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Abstract: Recently, deep learning (DL) became one of the essential tools in
bioinformatics. A modified convolutional neural network (CNN) is employed
in this paper for building an integratedmodel for deoxyribonucleic acid (DNA)
classification. In any CNN model, convolutional layers are used to extract
features followed by max-pooling layers to reduce the dimensionality of fea-
tures. A novel method based on downsampling and CNNs is introduced for
feature reduction. The downsampling is an improved form of the existing
pooling layer to obtain better classification accuracy. The two-dimensional
discrete transform (2DDT) and two-dimensional random projection (2DRP)
methods are applied for downsampling. They convert the high-dimensional
data to low-dimensional data and transform the data to the most significant
feature vectors. However, there are parameters which directly affect how a
CNN model is trained. In this paper, some issues concerned with the training
of CNNs have been handled. The CNNs are examined by changing some
hyperparameters such as the learning rate, size of minibatch, and the number
of epochs. Training and assessment of the performance of CNNs are carried
out on 16S rRNA bacterial sequences. Simulation results indicate that the
utilization of a CNN based on wavelet subsampling yields the best trade-off
between processing time and accuracy with a learning rate equal to 0.0001, a
size of minibatch equal to 64, and a number of epochs equal to 20.

Keywords: DNA classification; CNN; downsampling; hyperparameters; DL;
2D DT; 2D RP

1 Introduction

Technological advances in DNA sequencing allowed sequencing of the genome at a low cost
within a reasonable period. These advances induced a huge increase in the available genomic data.
Bioinformatics addresses the need to manage and interpret the data that is massively generated by
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genomic research. Computational DNA classification is among the main challenges, which play
a vital role in the early diagnosis of serious diseases. Advances in machine learning techniques
are expected to improve the classification of DNA sequences [1]. Recently, survey studies have
been presented by Leung et al. [2], Mamoshina et al. [3], and Greenspan et al. [4]. These studies
discussed bioinformatic applications based on DL. The first two are limited to applications in
genomic medicine and the latter to medical imaging. The DL is a relatively new field of artificial
intelligence, which achieves good results in the areas of big data processing such as speech
recognition, image recognition, text comprehension, translation, and genomics.

There are several contributions based on DL in the fields of medical imaging and genomic
medicine. However, the DNA sequence classification issue has received little attention. For an in-
depth study of DL in bioinformatics, we can consider the review study conducted by Seonwoo
et al. [5]. In addition, several studies have been devoted to the utilization of CNNs and recurrent
neural networks (RNNs) in the field of bioinformatics and DNA classification [6,7].

1.1 The CNNs
The classification task based on CNNs depends on several layers. Tab. 1 provides a list of the

basic functions of a variety of CNN layers [5].

Rizzo et al. [8] presented a DNA classification approach that depends on a CNN, and the
spectral representation of DNA sequences. From the results, they found that their approach
provided similar and good results between 95% and 99% at each taxonomic level. Moreover,
Rizzo et al. [1] suggested a novel algorithm that depends on CNNs with frequency chaos game
representation (FCGR). The FCGR was utilized to convert the original DNA sequence to an
image before feeding it to the CNN model. This method is considered as an expansion of the
spectral representation that was reported to be efficient. This work is a continuation of the work
of Rizzo et al. [1] for the classification of DNA sequences using a deep neural network, and
chaos game representation, except for the addition of downsampling layers that can achieve the
best trade-off between performance and time of processing, which is the main contribution of
this work. The proposed approach is an improved form of the CNN to obtain better classification
accuracy.

1.2 Data Reduction Step
A weakness of the convolutional layer performance is that it reports the exact position of

features in the input. Slight shifts in the features located in the input image contribute to different
feature maps. The pooling layer is used to resize the feature maps to overcome this problem. A
simplified representation of the features observed in the input is the outcome of using a pooling
layer. In practice, max-pooling works better than average pooling for computer vision fields such
as image recognition [9]. We can handle this issue in signal processing by using downsampling
methods such as 2D RP, two-Dimensional two-Directional Random Projection ((2D)2 RP)) and
2D DT. As a result, a lower-resolution representation of an input signal is produced, including
the significant structural components without fine details that might not be helpful. The important
purpose of the RP is to reduce the high dimensionality and preserve the geometrical relationship
in the dimensionality reduction.
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Table 1: A list of the basic layers used in CNNs

CNN layers Function

Convolutional Layer • Feature extraction for the features, which have relative information to
create the best possible representation of the input.
• The process is a 2D convolution on the inputs.
• The “dot products” between weights and inputs are integrated across
channels.
• The filter has the same number of layers as the input volume, and the
output volume has the same depth as the number of filters.
• It accepts a volume of size W1 ×H1×D1 (size of the input image is
width × height × number of channels
• Four parameters are required to compute the output features.

� Number of filters K
� Spatial extent F
� Stride S
� Padding P

• The output is of size W2 ×H2×D2, where:

W2 = W1 −F + 2P
S

+ 1

H2 = H1−F + 2P
S

+ 1

D2 =K
Pooling Layer • With the introduction of convolution, the time complexity of learning

increases. The issue with maps of the output features is that they are
sensitive to the positions of features. Therefore, we use the pooling layer,
which handles this sensitivity, reduces the number of parameters, and thus
increases the speed of the algorithm.
• The pooling layer depends on the non-linear downsampling of
activation maps.
• The two main methods associated with pooling are maximum and
average pooling that measure the maximum and average values for each
feature map patch, respectively.

Softmax Loss • It is used for evaluating the cost function as follows:

S(yi)=−
N∑
i=1

log
ew

T
yi fi+ byi∑K

j=1 e
wTj fi+ bj

where fi denotes the features and yi is the true class label of the image.
Wj and bj are the weights and bias of the jth class, respectively. N is the
number of training samples and K is the number of classes.
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Dimensionality reduction methods can be briefly categorized into two classes, namely sub-
space and feature selection. Subspace methods include Principal Component Analysis (PCA), Lin-
ear Discriminant Analysis (LDA), Random Projection (RP), etc. The RP can be free from training
and much faster. Some extensions of one-dimensional RP (1D RP), including two-dimensional
RP (2DRP) [10], two-directional two-dimensional RP (2D)2 RP [11,12], sparse RP [13], require
far lower computational complexity and storage cost than those of traditional 1D RP.

The authors of [13] used 2D schemes instead of 1D ones to reduce computational complexity
and storage costs. In addition, in [10], the authors proposed (2D)2 PSRP methods to generate
2D cancelable faces and palmprints. The authors in [12] showed that 1D cancelable palmprint
codes verification performance cannot meet the requirements of accuracy, and their computational
and storage costs are large. So, 1D cancelable palmprint codes are extended to 2D cancelable
palmprint codes. Moreover, the authors in [11] proposed a novel method called (2D)2 RP for
feature extraction from biometrics, where they employed (2D)2 RP and its variations on the face
and palmprint databases.

Feature selection methods depend on different spectral transformations such as two-
dimensional Discrete Cosine Transform (2D DCT), and two-dimensional Discrete Wavelet Trans-
form (2D DWT) to extract the features to reduce the amount of data, thereby simplifying the
subsequent classification problem, and hence decision-making. Adaptive selection/weighting of
features/coefficients is typically used for dimensionality reduction and performance improvement.
The features that achieve high discrimination [14], high accuracy [15], and low correlation [12]
should be selected and provided with high weights. The number of selected features is less than
that of the original features. Feature selection methods have several advantages compared with
subspace methods, such as PCA. Sometimes, feature selection methods can be fast and training-
free, while it is comparable to the subspace methods in terms of accuracy. Furthermore, the
selected features maintain their original forms. So, it is easy to observe the true values of the
features. The authors in [16] proposed a novel approach for face and palmprint recognition in
the DCT domain. In addition, the utilization of fusion rules is also an important tool to reduce
computational complexity and storage costs [17].

The rest of this paper is organized as follows. Section 2 presents the proposed CNN mod-
els based on different downsampling layers. The max-pooling, DT, and RP are explained in
Sections 3–5, respectively. Section 6 introduces the dataset. The results and discussions are given
in Section 7. Finally, Section 8 gives the concluding remarks.

2 The Proposed CNNs Based on Different Downsampling Layers

We designed the proposed architecture, inspired by Rizzo et al. [1] architecture that has been
reported as an efficient architecture for bacteria classification. We have added one convolutional
layer followed by DT or 2D RP or variations of (2D)2 RP layer as compared to the original
Rizzo et al. [1] architecture. Fig. 1 shows the proposed model. Firstly, the input DNA sequences
are preprocessed using the FCGR algorithm with k = 6, 7, and 8. Thus, the output image is

of dimension b0 =
√
4k ×

√
4k. For more details about FCGR, see [1,18]. Then, the normalized

output is processed to make the input images suitable to the proposed CNN. The proposed CNN
model consists of seven layers. The first four layers (from l1 to l4) are convolutional layers, each
followed by a max-pooling layer. Additionally, the layers l5 to l6 are convolutional layers followed
by various downsampling layers, which are applied to reduce the dimensionality of training.
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Several downsampling methods are implemented such as DT, 2D RP, and variations of (2D)2

RP. Simulation parameters are specified in Tab. 2.

Figure 1: The architecture of the proposed model

Table 2: Simulation parameters

Layer type Parameter

1 Conv 10, 5 × 5, padding 2
1 Relu Layer –
2 Max Pooling 2 × 2, Stride 2
3 Conv 15, 5 × 5, padding 1
3 Relu Layer –
4 Max Pooling 2 × 2, Stride 2
5 Conv 20, 5 × 5
5 Relu Layer –
6 2D-RP or DCT or DWT or
variation of (2D)2 RP

–

7 Fully-connected layer 3 for phylum, 5 for class, 19 for order,
65 for family and 100 for the genus
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After the convolutional layers, a set of the output images is generated; each of them of
dimension (2bi+1), and:

bi+1 = bi− y+ 1
2

(1)

For example, let k = 6. Hence, b0 =
√
46 ×

√
46 = 64× 64, and the first convolutional layer

(layer l1) produces 20 output images of dimension (64 – 5 + 1) = 60. Then, the pooling layer
is applied, which produces 20 output images of dimension 60/2 = 30. The proposed CNNs are
trained for five different classification tasks, as illustrated in Fig. 2, and the simulation parameters
are presented in Tab. 2.

Figure 2: The architecture of the classifier

3 The Max-Pooling

The downsampling layer is another name for the pooling layer. It reduces the dimensionality
of data, by dividing the input into rectangular pooling regions. The max-pooling computes the
maximum of each region Rij and consequently reduces the number of outputs. The max-pooling
function is expressed as:

aij =max(p,q)∈Rij(apq) (2)

while the average pooling function can be expressed as:

aij = 1
|Rij|

∑
(p,q)∈Rij

apq (3)

where apq is the input at (p,q) within Rij , and |Rij| is the size of the pooling region.

Let us examine the effect of the max-pooling, when a 4 × 4 matrix input image is used, as
shown in Fig. 3b.

In the case of an irregular nature of DNA sequences, k-mers recognition, the effective
downsampling layer increases the ability of the CNN to achieve high performance. Anyway, the
classification results do not critically depend on the feature extraction stage, but strongly depend
on how these features are reduced.
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Figure 3: The pooling of a 4 × 4 matrix (a) The 4 × 4 matrix (b) The effect of max-pooling

4 Discrete Transform (DT)

Since the FCGR converts the DNA sequences into the form of images, we can apply the
spectral transformations (Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT),
and Discrete Wavelet Transform (DWT)) for downsampling, and the feature extraction stage for
DNA images. The reason for applying these transformations emerges from their wide and effective
use for extracting features, decorrelation, ordering, and dimensionality reduction purposes in the
fields of speech, image, and bio-signal processing [19]. In signal processing, the DCT [20] can
reveal the discriminative characteristics of the signal, namely, its frequency components. It is
considered as a separable linear transformation. The basic idea of the DT is to select a certain
sub-band after implementing the transformation. For example, the DCT can be implemented on
the numerical sequence representing the DNA, and certain coefficients from the DCT can be
selected to represent the whole sequence. The definition of the two-dimensional DCT for an input
image A is given by:

Bp,q= αpαq

M−1∑
m=0

N−1∑
n=0

Amn cos
π(2m+ 1)p

2M
cos

π(2n+ 1)q
2N

,
0≤ p≤M − 1

0≤ q≤N− 1
(4)

where

∝p=

⎧⎪⎪⎨
⎪⎪⎩

1√
M

, P= 0

2√
M

, 1≤ p≤M − 1
(5)

and

∝q=

⎧⎪⎪⎨
⎪⎪⎩

1√
N
, q= 0

2√
N
, 1≤ q≤N − 1

(6)

while M and N are the row and column lengths of A, respectively.

The wavelet transform is faster and more efficient than the Fourier transform in capturing
the essence of data [20]. Therefore, there is a growing interest in utilizing the wavelet transform
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to analyze biological sequences. The DWT is investigated to predict the similarity accurately and
reduce computation complexity compared to the DCT and the DFT techniques.

The wavelet transform has been a very novel method for analyzing and processing of non-
stationary signals such as bio-signals in which both time- and frequency-domain information are
required. The wavelet analysis is often used for compression and de-noising of signals without
appreciable degradations. The wavelet transform can be used to analyze the sequences at different
frequency bands. In 2D DWT, the image is decomposed into four sub-bands. After filtering, the
signal is downsampling by 2. In this work, the DWT is employed to reduce the dimensionality
of features by performing the single-level 2D wavelet decomposition. The decomposition is con-
ducted using a particular wavelet filter. Then, approximation coefficients (LL) can be selected. For
example, let the first convolutional layer (layer l1) produce 20 output images of dimension 2b1.
Then, a DWT pooling layer is applied, which produces 20 output images of dimension b1. Fig. 4
displays an example of the proposed DWT pooling.

Figure 4: The proposed DWT pooling

5 Two-Dimensional Random Projection (2D-RP)

This method achieves the dimensionality reduction with low computational cost [21,22]. If the
original dataset is represented by the matrix Xd×n , then the projection of the data onto a lower
k-dimensional space gives Yk×n or Y as follows:

Y=Yk×n=Rk×d .Xd×n (7)

where Rk×d is the RP matrix and k� d.

5.1 Implementation of RP
The following stages of the RP are written using Matlab 2018a:

• Set the input as the features map Xm×m (the multilayer CNN features).
• Reshape the input to Xd×n.
• Create a k × d random matrix (Rk×d), where k� d.
• for j = 1:n
• Y(:, j) = R×X(:, j);
• End for.
• Output=Yk×n.



CMC, 2022, vol.70, no.3 5915

5.2 Two Directional Two Dimensional Random Projection (2D)2 RP

The 2D RP can be implemented simultaneously in two directions, that is called (2D)2 RP. In
this method, the input matrix is projected at row direction and column direction as follows:

Y=Yk×h =Rk×d .Xd×n.Cn×h (8)

where R and C are the left mapping matrix for column-direction and right mapping matrix for
row-direction, respectively and h � n, k � d. The details of (2D)2 RP were explained in [12].
With Eq. (8), the projection of data onto a lower k and h dimensional subspace is implemented.

5.3 Variations of (2D)2 RP
The dimensionality reduction is the main purpose of pooling layers as introduced in the

previous sections. In this work, the DWT and DCT are proposed to make the pooling layer to
satisfy this purpose and add more details to feature maps. Hybrid methods that combine (2D)2

RP with DWT or DCT have been proposed. These methods are namely (2D)2 RP DWT and
(2D)2 RP DCT based on the matrices R and C as indicated in Tab. 3.

Y=Yk×h=RRP
k×d .Xd×n.CRP

n×h (9)

Y= Yk×h=RDWT
k×d .Xd×n.CRP

n×h (10)

Y=Yk×h=RDCT
k×d .Xd×n.CRP

n×h (11)

Table 3: Variations of (2D)2 RP

Variations Right mapping matrix (R) Left mapping matrix (C)

(2D)2 RP RP RP
(2D)2 RP DCT DCT RP
(2D)2 RP DWT DWT RP

6 Dataset Descriptions

Data were obtained from the Ribosomal Database Project (RDP) [23], Release 11. A file in
the FASTA record was obtained from the repository, which includes data on 1423984 outstand-
ing bacterial gene sequences. For each bacterium, we have data on which taxonomic categories
belong to certain genetic sequences. In addition, we have information on the phylum, class, order,
family, and genus of a given 16S rRNA gene sequence. The bacterial genome contains the small-
subunit ribosomal RNA transcript and is useful as a general genetic marker. It is often used to
determine bacterial diversity, identification, and genetic similarity, and it is the basis for molecular
taxonomy [24]. Two different sequences were used for comparison; (a) full-length sequences with
a length of approximately 1200 – 1500 nucleotides and (b) 500 bp DNA sequence fragments. The
total set of data includes sequences of the 16SrRNA gene of bacteria belonging to 3 different
phylum, 5 different classes, 19 different orders, 65 different families, and 100 different genera, as
shown in Tab. 4.
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Table 4: 16S Bacteria dataset composition

Dataset Number of sequences Labels Training set (70%) Test set (30%)

Phylum 300 3 210 90
Class 500 5 350 150
Order 1900 19 1330 570
Family 6500 65 4550 1950
Genus 10000 100 7000 3000

7 Results and Discussions

One of the key parameters that affect the DNA classification based on CNN is avoiding
dimensionally problem and the sensitivity to the positions of the features. Even though the
complex nature of DNA sequences is improved by convolutional layers, it is still necessary to
ensure that the multi-layer CNN feature map has as suitable dimensions as possible. Therefore,
there is a bad need to provide a downsampling layer that improves the generation ability of the
original features. In this work, the CNN is utilized as a choice for deep learning, FCGR is applied
for data preprocessing method, and different types of downsampling layers are introduced, such
as DCT, DWT, 2D RP, (2D)2 RP, (2D)2 RP DCT, and (2D)2 RP DWT. A comparison is
presented for the performance of CNN based on different downsampling layers. Finally, a random
search method is applied to optimize the hyperparameters.

7.1 Comparison between Different Types of Downsampling Based on CNN
The effectiveness of different downsampling layers has been investigated to classify bacterial

sequences to reach the highest possible accuracy. First, the given DNA sequences have been
mapped using the FCGR algorithm with k= 6, 7, and 8. Then, the proposed CNN models based
on different downsampling layers have been trained for each taxon. These models are.

• Model_1 (Max-CNN): Rizzo paper [1].
• Model_2 (RP-CNN): CNN classification followed by max-pooling or 2D RP.
• Model_3 (DWT-CNN): CNN classification followed by max-pooling or DWT.
• Model_4 (DCT-CNN): CNN classification followed by max-pooling or DCT.
• Model_5 ((2D)2ZRP-CNN): CNN classification followed by max-pooling or (2D)2 RP.
• Model_6 ((2D)2 RP DCT-CNN): CNN classification followed by max-pooling or (2D)2 RP

DCT.
• Model_7((2D)2 ZRP DWT-CNN): CNN classification followed by max-pooling or (2D)2

RP DWT.

To demonstrate the effectiveness of the proposed models, two simulation experiments are
conducted. In the first case, the efficiency of the prediction for each taxonomic level is measured
separately by taking into account the whole bacteria sequence. In the second case, instead of
the whole sequence, we consider only the 500 bp long sequences. The simulation results are
demonstrated in Tabs. 5–7, and Fig. 5 introduces the experimental results for the full-length
DNA sequences, while Tabs. 8–10 and Fig. 6 present the results for 500 bp-length sequences. The
classification is obtained for the same sequence with the representation of images at different
values of k. From these tables and figures, it is clear that the proposed CNN model based on
DWT and (2D)2 RP DWT always achieves the best performance. Furthermore, the (2D)2 RP
DWT-CNN model consumes less running time. The best choice for mapping is at k= 8, because
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it improves the accuracy and F-score compared with those achieved at k = 6 and 7. Moreover,
the proposed CNN based on (2D)2 RP DWT has a processing time that is less than that of
the max-CNN by about 135 sec on average. From the mentioned results, the proposed (2D)2 RP
DWT-CNN model with k equal to 8 provides superior results compared with other models.

Table 5: Comparison of accuracy scores between created models based on different pooling layers
considering full length at k= 6

Model Phylum Class Order Family Genus

Max-CNN [1] 1 0.9980 0.9825 0.9600 0.9230
RP-CNN 1 0.9990 0.9875 0.9725 0.9600
DCT-CNN 1 1 0.9856 0.9703 0.9635
DWT-CNN 1 1 0.9933 0.9733 0.9705
(2D)2 RP DCT-CNN 1 1 0.9856 0.9725 0.97
(2D)2 RP-CNN 1 1 0.9833 0.9725 0.9715
(2D)2 RP DWT-CNN 1 1 0.9933 0.9733 0.972

Table 6: Comparison of accuracy scores between created models based on different pooling layers
considering full length at k= 7

Model Phylum Class Order Family Genus

Max-CNN [1] 1 0.9980 0.9825 0.9615 0.9241
RP-CNN 1 0.9990 0.9875 0.9732 0.9638
DCT-CNN 1 1 0.9856 0.9706 0.9668
DWT-CNN 1 1 0.9933 0.9738 0.9715
(2D)2 RP DCT-CNN 1 1 0.9933 0.9724 0.9694
(2D)2 RP-CNN 1 1 0.9933 0.9754 0.9729
(2D)2 RP DWT-CNN 1 1 0.9933 0.9774 0.9736

Table 7: Comparison of accuracy scores between created models based on different pooling layers
considering full length at k= 8

Model Phylum Class Order Family Genus

Max-CNN [1] 1 0.9980 0.9825 0.9715 0.9338
RP-CNN 1 0.9990 0.9875 0.9767 0.9683
DCT-CNN 1 1 0.9856 0.9783 0.9694
DWT-CNN 1 1 0.9933 0.9835 0.9774
(2D)2 RP DCT-CNN 1 1 O.993 0.9805 0.9767
(2D)2 RP-CNN 1 1 0.9933 0.9829 0.9774
(2D)2 RP DWT-CNN 1 1 0.9933 0.9838 0.9794
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Figure 5: F-scores of the proposed model at k= 8, for the full length case

Table 8: Comparison of accuracy scores between created models based on different pooling layers
for 500 bp-length sequences at k= 6

Model Phylum Class Order Family Genus

Max-CNN [1] 0.9955 0.9930 0.8960 0.8130 0.7533
RP-CNN 0.9960 0.9950 0.9322 0.8356 0.8100
DCT-CNN 0.9975 0.9960 0.9455 0.8363 0.8138
DWT-CNN 0.9975 0.9960 0.9455 0.8470 0.8250
(2D)2 RP DCT-CNN 0.9975 0.9960 0.9456 0.8394 0.8167
(2D)2 RP-CNN 0.9975 0.9960 0.9468 0.8450 0.8136
(2D)2 RP DWT-CNN 0.9975 0.9960 0.9468 0.8470 0.8250

Table 9: Comparison of accuracy scores between created models based on different pooling layers
for 500 bp-length sequences at k= 7

Model Phylum Class Order Family Genus

Max-CNN [1] 0.9955 0.9930 0.8960 0.8150 0.7554
RP-CNN 0.9960 0.9950 0.9322 0.8359 0.8115
DCT-CNN 0.9975 0.9960 0.9455 0.8371 0.8158
DWT-CNN 0.9975 0.9960 0.9455 0.8494 0.8267
(2D)2 RP DCT-CNN 0.9975 0.9960 0.9456 0.8394 0.8167
(2D)2 RP-CNN 0.9975 0.9960 0.9468 0.8456 0.8156
(2D)2 RP DWT-CNN 0.9975 0.9960 0.9468 0.8494 0.8268
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Table 10: Comparison of accuracy scores between created models based on different pooling
layers for 500 bp-length sequences at k= 8

Model Phylum Class Order Family Genus

Max-CNN [1] 0.9955 0.9930 0.8960 0.8159 0.7567
RP-CNN 0.9960 0.9950 0.9322 0.8368 0.8134
DCT-CNN 0.9975 0.9960 0.9455 0.8386 0.8158
DWT-CNN 0.9975 0.9960 0.9455 0.85 0.83
(2D)2 RP DCT-CNN 0.9975 0.9960 0.9455 0.8405 0.8238
(2D)2 RP-CNN 0.9975 0.9960 0.9468 0.8471 0.8194
(2D)2 RP DWT-CNN 0.9975 0.9960 0.9468 0.85 0.8305

Figure 6: F-scores of the proposed model at k= 8, for 500 bp-length sequences

Tabs. 11 and 12 present comparisons between the performance of the proposed (2D)2 RP
DWT-CNN and the state-of-the-art models; VGG16, VGG19, and ResNet-50 at k = 8 and dif-
ferent DNA sequences using the full-length and 500 bp-length sequences, respectively. The results
indicate that the proposed (2D)2 RP DWT-CNN achieves better accuracies at the genus level, by
about 4.23% and 7.34% compared to the VGG16 model for the full-length and 500 bp-length
sequences, respectively. The proposed model consumes 53 min, which is the lowest computational
time compared to the VGG16, VGG19, and ResNet-50. For VGG16, VGG19, and ResNet-50,
the computational times were recorded as 62, 87, 134 min, and also they have lower accuracies
of classification. Finally, a comparison is conducted among the proposed ((2D)2 RP DWT-CNN
model and the mentioned state-of-the-art models based on different datasets for the three most
popular taxonomic trees (RDP, SILVA, and green genes) [24].
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Table 11: Comparison of the proposed (2D)2 RP DWT-CNN and the state-of-the-art CNNs for
Genus level at k= 8 and full-length sequences

CNN Accuracy Specificity Precision Recall F1-score

VGG16 0.9371 0.9383 0.916 0.9319 0.9238
VGG19 0.9587 0.9595 0.9385 0.9554 0.9468
ResNet-50 0.9658 0.9667 0.9465 0.9613 0.9538
(2D)2 RP DWT-CNN 0.9794 0.9806 0.9636 0.9691 0.976

Table 12: Comparison of the proposed (2D)2 RP DWT-CNN and the state-of-the-art CNNs for
Genus level at k= 8 and 500 bp-length sequences

CNN Accuracy Specificity Precision Recall F1-score

VGG16 0.7571 0.755 0.7383 0.7413 0.7554
VGG19 0.7838 0.781 0.766 0.7738 0.7813
ResNet-50 0.8267 0.8285 0.795 0.8167 0.8238
(2D)2 RP DWT-CNN 0.8305 0.8313 0.811 0.8294 0.827

Tab. 13 indicates the different datasets used for the full-length implementation. Tab. 14 sum-
marizes the experimental results for the proposed model and the state-of-the-art models. It is
shown that the proposed model is superior, and it achieves a classification accuracy equal to
97.94% against 97.14%, 96.27%, and 96.27% for RDP 11, SILVA dataset [25], and greengenes
dataset [26], respectively.

Table 13: The input datasets for the full-length implementation

Dataset Number of sequences Labels Training set (70%) Test set (30%)

RDP 11 [23] 10000 100 7000 3000
SILVA [25] 5000 100 3500 1500
Greengenes [26] 2000 100 1400 600

Table 14: Comparison results between the proposed (2D)2 RP DWT-CNN and the state-of-the-art
CNNs for different datasets considering the full-length implementation

Dataset CNN Accuracy Specificity Precision Recall F1-score

RDP 11 [23] VGG16 0.9371 0.9383 0.916 0.9319 0.9238
VGG19 0.9587 0.9595 0.9385 0.9554 0.9468
ResNet-50 0.9658 0.9667 0.9465 0.9613 0.9538
(2D)2 RP DWT-CNN 0.9794 0.9806 0.9636 0.9691 0.976

SILVA [25] VGG16 0.9361 0.9368 0.9177 0.9288 0.9232
VGG19 0.9487 0.9493 0.9275 0.9367 0.932
ResNet-50 0.9589 0.9596 0.9387 0.9517 0.9451
(2D)2 RP DWT-CNN 0.9714 0.9723 0.9493 0.9623 0.9557

Greengenes [26] VGG16 0.9262 0.9276 0.9097 0.9214 0.9155
VGG19 0.9388 0.9397 0.9217 0.9336 0.9276
ResNet-50 0.9458 0.9467 0.9285 0.9412 0.9348
(2D)2 RP DWT-CNN 0.9627 0.9638 0.9457 0.9576 0.9516
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7.2 Hyperparameter Tuning
The training process may be quite difficult due to the enormous number of initial variables

called hyperparameters. These values are defined before the start of the learning process. Some
examples of hyperparameters include the learning rate, the minibatch size, and the number of
epochs. In this paper, some changes in hyperparameters are applied to iteratively configure and
train the proposed model. This section can be divided into subsections as follows:

7.2.1 Learning Rate Results
In this subsection, the effect of the learning rate on the CNNs with different downsampling

layers at the genus level is investigated in the case of full-length and 500 bp-length sequences.
These downsampling layers include Max-CNN, RP-CNN, DCT-CNN, DWT-CNN, (2D)2 RP
DCT-CNN, (2D)2 RP-CNN and (2D)2 RP DWT-CNN. The parameters used in the simulation
are mini-batch with 64, and the number of epochs for training is equal to 20. The comparison
among the mentioned models at different learning rates is shown in Tabs. 15–18 for the full-length
sequences.

Table 15: CNN metrics with different downsampling layers at learning rate = 0.01 considering
full-length implementation at the genus level

Learning rate Model Measures

Accuracy Precision Recall F1-Score

0.01 Max-CNN 0.3650 0.3470 0.3745 0.3602
RP-CNN 0.3680 0.3433 0.3775 0.3597
DCT-CNN 0.3833 0.3665 0.3967 0.3810
DWT-CNN 0.3880 0.3665 0.3960 0.3820
(2D)2 RP DCT-CNN 03843 0.3665 0.3963 0.3880
(2D)2 RP-CNN 0.3840 0.3633 0.3945 0.3882
(2D)2 RP DWT-CNN 0.3856 0.3650 0.3967 0.3894

Table 16: CNN metrics with different downsampling layers at the learning rate = 0.001

Learning rate Classifiers Measures

Accuracy Precision Recall F1-Score

0.001 Max-CNN 0.8180 0.7945 0.8267 0.8102
RP-CNN 0.8280 0.7933 0.8345 0.8133
DCT-CNN 0.8480 0.8233 0.8467 0.8348
DWT-CNN 0.8580 0.8313 0.8565 0.8433
(2D)2 RP DCT-CNN 0.8544 0.8335 0.8633 0.8470
(2D)2 RP-CNN 0.8540 0.8302 0.8645 0.8470
(2D)2 RP DWT-CNN 0.8580 0.8313 0.8565 0.8467
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Table 17: CNN metrics with different downsampling layers at a learning rate = 0.0001

Learning rate Classifiers Measures

Accuracy Precision Recall F1-Score

0.0001 Max-CNN 0.9338 0.9448 0.9389 0.9333
RP-CNN 0.9683 0.9529 0.9562 0.9504
DCT-CNN 0.9694 0.9529 0.9643 0.9585
DWT-CNN 0.9774 0.9593 0.9714 0.9653
(2D)2 RP DCT-CNN 0.9767 0.9533 0.96 0.9653
(2D)2 RP-CNN 0.9774 0.9575 0.9691 0.9632
(2D)2 RP DWT-CNN 0.9794 0.9626 0.9748 0.976

Table 18: CNN metrics with different downsampling layers at a learning rate = 0.00001

Learning rate Classifiers Measures

Accuracy Precision Recall F1-Score

0.00001 Max-CNN 0.9338 0.9448 0.9389 0.9333
RP-CNN 0.9683 0.9529 0.9562 0.9504
DCT-CNN 0.9694 0.9529 0.9643 0.9585
DWT-CNN 0.9774 0.9593 0.9714 0.9653
(2D)2 RP DCT-CNN 0.9767 0.9533 0.96 0.9653
(2D)2 RP-CNN 0.9774 0.9575 0.9691 0.9632
(2D)2 RP DWT-CNN 0.9794 0.9626 0.9748 0.976

It can be noted that the highest accuracy is obtained at the learning rate equal to 0.0001 and
0.00001, but processing time increases, where 0.0001 learning rate has a processing time less than
that of the 0.00001 learning rate. The same comparison is conducted for 500 bp-length sequences
to trust the achieved results as demonstrated in Tabs. 19–21. Therefore, at a 0.0001 learning rate,
superior accuracy for the training set can be attained for any length of the DNA sequences.

Table 19: CNN metrics with different downsampling layers at a learning rate = 0.01

Learning rate Classifiers Measures

Accuracy Precision Recall F1-Score

0.01 Max-CNN 0.1633 0.1670 0.1645 0.1602
RP-CNN 0.1652 0.1633 0.1675 0.1697
DCT-CNN 0.1763 0.1765 0.1767 0.1710
DWT-CNN 0.1783 0.1765 0.1763 0.1780
(2D)2 RP –CNN 01773 0.1765 0.1760 0.1720
(2D)2 RP DWT-CNN 0.1840 0.1833 0.1845 0.1882
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Table 20: CNN metrics with different downsampling layers at a learning rate = 0.001

Learning rate Classifiers Measures

Accuracy Precision Recall F1-Score

0.001 Max-CNN 0.6045 0.6176 0.5835 0.60
RP-CNN 0.6045 0.6153 0.5845 0.60
DCT-CNN 0.6073 0.6303 0.6050 0.6035
DWT-CNN 0.6238 0.6333 0.6073 0.6253
(2D)2 RP –CNN 0.6203 0.6315 0.6053 0.6205
(2D)2 RP DWT-CNN 0.6233 0.6345 0.6073 0.6253

Table 21: CNN metrics with different downsampling layers at a learning rate = 0.0001

Learning rate Classifiers Measures

Accuracy Precision Recall F1-Score

0.0001 Max-CNN 0.7567 0.7433 0.7573 0.7503
RP-CNN 0.8134 0.8045 0.8173 0.81
DCT-CNN 0.8158 0.8013 0.8153 0.8173
DWT-CNN 0.83 0.8113 0.8253 0.8203
(2D)2 RP –CNN 0.8194 0.8105 0.8253 0.8153
(2D)2 RP DWT-CNN 0.8305 0.8145 0.8273 0.8233

7.2.2 Mini-batch Size and Number of Epochs
In this subsection, the evaluation using different mini-batch sizes is investigated in the training

process against different iterations for the proposed (2D)2 RP DWT-CNN model (at genus level
considering full-length implementation) with the number of epochs = 20 and the learning rate
equal to 0.0001. The experimental results are illustrated in Fig. 7. It is clear at mini-batch size
equal to 128, the proposed (2D)2 RP DWT-CNN achieved less accuracy performance, while at
mini-batch sizes equal to 32 and 64, the proposed model has a better trade-off between the
accuracy score and the processing time.

From the mentioned results, we can conclude that the best performance of the proposed
DWT-CNN model is achieved at the learning rate equal to 0.0001 and the mini-batch size equal
to 64. We can select a suitable number of epochs considering these values. Fig. 8 reveals the
training progress of (2D)2 RP DWT-CNN model at k equal to 6 considering the full-length
implementation at a different numbers of epochs. It can be observed that best accuracy is obtained
at 20 epochs. Finally, after several experiments, we give the best hyperparameters in Tab. 22.
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Figure 7: Training progress of (2D)2 RP DWT-CNN model (k = 6) considering full-length
implementation at different mini-batch sizes (a) 32, (b) 64, and (c) 128

Figure 8: Training progress of (2D)2 RP DWT-CNN model (k = 6) considering full-length
implementation at different numbers of epochs (a) 10 and (b) 30
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Table 22: The best hyperparameters used

Activation functions Rectified linear units (ReLU)

Updater Stochastic Gradient Descent with Momentum (SGDM)
Learning rate 0.0001
Backpropagation method Mini-batch gradient descent
Mini-batch 64
Loss function Cross-entropy
Number of epochs 20

8 Conclusions and Future Research Directions

This paper presented two contributions to the bacterial classification of DNA sequences. The
first one is represented in the proposed models for bacterial classification using an improved CNN.
In these models, the 2D RP, (2D)2 RP, (2D)2 RP DCT, (2D)2 RP DWT, and DT methods
are applied to reduce the dimensionality of the feature maps, while preserving the structure
information. The proposed models make the data reduction process faster and more reliable. The
simulation results revealed that selecting the appropriate downsampling layer with the training
CNN could greatly influence the accuracy with an optimized computational time. According
to the obtained results, it can be concluded that the CNN based on (2D)2 RP DWT gives
a high accuracy. Furthermore, this model can achieve a good trade-off between the accuracy
score and the processing time for a suitable size of the frequency k-lengthen words in DNA
sequences. Finally, the experimental results on different datasets reveal that the proposed (2D)2

RP DWT model outperforms the state-of-the-art CNNs models. The second contribution lies in
evaluating the effectiveness of the hyperparameters through the created CNNs based on different
downsampling layers to select the best results. It is possible to say that the best accuracy is
provided by using (2D)2 RP DWT as a downsampling layer with k= 6. This study confirms that
with a learning rate equal to 0.0001, the mini-batch size equal to 64, and the number of epochs
equal to 20 are suitable to achieve the best performance on the given DNA dataset. For future
work, the performance of different frequency-domain transforms for DNA classification can be
investigated. In addition, deep CNN models developed from scratch can be designed to improve
the DNA classification efficiency.
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