update.

Aw:=aAw—nVQi(w) 4)

wi=w+ Aw Q)

This leads to:
wi=w—nVQ;(w) +alAw (6)

where w is the parameter, which decreases Q(w), n is the learning rate, and « is an exponential
decay factor between 0 and 1 that controls the relative contribution of the current gradient and
the previous one to update the current momentum. Unlike SGD optimizer, the SGDM optimizer
tends to keep moving in the same direction to avoid oscillations.

e Root Mean Square Propagation (RMSprop)

Another optimizer is the RMSprop, which also breaks the learning rate using the average
exponential decay of squared gradients. It depends on the momentum to minimize the loss
function relatively faster. Like momentum, the RMSprop also tries to decrease the oscillations
using another method. It automatically adjusts the learning rate by choosing a different one for
each parameter. It calculates the running average using the mean square error. It also depends on
the past gradient to estimate the learning rate.

vw, 1) = yv(w,t = 1) + (1= y)(VQi()? (7)
where y is the forgetting factor, and the updated parameters are given as:
n
=w— ——=VQ; 8

e Adaptive Moment (Adam)

Adam algorithm merges the properties of momentum and some of the benefits of the
RMSprop. Adam optimizer determines the adaptive learning rates for each parameter. Like
momentum, Adam optimizer retains an exponential decay average of the past gradient descent v,
to reach a minimum faster, and stores an exponentially decaying average of previously squared
gradients m; like RMSprop [27,28]. The decaying averages of past and past squared gradients 1,
and v, are computed as:

my = Brm;_1 + (1 — B1)g: )
vi=pBovio1 + (1 - Bo)g; (10)
ity = 133{ (1)
—— (12)
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The Adam optimizer update rule is given by:
ny

Vite

where ¢ is a small quantity (e.g., 10~8) utilized to avoid division by 0, 8 (e.g., 0.9) and B, (e.g.,

0.999) are the forgetting factors and second moments for the gradients, respectively. The benefits
and limitations of different optimizers are summarized in Tab. 3.

(13)

Or1 <60 —n

Table 3: Summary of the advantages and disadvantages of the examined optimizers

Optimizer Advantages Disadvantages

SGDM e Very simple to implement. e One more variable is
e Fast, robust, and flexible. calculated for every update.
e Faster convergence and reduced oscillations.
e Little required memory specifications.
e High speed of convergence.

RMSprop e An average of the squared gradient determines e The gradients square
the diminishing learning rates. positive accumulation may
e The magnitude of the previous gradient is reduce the learning rate,
employed to normalize the current gradient. significantly.
e Learning rate is updated automatically.

Adam e Easy to realize. e The conflict in the

e Computationally inexpensive.

e Small memory requirements.

e Appropriate for parameter problems and
massive data.

e Hyper-parameters require little tuning.

e As in RMSprop, instead of learning rates
established on the first average moment (the
mean), the average gradient of the second
moment is used to adapt the parameters.

optimization landscape is
reduced.

e Low values of the second
moment.

e The update procedure
exceeds an ideal result as a
result of a high divergence
and learning rate.

4 Material and Methods

This motivation of this work is to offer a proposed simple deep CNN structural design
for categorizing and classifying COVID-19 and Non-COVID-19 cases. This section describes all
datasets used in this paper. In this study, simulation experiments are conducted on 1000 chest
CXR and 1000 CT images of COVID-19 and Non-COVID-19 obtained from the open-source
Mendeley datasets [29].

The dataset is divided into a 70% training set and a 30% validation set. The partitioned
datasets of the training and testing help in data cross-validation. The cross-validation checks
whether the suggested classifier precisely classifies the normal vs. COVID-19 images or not. A
sample of employed datasets is shown in Fig. 1.
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Figure 1: Samples of CXR and CT COVID-19 and non-COVID-19 images (a) CXR COVID-19
images (b) CXR non-COVID images (c) CT COVID-19 images (d) CT non-COVID images

5 Proposed Deep CNN Model

If we examine the performance of a CNN, it is evident that the network performance is
enhanced with the increase in network depth. This comes at the cost of large memory require-
ments. We try in the proposed deep learning model to make a trade-off between network size
and network performance. The proposed CNN model is made up of 14 layers, as illustrated in
Fig. 2. The input image size is 227 x 227 pixels, and it is fed into the first convolution layer that
has eight filters with size 3 x 3 and stride 1. The input image is zero-padded to get the output
image size the same as that of the input image size. The output is fed into the ReLU function,
and finally, it is max-pooled with a window size 2 x 2 and stride of 2 to down-sample the image.
These layers are followed by two similar structures. The first one depends on 16 filters of size
3 x 3 and stride one, and the second depends on 32 filters of size 3 x 3 and stride 1 also. The
last max-pooling layer is eliminated. We use a SoftMax classifier to convert each class score into
a probability distribution, and then use the cross-entropy as the loss function.

ejeq indu|
Jafeq ‘Auo)
Jake "wioN yaeg
Jafkeq njay
Jake buljood xep
JaAe ‘Au0)
Jahe "wioN yoeg
1ake njey
Jafe buiood xep
19Ae "Au0D
Jake "‘wioN yaeg
Jafe] njey
Jakeq D4
Jafen ‘xepy yos
Jake uoneayisse|n

Figure 2: Proposed deep CNN model

6 Experimental Results and Discussions

To validate the suggested CNN model performance, the training procedure is repeated several
times with different values of hyperparameters. Different activation functions and optimizers are
tested to validate the performance of the proposed model on different CXR and CT images. In
this section, the proposed CNN model is firstly trained to categorize and classify the CXR and
CT medical images into two categories: COVID-19 and Non-COVID-19.
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The first performed experiment is for performance comparison of different activation func-
tions on the two used datasets. The tested neural networks are carried out for six epochs with
batch sizes of 8, 16, and 32. In the first tested scenario, the analyzed neural networks are equipped
with the SGDM, RMSprop, and Adam optimization techniques. The utilized learning rate is 107>
for the three optimization algorithms. The learning rate is kept constant in the simulation tests,
but the network structure and the activation functions are variable. The obtained results using
the sigmoid function on the CXR dataset are shown in Tabs. 4-6, and Tabs. 13-15 for the CT
database. In addition, the results of the Tanh function applied on the same dataset are shown in
Tabs. 7-9 and Tabs. 16-18 for the CT database. Finally, the ReLU function results are shown in
Tabs. 10-12 and Tabs. 19-21 for the CT database.

The second performed experiment is for performance comparison of the Adaptive (Adam),
Root Mean Square propagation (RMSprop), and Stochastic Gradient Descent with Momentum
(SGDM) optimizers at a fixed learning rate of 107>. All neural networks run on the two
datasets, using the previously mentioned activation functions. Additionally, 1, 3, and 6 epochs
allow assessment by averting duplicate accuracy values and avoiding overfitting cases.

e Performance of the Proposed Model on CXR Database

Table 4: Model performance using sigmoid activation function with a 8 mini-batch size and a
1073 learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 87 00:22:09 75.00 81.67 0.3450 0.5716
3 261 01:02:56 100.00 80.00 0.0482 0.7276
6 522 02:04:11 100.00 86.33 0.0702 0.5228
RMSprop 1 87 00:23:09 87.50 76.00 0.2119 0.9053
3 261 01:02:56 100.00 80.00 0.0482 0.7276
6 522 02:04:11 100.00 86.33 0.0702 0.5228
Adam 1 87 00:23:36 87.50 64.67 0.2363 0.8838
3 261 01:10:01 75.00 84.67 0.7864 0.3349
6 522 02:14:00 87.50 87.33 0.1967 0.3162

Table 5: Model performance using sigmoid activation function with a 16 mini-batch size and a
107 learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy % accuracy %  loss loss
SGDM 1 42 00:12:08 56.25 56.00 2.3791 1.8141
3 129 00:34:09 68.75 89.00 1.0294 0.4070
6 258 01:05:52 75.00 84.67 0.3124 0.4780
RMSprop 1 42 00:12:47 37.50 50.00 6.4384 3.4840
3 129 00:33:40 75.00 82.00 1.0728 0.6813
6 258 01:08:42 100.00 85.67 0.0665 0.7768
Adam 1 42 00:14:37 56.25 63.33 0.6961 0.7373
3 129 00:38:50 100.00 86.00 0.1160 0.3401
6 258 01:17:58 93.75 88.33 0.1487 0.3084
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Table 6: Model performance using sigmoid activation function with a 32 mini-batch size and a
1073 learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 21 00:07:04 78.13 77.00 0.4279 0.4671
3 63 00:21:13 84.38 83.00 0.2949 0.3978
6 126 00:44:42 96.88 76.33 0.2024 0.4907
RMSprop 1 21 00:07:47 71.88 55.00 3.7996 1.4522
3 63 00:22:19 46.88 51.67 3.7887 2.9496
6 126 00:44:41 75.00 79.33 1.3629 0.6694
Adam 1 21 00:08:23 59.38 80.33 0.9747 0.4499
3 63 00:23:27 81.25 83.00 0.3955 0.4033
6 126 00:42:35 78.13 85.67 0.5658 0.3600

Table 7: Model performance using Tanh activation function with a 8 mini-batch size and a 107>
learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 87 00:23:49 87.50 88.33 0.9795 0.3907
3 261 01:13:02 100.00 87.67 0.0149 0.4945
6 522 02:21:00 100.00 86.67 0.0046 0.4817
RMSprop 1 87 00:22:45 87.50 86.00 0.1619 0.7019
3 261 01:06:52 75.00 81.33 0.8338 0.9389
6 522 02:14:30 100.00 84.33 0.0006 0.9540
Adam 1 87 00:28:41 87.50 87.00 1.3976 0.5139
3 261 01:15:07 100.00 87.00 0.0109 0.6783
6 522 02:23:42 100.00 87.33 0.0012 0.7052

Table 8: Model performance using Tanh activation function with a 16 mini-batch size and a 107>
learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 42 00:12:49 87.50 83.67 0.7059 0.5363
3 129 00:37:57 93.75 87.33 0.2122 0.4329
6 258 01:15:12 100.00 87.67 0.0087 0.4564
RMSprop 1 42 00:12:49 81.25 82.33 1.0822 0.5674
3 129 00:37:50 87.50 84.67 0.3276 0.5866
6 258 01:14:37 100.00 88.00 0.0100 0.5889
Adam 1 42 00:12:38 81.25 85.33 1.2719 0.4390
3 129 00:37:24 100.00 86.67 0.0516 0.4524
6 258 01:14:24 100.00 88.00 0.0007 0.3883
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Table 9: Model performance using Tanh activation function with a 32 mini-batch size and a 107>
learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 21 00:09:07 87.50 86.00 0.1512 0.4753
3 63 00:24:56 90.63 88.33 0.1536 0.3545
6 126 00:50:04 100.00 88.33 0.0454 0.3416
RMSprop 1 21 00:09:50 81.25 79.00 0.7253 0.6730
3 63 00:30:24 100.00 85.67 0.0231 0.6018
6 126 00:57:48 96.88 89.67 0.0424 0.7339
Adam 1 21 00:09:12 96.88 80.67 0.2548 0.6865
3 63 00:25:48 93.75 86.00 0.1817 0.4764
6 126 00:50:03 100.00 86.33 0.0230 0.4802

Table 10: Model performance using ReLU activation function with a 8 mini-batch size and a 107>
learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 87 00:15:26 87.50 87.67 0.7032 0.4226
3 261 00:31:45 84.74 89.65 0.0522 0.6226
6 522 01:22:03 100.00 90.00 0.0029 0.5387
RMSprop 1 87 00:14:09 87.50 71.33 0.9210 0.9480
3 261 00:30:74 97.30 88.32 0.0110 0.7480
6 522 01:20:25 100.00 90.33 0.0057 0.6414
Adam 1 87 00:14:24 87.50 86.67 0.1563 0.3667
3 261 00:30:54 97.20 88.10 0.1203 0.2154
6 522 01:21:09 100.00 90.00 0.0100 0.4292

Table 11: Model performance using ReLU activation function with a 16 mini-batch size and a
1073 learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 42 00:10:30 100.00 82.33 0.1424 0.5366
3 129 00:29:53 100.00 89.67 0.0122 0.2681
6 258 00:58:29 100.00 91.67 0.0256 0.2378
RMSprop 1 42 00:10:06 75.00 78.00 1.1117 0.9517
3 129 00:27:39 100.00 88.33 0.0226 0.6092
6 258 00:55:29 100.00 86.33 0.0015 0.7413
Adam 1 42 00:10:13 75.00 88.33 1.4540 0.4697
3 129 00:28:18 100.00 88.00 0.0793 0.3937
6 258 00:52:51 100.00 89.00 0.0044 0.3820
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Table 12: Model performance using ReLU activation function with a 32 mini-batch size and a
1073 learning rate on the CXR database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 21 00:06:02 90.63 88.33 0.1381 0.3018
3 63 00:17:26 90.63 90.33 0.2324 0.2672
6 126 00:32:18 100.00 90.33 0.0423 0.2445
RMSprop 1 21 00:07:04 87.50 85.67 0.3897 0.4325
3 63 00:19:06 53.13 55.00 1.8954 3.3760
6 126 00:39:08 100.00 90.67 0.0141 0.3842
Adam 1 21 00:06:50 78.13 91.33 0.3447 0.3520
3 63 00:19:43 100.00 90.33 0.0345 0.3131
6 126 00:37:54 100.00 91.00 0.0153 0.3376

e Performance of The Proposed Model on CT Database

Table 13: Model performance using sigmoid activation function with a 8 mini-batch size and 107>
learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 87 00:22:22 87.50 96.67 0.2241 0.0983
3 261 01:05:59 62.50 98.00 0.9690 0.0500
6 522 02:40:34 100.00 97.00 5.3644¢—07 0.1171
RMSprop 1 87 00:26:32 75.00 95.33 0.5611 0.1605
3 261 01:17:40 100.00 94.33 0.0004 0.3350
6 522 02:16:44 100.00 97.67 1.4901e—08 0.1633
Adam 1 87 00:26:32 75.00 95.33 0.5611 0.1605
3 261 01:07:01 87.50 95.33 0.2723 0.2727
6 522 02:08:41 100.00 96.00 0.0007 0.3056

Table 14: Model performance using sigmoid activation function with a 16 mini-batch size and
107> learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 42 00:15:16 100.00 96.00 0.0112 0.1047
3 129 00:36:47 100.00 95.33 0.0746 0.1110
6 258 01:10:18 100.00 98.00 0.0006 0.0595
RMSprop 1 42 00:16:24 100.00 97.33 0.0115 0.0802
3 129 00:46:10 100.00 98.33 3.0548e—06 0.0493
6 258 01:25:20 100.00 99.00 4.3513e—06 0.0573
Adam 1 42 00:24:57 93.75 96.67 0.4868 0.1575
3 129 01:20:05 100.00 96.33 0.0491 0.1556
6 258 02:34:27 100.00 98.33 0.0175 0.0341
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Table 15: Model performance using sigmoid activation function with a 32 mini-batch size and
107> learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 21 00:07:32 96.88 97.33 0.2239 0.0815
3 63 00:28:37 96.88 96.67 0.0366 0.0791
6 126 00:50:48 90.63 96.67 0.4635 0.1192
RMSprop 1 21 00:07:32 96.88 97.33 0.2239 0.0815
3 63 00:21:03 96.88 98.00 0.0805 0.0852
6 126 00:44:11 90.63 94.33 0.3367 0.4265
Adam 1 21 00:08:32 87.50 83.67 0.3059 0.4871
3 63 00:23:55 100.00 96.67 0.0071 0.0802
6 126 00:44:07 96.88 98.00 0.0622 0.0577

Table 16: Model performance using Tanh activation function with a 8 mini-batch size and 107>
learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 87 00:24:06 100.00 97.00 1.7092e—05 0.0715
3 261 01:10:07 100.00 99.67 0.0009 0.0133
6 522 02:18:40 100.00 99.00 0.0003 0.0538
RMSprop 1 87 00:23:38 100.00 99.00 0.0250 0.0623
3 261 01:09:04 100.00 99.00 4.9174e—07 0.0642
6 522 02:16:58 100.00 98.67 1.5374e—05 0.0827
Adam 1 87 00:23:17 100.00 94.33 0.0003 0.4791
3 261 01:08:27 100.00 98.33 2.6803e—05 0.1680
6 522 02:18:12 100.00 98.33 1.4901e—08 0.1293

Table 17: Model performance using Tanh activation function with a 16 mini-batch size and 107>
learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 42 00:13:22 100.00 96.00 0.0002 0.1288
3 129 00:38:33 100.00 97.33 0.0010 0.0788
6 258 01:15:44 100.00 97.33 0.0005 0.0779
RMSprop 1 42 00:12:52 62.50 98.67 1.9588 0.0356
3 129 00:37:29 100.00 99.33 0.0001 0.0333
6 258 01:14:00 100.00 98.67 0.0081 0.0820
Adam 1 42 00:12:27 93.75 97.67 0.0818 0.1737
3 129 00:36:59 100.00 98.33 0.0001 0.1090
6 258 01:13:26 100.00 98.33 0.0006 0.1501
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Table 18: Model performance using Tanh activation function with a 32 mini-batch size and 107>
learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 21 00:07:59 93.75 96.33 0.3697 0.1680
3 63 00:22:40 100.00 98.00 0.0003 0.0599
6 126 00:44:49 100.00 98.67 0.0016 0.0506
RMSprop 1 21 00:07:59 100.00 97.33 0.0093 0.0945
3 63 00:22:42 100.00 98.67 0.0002 0.0335
6 126 00:44:46 100.00 98.33 5.9324e—05 0.0761
Adam 1 21 00:07:58 96.88 98.67 0.4982 0.1688
3 63 00:22:43 100.00 98.33 0.0015 0.0742
6 126 00:44:42 100.00 99.33 5.9233e—07 0.0248

Table 19: Model performance using ReLU activation function with a 8 mini-batch size and 107>
learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 87 00:13:11 97.25 96.74 1.3251e—04 0.0562
3 261 00:40: 52 100.00 98.67 1.4111e—06 0.0927
6 522 01:21:40 100.00 99.33 1.1921e—07 0.0746
RMSprop 1 87 00:15:46 93.54 88.74 1.1451e—04 0.2162
3 261 00:43:18 100.00 91.37 1.5311e—06 0.0307
6 522 01:27:25 100.00 99.67 1.6391e—07 0.0727
Adam 1 87 00:13:56 94.37 94.62 1.2451e—04 0.1062
3 261 00:42:17 99.18 98.88 1.3611e—06 0.0007
6 522 01:22:40 100.00 99.67 1.6391e—07 0.0053

Table 20: Model performance using ReLU activation function with a 16 mini-batch size and 107>
learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 42 00:08:18 100.00 99.67 0.0009 0.0160
3 129 00:23:52 100.00 97.00 4.3246e—05 0.0888
6 258 00:46:59 100.00 100.00 4.5806e—05 0.0059
RMSprop 1 42 00:07:51 100.00 99.33 0.0003 0.0145
3 129 00:23:25 100.00 99.33 0.0002 0.0024
6 258 00:47:31 100.00 99.33 4.2246e—06 0.0130
Adam 1 42 00:08:52 93.75 96.00 0.3215 0.3321
3 129 00:28:58 100.00 95.67 0.0451 0.4021
6 258 00:51:59 100.00 98.67 2.0862e—07 0.1061
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Table 21: Model performance using ReLU activation function with a 32 mini-batch size and 107>
learning rate on the CT database for 1, 3, and 6 epochs

Optimizer Epoch Iteration Time elapsed Mini-batch  Validation Mini-batch Validation

No. No. (hh:mm:ss) accuracy (%) accuracy (%) loss loss
SGDM 1 21 00:05:03 93.75 96.67 0.1431 0.1082
3 63 00:14:34 100.00 97.33 0.0039 0.0556
6 126 00:29:19 100.00 99.67 0.0011 0.0455
RMSprop 1 21 00:05:54 100.00 99.33 0.0016 0.0134
3 63 00:15:48 100.00 99.33 1.3560e—06 0.0011
6 126 00:30:38 100.00 99.33 6.9663e—07 0.0012
Adam 1 21 00:05:13 90.63 96.33 0.4924 0.1225
3 63 00:15:01 100.00 99.00 5.6997e—07 0.0457
6 126 00:31:13 100.00 98.33 0.0006 0.0782

e Finding the Optimal Configuration

In this section, the effect of combining different optimizers with activation functions is studied
and analyzed for improved COVID-19 detection. So, the third experiment scenario is the perfor-
mance comparison of combining different optimizers and activation functions. The CXR dataset
shows that the combination of SGDM with the ReLLU activation function gives the best accuracy
for 16 mini-batch sizes and a learning rate of 107>. The training process and the confusion
matrix are shown in Fig. 3. Therefore, the employed neural network with a combination of the
SGDM optimizer and the ReLU function work better than other combination scenarios. Thus,
the SGDM/ReLLU configuration can find a smaller local minimum with few epochs. Performing
the same test on the CT database, it is also proved that combining the SGDM optimizer with the
ReLU activation function gives the best accuracy for 16 mini-batch sizes and a 10> learning rate.
An accuracy of 91.67% is achieved on the CXR dataset (with 93.3% Precision, 93.1% Sensitivity,
and 90.3% Specificity). It is increased to 100% on the CT dataset (with 100% Precision, 100%
Sensitivity, and 100% Specificity).

e Result Discussion

This paper concentrates on the benefits of using different activation functions and optimizers
to build a model that can classify the COVID-19 from CXR and CT medical images. The test
findings reveal that the suggested deep CNN model is very effective and helpful in discovering and
classifying COVID-19 cases. It is recommended to use a CT scan, because the best classification
results can be obtained on CT images. The CXR dataset can be increased in size for more
improved classification accuracy. It is shown that the main advantage of the sigmoid function is
that it is easy to implement on shallow networks. Its output value is in the range of 0 to 1, when
the input is in the range of —oo to +oo. Hence, the activation value does not vanish.

Conversely, the sigmoid function is not suitable, when the neural network is initialized for
small weights. The Tanh function outperforms the sigmoid function as it gives a superior perfor-
mance. It has a steeper derivative leading to fast learning. Similar to the sigmoid function, the
Tanh function suffers from the vanishing gradient problem. Sigmoid and Tanh functions activate
the majority of the neurons in the same way.
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The ReLU function is preferred over the sigmoid function or Tanh function with generalized
increased computation speed, since it does not depend on exponentials or divisions. However, the
ReLU function has a restriction that it overfits compared to the sigmoid function.

Accuracy (%)
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Figure 3: Performance of the proposed SGDM/ReLU model with 16 minibatch sizes at a learning
rate of le-5. (a) The training and validation processes of the proposed model on the CXR dataset
(b) The training and validation processes of the proposed model on the CT dataset (c) The
confusion matrix of the proposed model on the CXR dataset (d) The confusion matrix of the
proposed model on the CT dataset

The SGDM optimizer can find a less minimum without overshooting on fewer epochs. Unlike
the SGD optimizer, the SGDM optimizer tends to move in one direction to avoid oscillations.
The Adam optimizer is another optimizer that determines the adaptive learning rate of first and
second moments for each parameter. It also decreases the learning rates. Adam optimizer can
be viewed as a combination of momentum and RMSprop. It also carries out the exponential
moving gradients mean to update the learning rate instead of a simple average as in RMSprop. It
maintains an exponentially decaying average of previous gradients, and is computationally effective
with little memory specifications.

7 Conclusions and Future Work

This paper revealed the benefits of using different activation functions and optimizers to build
a model capable of identifying COVID-19 cases based on CXR and CT images. Three optimiza-
tion algoeithms, namely SGDM, RMSprop, and Adam, have been studied. These optimizers are
often described as adaptive optimizers, because the learning step is modified corresponding to
the contour topology. Out of the above three algorithms, it is found that the SGDM is the best
algorithm. Simulation results revealed that all algorithms can converge to various optimal local
minima offered by the same loss. Adam optimizer combines the best attributes of the momentum
and RMSprop algorithms. It is relatively easy to configure and it can handle sparse gradients.
The simulation outcomes demonstrated that the proposed deep CNN approach is valuable and
cost-effective in discovering COVID-19 cases. The simulation findings can be enhanced for a future
plan, when acquiring massive CXR images and CT images.
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