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Abstract: Abnormalities of the gastrointestinal tract are widespread world-
wide today. Generally, an effective way to diagnose these life-threatening
diseases is based on endoscopy, which comprises a vast number of images.
However, the main challenge in this area is that the process is time-consuming
and fatiguing for a gastroenterologist to examine every image in the set. Thus,
this led to the rise of studies on designing Al-based systems to assist physicians
in the diagnosis. In several medical imaging tasks, deep learning methods, espe-
cially convolutional neural networks (CNNs), have contributed to the state-
of-the-art outcomes, where the complicated nonlinear relation between target
classes and data can be learned and not limit to hand-crafted features. On the
other hand, hyperparameters are commonly set manually, which may take a
long time and leave the risk of non-optimal hyperparameters for classification.
An effective tool for tuning optimal hyperparameters of deep CNN is Bayesian
optimization. However, due to the complexity of the CNN, the network can
be regarded as a black-box model where the information stored within it is
hard to interpret. Hence, Explainable Artificial Intelligence (XAI) techniques
are applied to overcome this issue by interpreting the decisions of the CNNs
in such wise the physicians can trust. To play an essential role in real-time
medical diagnosis, CNN-based models need to be accurate and interpretable,
while the uncertainty must be handled. Therefore, a novel method compris-
ing of three phases is proposed to classify these life-threatening diseases. At
first, hyperparameter tuning is performed using Bayesian optimization for two
state-of-the-art deep CNNs, and then Darknet53 and InceptionV3 features are
extracted from these fine-tunned models. Secondly, XAI techniques are used
to interpret which part of the images CNN takes for feature extraction. At
last, the features are fused, and uncertainties are handled by selecting entropy-
based features. The experimental results show that the proposed method
outperforms existing methods by achieving an accuracy of 97% based on a
Bayesian optimized Support Vector Machine classifier.
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1 Introduction

Gastrointestinal tract (GIT) diseases are nowadays becoming a common disease worldwide,
and approximately 2.8 million new cases have been diagnosed in recent years [1,2]. Even worse,
1.8 million deaths occur every year due to esophageal, colorectal, and stomach cancer [3]. Since
2017, there have been 765,000 people dying of stomach cancer, and a global analysis reveals that
colon cancer has caused 525,000 deaths, making it one of the most prevalent forms of cancer in
the United States of America [4]. To start treating numerous GIT diseases, endoscopy and wireless
capsule endoscopy are the basis for diagnosing stomach cancer, as shown in Fig. 1. In some
cases, the infected region of the GIT may be captured only in one or two frames, and sometimes
it may be overlooked by the doctors resulting in an incorrect diagnosis [5]. Moreover, some
abnormalities may be too small to be easily detected by the naked eye. Furthermore, different
physicians may have distinct findings when they analyze the same image [6]. In the early detection
of stomach disorders, computerized automated detection systems for stomach infections from
endoscopic images were developed by several researchers. By detecting these life-threatening gastric
infections early on, the mortality rate of patients as shown in Fig. 2 can be decreased. Advances
in technology, especially computer vision techniques, make artificial intelligence (Al)-based systems
more feasible [7] to aid gastroenterologists with their diagnosis [8]. Over the decades, research on
artificial intelligence has continued to reveal its efficiency in specific fields of medical imaging [9].
Thus, in the domain of medical image processing and analysis, the application of deep learning
is a hot topic nowadays [10,11].

Dyed- lifted-polyps Esophagitis Dyed-resection-margins Polyps Ulcerative Colitis

Figure 1: GI tract abnormalities
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Figure 2: Five-year survival rate of stomach cancer patients relating to cancer stage
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As a vigorous technique of artificial intelligence, deep learning can be used for medical
disease classification, due to its potential to enhance the skills of health practitioners in the
early detection of these diseases. As a form of deep learning, Convolutional Neural Network
(CNN) can be applied to extract deep high-level features from a single image. CNN can convert
input data into images, signals, multi-dimensional data, and videos, among other formats. Input,
convolutional, activation, pooling, fully-connected (FC), and output layers make up a basic CNN
model, where low-level features are extracted from the former layers in CNN and high-level
features are extracted from deeper layers, and then features are vectorized in the FC layer for final
classification. Several deep CNN models are pretrained on thousands of images from ImageNet
and can be extended to medical early detection, such as stomach abnormalities and other diseases,
through transfer learning. Meanwhile, hyperparameters have a key role in influencing the training
behavior of deep CNN. An effective approach to decrease the challenge of hyperparameter
tuning is Bayesian optimization, which can be utilized for the global optimization of black-box
functions [12]. Generally, CNN acts like a black box, where the internal mechanisms and the
result generation process remain elusive in terms of how they produce output data predictions.

Furthermore, deep learning methods have obtained human-like outcomes on several tasks in
medical image analysis and diagnosis [13,14]. Explainable AI (XAI) has also been the subject
of several studies in general, but it has yet to be extensively explored in the field of medical
imaging. The importance of interpretability in the medical field is discussed by [15]. Deep learning
approaches have mainly two kinds of uncertainties: aleatoric uncertainty and epistemic uncer-
tainty. The former measures the noise inherent during data generation, while the latter measures
the uncertainty in the parameters of the model [16]. Fine-tuning the hundreds of thousands of
CNN’s trainable parameters requires vast amounts of data, which may arise epistemic uncertainty.
Handling the information on uncertainty can improve the trust in deep-learning approaches that
are frequently viewed as ‘black-box’ methods, making them more suitable for medical diagnosis.
And estimates of uncertainty can increase the speed of the analysis process because, as opposed
to reviewing the whole images for diseases not identified by the CNN, medical professionals may
spend their time evaluating the most uncertain regions. Finally, both medical imaging functions
and other safety-critical activities can be addressed by uncertainty handling approaches. When
monitoring the experiment result, the uncertainty information can be measured via entropy, whose
framework has been successfully applied in multiple areas, including statistics, mathematics, and
information theory. Also, the selection of entropy-based features approach is presented in [17]. To
allow the users to individually review the basis of their decisions, the United States Food and
Drug Administration needs the application to justify its clinical opinions because these systems
are lacking interpretability and difficult to trust their reliability.

Besides, the hyperparameter optimization problem requires recognizing a hyperparameter that
produces a precise methodology in a timely manner. However, the evaluation of CNNs takes a
long time and requires tremendous computing power [18]. Furthermore, researchers have limited
insight into the impact of each hyperparameter on the model’s performance, which results in
extremely vast boundaries and a much larger space than required. Hence, testing each possible
hyperparameter set of a CNN model can be computationally expensive [19]. In the field of
medical imaging, it is necessary to explain the decisions of deep learning when validating the
results of a model and to handle uncertainties associated with deep features when incorporating
Al-based medical diagnosis systems. Meanwhile, deep learning models have millions of neurons,
whose structure is too complex to explain how CNN regards certain images as different diseases,
which may generate the assumption that the models are untrustworthy. In addition, it may cause
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a variety of concerns because it is hard to tell whether the justifications behind the findings are
ill-formatted or even inaccurate.

It should be noted that in previous research, the existing CNN techniques of GI tract
abnormality classification have not involved hyperparameter optimization in training or XAl in
CNN decision interpretation. Also, they did not focus on uncertainty handling. We are the first
to integrate them into GIT abnormality classification. In this paper, we propose a novel deep
CNN-based methodology to solve these challenges, which can reliably infer the multiple GI tract
diseases, and our key contributions are as follows:

i. A novel deep CNN-based Bayesian optimized and Explainable Gastrointestinal Net
(BX-GI Net) is proposed to classify GI tract diseases by hyperparameter optimization,
human-understandable visual explanations, and uncertainty handling.

ii. After Bayesian optimization of hyperparameters, deep features are extracted from two
pretrained deep CNN models, i.e., Darknet53 [20] and Inception-V3 [21], and then XAI
methods, i.e., LIME [22] and Grad-CAM [23], are applied to interpret how CNN extracts
deep features to gain the trust of medical professionals.

iii. By selecting entropy-based optimized features from the pool of features, the uncertainty
associated with extracted deep features of both CNN models is conducted to provide a
black-box-free deep learning-based diseases diagnosis system.

2 Literature Review

In previous literature, researchers of the computer vision domain presented many techniques
for detecting and classifying GIT diseases. More recently, deep learning has increased the per-
formance of many fields like medical imaging, object classification, and many others. Akram
et al. [24] proposed a fully automated method for stomach disease classification from Wireless
Capsule Endoscopy (WCE) images based on DenseNet, where a color-based saliency method was
developed for ulcer detection, with the top 50% features selected by Tsallis entropy-based features
optimization heuristically. These selected features were classified through a multi-layer neural
network and attain an accuracy of 99.5%. Fan et al. [25] employed a deep learning-based method
for erosion and ulcer detection from WCE images, which includes thousands of ulcer images. An
Alexnet model was utilized to direct extract features from original images instead of preprocessing
data and segmentation. After that, an evaluation of the WCE database was performed, and an
accuracy of 95.16% was obtained. Diamantis et al. [26] presented a fully connected framework
for detecting various gastric modalities, such as polyps, bleeding, and ulcers, from WCE images.
In [27], two CNN models were utilized for feature extraction, and then these features were fused
through the Euclidean fisher vector and reduced through the entropy-based approach. In the
end, the geometric features were combined with reduced features for final classification. Alaskar
et al. [28] proposed a deep learning-based method for classification ulcers from WCE images. They
combined the feature information of two CNN models, namely AlexNet and GoogleNet, for the
classification of ulcer and non-ulcer regions.

In recent years, the application of CNN for automated disease detection has grown signifi-
cantly in images and videos of the GI tract. Manually tuning hyperparameters can increase the
possibility of improving the classification performance with the best configurations. However, it
is time-consuming. Therefore, it is necessary to have an automatic hyperparameter strategy to
improve outcomes without manual intervention. A CNN-based method [29] is proposed using
hyperparameters tuning based on Bayesian optimization for the diagnosis of COVID-19 in
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X-ray images. In [30], hyperparameters of machine learning models like Support Vector Machine
(SVM) and k-nearest neighbors (KNN) are also optimized by Bayesian optimization to classify
COVID-19 images. In a number of areas, including image recognition, object detection, etc., deep
CNNs have proven very effective, but the drawback is that due to their black-box nature, it is
difficult for human beings, particularly a layman, to understand how deep CNN decides. Several
methods have been proposed to explain CNN’s decisions and determine what features induce the
network to produce a specific prediction by visualizing the network’s inner layers. To increase
trustworthiness in the decision-making process, uncertainty is also important to be included as
an external insight into point prediction. Whereas the softmax regularly found at the end of
a CNN is often interpreted as model confidence, which is usually not an ideal example. For
the uncertainty estimation of deep learning, a test time dropout approach [31] is presented by
Monte Carlo (MC) samples of the prediction. The MC sample variance is evaluated for image-
based diabetic retinopathy diagnosis [32] and demonstrates this context is beneficial. Besides,
epistemic uncertainty in COVID-19 classification from CT and X-ray images using deep learning
features is calculated by entropy. Several studies have suggested approaches to resolve the lack of
transparency in deep learning models. Similarly, these techniques need to be applied in the deep
learning-based diagnosis of GI tract diseases [33].

3 The Proposed Methodology

In this research, a novel human-understandable automated classification system for GI tract
diseases is proposed based on endoscopic images. The proposed method validates the feature
extracted portion of the image by comprising the Bayesian optimization of CNN hyperparameters,
the deep features extraction after fine-tuning, and the visualization of CNN’s layers by XAI
techniques. The uncertainty handling of deep features is conducted by selecting entropy-based best
features from the pool of fused features. Selected features are then fed to a Bayesian optimized
classifier for the classification of GI tract diseases. Thus, the name of this proposed CNN-based
architecture is BX-GI Net: Bayesian optimized and Explainable Gastrointestinal Net. A detailed
illustration of the proposed method is shown in Fig. 3, and each step is explained as follows.

3.1 The Acquisition of Data

In our experiment, endoscopic images were acquired to validate the proposed methodology
described above. For this purpose, a benchmark dataset Kvasir [34] with multiclass gastrointestinal
tract diseases was utilized, consisting of eight classes named esophagitis, dyed lifted polyps, dyed
resection margins, polyps, ulcerative colitis, normal cecum, normal-pylorus, and normal-z-line.

3.2 The Bayesian Optimization of CNN Hyperparameters

The optimization of hyperparameters is a critical challenge, especially in the context of
medical diagnosis using artificial intelligence. Hyperparameter tuning is intended to achieve the
best results by searching for the best response of hyperparameters for a deep learning algorithm,
and automatically tunning of CNN hyperparameters is referred to as a black box because its
objective function is unknown. A plethora of hyperparameter tunning techniques exists in the
previous literature, where Bayesian optimization, as an outstanding approach in machine learn-
ing [35], tackles an unknown objective function and involves an estimation using existing prior
knowledge just the same as posterior probability. A probability model is set up to represent the
performance to obtain certain values. Then the most suitable values of hyperparameter are chosen
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based on these probabilities to determine the objective function. In mathematical form, it can be
represented as:

X' =argmaxf(x) (1)

xeN

where N is considered search space, x is denoted as the hyperparameter “learning rate” of
deep CNN, and x’ is the optimized learning rate using Bayesian optimization. The posterior
probability P(Y | X) can be calculated by Bayesian optimization. To obtaining posteriors, the prior
knowledge is combined with the prior probability distribution of the function f(x), and these
posteriors are used to calculate the maximum point f(x). The acquisition function is the measure
of this maximization process. As defined in [35], the posterior probability is proportional to the
product of prior probability and likelihood as mentioned below, where P(Y | X). is the posterior
probability, P(X|Y) is the likelihood, and P(Y) is the prior probability.

P(Y | X) x P(X | Y)P(Y) 2)
In this research, the initial learning rate’s most important hyperparameter of two CNN

models, i.e., Darknet53 and Inception-V3, is optimized using Bayesian optimization to gain the
benefits from transfer learning.
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Figure 3: Proposed architecture diagram

3.3 Deep Features

In the last few years, significant development has been demonstrated in deep CNNs. Generally,
along with a classifier, a deep model is the integration of low-level, mid-level, and high-level
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elements. The levels of features are enriched by multiple stacked layers in deep learning models.
Two pretrained deep CNN models, Darknet53 and Inception-V3, we fine-tuned on the above-
mentioned dataset using Bayesian optimization of hyperparameters, then deep-feature extraction
took place at the last Global Average Pooling layers of both nets.

3.4 Explainable AI (XAI)

In the health care sector, artificial intelligence is generally used for dealing with the issue
of transparency and explainability of CNN’s decisions to answer questions like why physicians
should trust this model’s prediction. It is important for medical staff to fully believe that deep
learning tools can assist them with the early diagnosis because it is able to produce an explanation
justifying why the algorithm gives a certain prediction or regardless of how precise a model is.
Different from other models, such as decision trees, which are explainable, the existing state-of-the-
art AI models in healthcare applications are based on neural networks, which are black boxes and
lack the explainability for their predictions, especially in high-risk circumstances, such as medical
diagnosis.

3.4.1 Local Interpretable Model-Agnostic Explanations ( LIME)

LIME generates explanations by splitting an image into superpixels. The clusters of pixels can
provide local contextual details of different parts from the image with similar features, textures,
and colors. A distribution of perturbed images is created by selectively hiding superpixels. An
impact of perturbations on the correct probabilities of class prediction is calculated, and a linear
model with this data is trained. Each superpixel is then provided the relevance against classifi-
cation with weight values, where positive values indicate the effect on accurate classification, but
rather negative values are within the opposite direction. As mentioned in [36], the arithmetically
LIME can be explained as:

E(x)= argrrGlin L(f, g m)+2(2) (3)
ge

The model g € G with visual objects can be easily shown to the user, where g is the number
of interpretable and explainable elements. It should be noted that not all g € G may be simple
enough to be interpretable. Let (g) be a measure of the g € G explanation’s ambiguity (opposite
to interpretability). Maybe the (g) is the depth of decision trees, whereas (g) may be the non-zero
weights for linear models. The model explains and demonstrates that f: R? — R f(x) is the
probability, where x belongs to a certain class, ,(z) is used more as a closeness indicator between
z and x, such that the locality is about x. After this, we can let L(f, g, m) be a measure of
how unreliable g is in the region described by m, To ensure interpretability, £(f, g, w,) must be
reduced, while 2(g) must be low to be interpretable with humans.

3.4.2 Gradient Weighted Class Activation Mapping ( Grad-CAM )

Grad-CAM is an XAI technique that can be implemented to any Deep CNN without any
network adjustment. In comparison, it is a generalized form of class activation mapping (CAM)
that involves a deep CNN network consisting of a stack of convolution layers, accompanied by
softmax, activation, and global average pooling. It is applied to visualize the attention of each
layer to understand the layer-wise feature map relevance. When the input and class are given, it
generates a heat map of the activation class, whose color represents a class activation map related
to the specified class image. It uses gradient knowledge flows from CNN’s last convolution layer
to allocate relevance to every neuron for a specific prediction. As explained by [23], to obtain
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the Grad-CAM of any class c, y¢, the score gradient for class ¢, y¢ is calculated in accordance
with the feature map activation 4*. For attaining the neuronal weights oy, the flowing gradients
towards the back direction are globally averaged pooling across the width and height dimensions
of i and j, respectively.

global average pooling

c 1 ay°
q- Y X @
T4 0A4;;
i J y
gradients
via
backprop

When backpropagating gradients of activations, an actual calculation o refers to the
sequential product of the weight matrix and the gradient of activation functions until the last
convolution layer’s gradients are propagated.

LGrag—cam =ReLU (Z “/iAk) ®)
k

—_——
linear combination

3.5 Uncertainty Handling Using Entropy

Entropy is a measure of a system’s amount of uncertainty. When monitoring the result of an
experiment, the information of uncertainty based on entropy can be measured, whose framework
can be used in multiple areas, including statistics, mathematics, and information theory.

H(X)=-)_ P(x)logP(x;) (6)
i=1

At first, a serial-based fusion 1s conducted from extracted feature vectors of Darknet53 and
Inception-V3. Assume the &qnceptionv3) 18 the feature vector of Inception-V3 and &parknetner) 18 the
feature vector of Darknet-53, where &parknetnety has the dimension of N x 1024 and &nceptionv3)
has the dimension of N x 2048. Meanwhile, the fused feature vector is denoted by &fused).-
Mathematically it is explained as:

= Dimension of g(lnceptionV3) ; Dimension of S(Darknetnet)

= (N x 2048; N x 1024) (7)
= (N x 3072)
To handle the uncertainty associated with extracted deep features, the entropy-based feature

selection is performed on the fused vector with the dimension of N x 3072. The best and
uncertainty-handled top 2000 features are then selected from the pool of features.
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S(fused)em = EntrOPY(S(fused)) (8)

S(fused)em = (N x 2000) )

3.6 Classification

At last, the final fused vector of N x 2000 is fed to a SVM classifier for GI tract disease
classification, and the hyperparameters of SVM are again optimized using Bayesian optimization.
SVM is a classifier of supervised learning to predict class labels, which converts features to
higher-dimensional space and utilizes the optimal hyperplane to address classes. The hyperplane
task focuses on the greatest margin among it and the closest others, where support vectors are
the closest set of points. The Bayesian optimization of SVM finds the following hyperparam-
eters are suitable for multiclass classification: one vs. all, kernel function of Gaussian, kernel
scale of 108.9282, box-constraint level of 429.1425, and archives accuracy of 97% on these
hyperparameters. So the key classifier utilized in this work is Bayesian optimized SVM.

4 Results

The detailed experimental results of the proposed methodology are discussed in this section.
A benchmark dataset Kvasir of GI tract endoscopy is utilized for experiments collected by
endoscopic instruments from Vestre Viken Health Trust (VV), Norway. The dataset comprises
images, annotations, and the diagnosis confirmed by health professionals experienced endoscopists,
including several classes showing pathological findings, endoscopic procedures, and anatomical
landmarks in the GI tract, and each class has thousands of images. The number of images
is adequate for various tasks like deep learning, machine learning, image retrieval, etc. The
Bayesian optimization of hyperparameters is performed at the state-of-the-art deep CNN models
InceptionV3 and Darknet-53 using transfer learning, and the ratio of training and testing is 50:50
for both deep CNN models. The 10-fold cross-validation is carried out in the training and the
testing of classifiers. Multiple classifiers like Fine KNN, Fine Gaussian SVM, Fine Tree, and
Medium KNN are used to equate the findings with a Bayesian optimized SVM classifier. The
following metrics are considered for performance evaluation: recall, precision, F1 score, the area
under the curve (AUC), false positive rate (FPR), false negative rate (FNR), time, and accuracy.
For simulation purposes, MATLAB R2020b Deep Learning Toolbox is used, and the hardware
comprises Core-i5 desktop, 6 GB NVIDIA GPU, and 16 GB of RAM.

4.1 Experimental Results and XAl Visualizations

Numerical results for all experiments are discussed in this section in detail. At first, the
hyperparameter initial learning rate of both pretrained deep CNNs Darknet53 and Inception V3
is optimized using Bayesian optimization. After the optimization process, the best models for
both deep CNNs are selected. The objective function for optimization Darknet-53 achieves after
20 iterations. After that, the Bayesian optimized learning rate of 0.00028129 is considered the
best. Meanwhile, for inception-V3, it achieves in 17 iterations with a learning rate of 0.0010421
as the best. And as mentioned earlier, transfer learning is utilized for both the deep CNNs, so
the number of epochs is set to 6. The optimizer utilized in this work is Stochastic Gradient
Descent with momentum (SGDM) while training both CNNs. The best model parameters are
used to validate the proposed methodology, and parameters attained during Bayesian optimization
of Inception-V3 are shown in Tab. 1. Deep features are extracted using the Bayesian optimized
best Darknet-53 model and then fed to different classifiers, including Bayesian optimized SVM
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and others, as mentioned in Tab. 2. Compared to others, the highest accuracy achieves 94% by
the Bayesian optimized SVM classifier, and the false negative rate (FNR) is 6.05, the area under
the curve (AUC) is 0.997, recall, precision rate, F1 score are 93.9, and the execution time is 10149
s. But in terms of execution time, the Fine Tree classifier outperforms over all other classifiers,
as shown in Tab. 2. Fig. 4 shows the visual results of XAI technique LIME and indicates which
part of the image is considered by Darknet-53 for feature extraction.

Table 1: Parameters attained using Bayesian optimization

Iter Eval result Objective Objective BestSoFar BestSoFar Initial
runtime (observed) (estim.) learn-rate
1 Best 0.12 21232 0.12 0.12 0.0024254
2 Best 0.107 21144 0.107 0.11276 0.00048675
3 Accept 0.36775 21176 0.107 0.10701 0.017948
4 Accept 0.875 21188 0.107 0.10694 0.46568
5 Accept 0.116 21317 0.107 0.10672 0.00010001
6 Best 0.09675 21162 0.09675 0.097335 0.0010501
7 Best 0.08325 21234 0.08325 0.092831 0.0010421
8 Accept 0.0835 21207 0.08325 0.09001 0.00097423
9 Accept 0.09225 21175 0.08325 0.090225 0.00099683
10 Accept 0.11925 21195 0.08325 0.090156 0.00018729
11 Accept 0.59475 21236 0.08325 0.089931 0.087522
12 Accept 0.1085 21238 0.08325 0.092932 0.00079189
13 Accept 0.096 21261 0.08325 0.092746 0.0014088
14 Accept 0.0925 21396 0.08325 0.090821 0.0054865
15 Accept 0.1095 21207 0.08325 0.090992 0.0045063
16 Accept 0.10625 21166 0.08325 0.093963 0.0011508
17 Accept 0.875 21369 0.08325 0.094059 0.99963

Table 2: Prediction results using deep features of Bayesian optimized Darknet-53

Classifiers Recall Precision F1Score AUC FPR Accuracy FNR Time (s)
Bayesian optimized SVM 93.9  93.9 93.9 0.997 0.008 94.0 6.05 10149
Medium KNN 91.0 91.6 91.3 0.986 0.012 91.0 897 2548
Fine KNN 88.1 88.5 88.3 0.931 0.015 88.1 11.85 25.95
Fine Tree 83.3 83.4 83.3 0.923 0.021 83.3 16.70 15.91
Fine Gaussian SVM 76.4 854 80.6 0.945 0.033 76.4 23.57 506.65

The results in Tab. 2 are taken from the classification of GI tract diseases using Bayesian
optimized Inception-V3 deep features. Again, the Bayesian optimized SVM classifier outperforms
in the classification by securing the accuracy of 95.3%, FNR, AUC, recall, precision rate, F1 score,
and execution time are presented in the table. From the prescriptive of execution time, the Fine
Tree achieves the minimum time to classify. Grad-CAM explanations for Inception V3 are shown
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in Fig. 5, making the proposed methodology trustful for the medical practitioners to incorporate
Al-based disease diagnoses system in practical medical applications.

Figure 5: Showing explanations of XAI technique grad-CAM technique on inception-V3

In Tab. 4, the results of the proposed methodology are presented, obtained by the fusion of
both vectors, and then the uncertainty associated with deep features is handled by the reduction
of uncertain features. Two thousand best-optimized entropy-based features are selected and then
fed into classifiers for classification. The maximum accuracy of 97.0% is achieved by Bayesian
optimized SVM, which shows the increase in accuracy as compared to both Bayesian optimized
Inception-V3 and Darknet-53. During the optimization process, the following hyperparameters of
SVM are considered for optimization: multiclass method, box constraint level, kernel scale, kernel
function, and standardize data. The minimum classification error plot and the best hyperparame-
ters values are shown in Fig. 5. In the proposed work, the FNR for Bayesian optimized SVM is
just 3.05%, and the highest one is 31.37% for Fine Gaussian SVM. From the prescriptive time,
the Fine Tree’s result is only in 35.0 s, but the prediction accuracy is 85.1%, which is low as
compared to Bayesian optimized SVM. The confusion matrix of the proposed work for cubic
SVM is presented in Fig. 6, which depicts that the class normal-pylorus has achieved a higher
correct prediction accuracy of 99.4%. Based on these findings, it is obvious that the Bayesian
optimized SVM provides better results than other classifiers.

4.2 Discussion

The proposed method is discussed in detail in this section. The proposed architecture contains
several key modules, and each module needs to be thoroughly evaluated. At first, the results are
obtained for Bayesian optimized Inception-V3 and Darknet53 features, but the accuracy is not
sufficient to compare with existing methodologies. Therefore, to remove the uncertainty associated
with the extracted features and optimized results, the fusion of both optimized feature vectors,
and then the entropy-based feature selection is proposed. As shown in Tab. 4, the accuracy
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increases to 97.0%. The accuracy given in this table instead of that in Tabs. 2 and 3 has increased.
Furthermore, the comparison of the proposed method with the state-of-the-art deep CNNS, like
Inception-V3, Alexnet, VGG16, etc., is conducted, and results are shown in Tab. 5. This experi-
ment’s aim is to determine the reliability of this proposed novel BX-GI Net for the classification
of GI tract diseases, Tab. 5 depicts that Alexnet achieves the accuracy of 84.5%, VGG16 achieves
84.0%, Darknet53 achieves 86.9%, and Inception-V3 achieves 86.0%, but the proposed framework

achieves the accuracy of 97.0%. This clearly indicates that the proposed approach outperforms
the above-mentioned deep CNNS.
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Figure 6: Minimum classification error plot of Bayesian-optimized SVM

Table 3: Prediction results using deep features of Bayesian optimized inception-V3

Classifiers

Recall Precision F1 Score AUC FPR Accuracy FNR Time (s)
Bayesian optimized SVM 95.3  95.3 95.3 0.997 0.005 95.3 4.67 1981.2
Medium KNN 94.0 942 94.1 0.995 0.008 94.0 595 53.60
Fine KNN 91.8 919 91.8 0.953 0.011 91.8 8.20 51.6
Fine Tree 84.7  84.8 84.7 0.931 0.021 84.8 15.25 15.25
Fine Gaussian SVM 66.0 85.4 74.4 0.928 0.048 66.0 33.95 1073.1

Table 4: Prediction results of proposed method

Classifiers Recall Precision F1 Score AUC FPR Accuracy FNR Time (s)
Bayesian optimized SVM  96.9  96.9 96.9 0.997 0.002 97.0 3.05 17956
Medium KNN 94.1 94.2 94.1 0.995 0.007 94.1 590 52.20
Fine KNN 922 923 92.2 0.956 0.011 92.2 7.80  51.57
Fine Tree 85.1 85.1 85.1 0.930 0.020 85.1 14.90 35.00
Fine Gaussian SVM 68.6 859 76.2 0.937 0.045 68.6 31.37 1063.8
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Table 5: Comparison of the accuracy of the proposed method with the state of art deep CNN'’s

Deep CNN approaches

Performance metric

Methodology Classifier Accuracy (%)
Alexnet Bayesian optimized SVM 84.5
VGG16 Bayesian optimized SVM 84.0
Darknet-53 Bayesian optimized SVM 86.9
Inception-V3 Bayesian optimized SVM 86.0
Proposed Bayesian optimized SVM 97.0

Table 6: Comparison of the proposed UX-GI net with the existing techniques

Ref. Year  Disease Accuracy  Explainable Uncertainty Hyperparameter
(%) Al (XAI) handling optimization
[6] 2020  Ulcer, Polyp, 99.46 Not applied Not applied Not applied
Bleeding and
Healthy
[37] 2018  Celiac Disease 92.5 Not applied Not applied Not applied
and Polyps
[38] 2017  Polyps 85.9 Not applied Not applied Not applied
Proposed 2021  Polyps, 97.0 XAI Entropy based Hyperparameters
Ulcerative techniques feature selection of CNN’s are
Colitis, Grad-CAM optimized by
Esophagitis, and LIME are Bayesian
Dyed lifted applied optimization
Polyps, Dyed method
resection
margins, Normal
cecum,
Normal-pylorus
and

Normal-z-line

A few related published techniques are compared in Tab. 6, based on accuracy, Bayesian
optimization of hyperparameters, XAl, and uncertainty handling. In [6], the author proposed a
deep CNN features-based technique and afterward selected optimal features through DE evolu-
tionary algorithm. It enhanced the crow search ECSA algorithm then fused the features using
Max Correlation, yet the accuracy achieved higher than the proposed method. But there are
no XAI techniques used to validate which part of images the Deep CNN is taking for feature
extraction. Furthermore, hyperparameters of CNN are not optimized. In addition, uncertainty
associated with characteristics, which is an integral part of any medical disease detection method
for effective diagnosis to avoid life-threatening conditions, is also not discussed. But in terms
of XAI and uncertainty handling, our proposed approach considers this analysis. Researchers
in [37,38] also presented related deep CNN approaches without any hyperparameter optimization
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technique or uncertainty handling, so the accuracy is less than our proposed method. It shows
that our proposed method proves to be more effective as compared to these published approaches.

5 Conclusion

In this research, a novel framework, namely BX-GI Net, based on deep CNN is proposed to
classify GI tract diseases. The research demonstrates that a deep CNN-based system can achieve
optimizable results using hyperparameter optimization. And their decisions can be interpretable
and explainable by using XAI. Two state-of-the-art pretrained CNN models’ performance is
improved by tuning the hyperparameters with Bayesian optimization. XAl techniques, i.e., Grad-
CAM and LIME, are implemented to visualize which part of images is considered by deep CNNs
for feature extraction. The uncertainty associated with deep features is also handled using entropy-
based feature selection to avoid uncertain predictions. The proposed method achieves an accuracy
of 97.0% for the classification of GI tract diseases from endoscopic images, which outperforms
existing methods. Our results conclude that Bayesian optimization is the best method to select
optimal hyperparameters for dealing with deep Convolutional Neural Networks (deep CNNs).
Also, entropy is one of the useful techniques for handling uncertainty associated with deep
features. The main limitation of this work is the complexity of the model. Also, the imbalanced
datasets make the training process more difficult.
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