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Abstract: The identification of DNA binding proteins (DNABPs) is con-
sidered a major challenge in genome annotation because they are linked
to several important applied and research applications of cellular functions
e.g., in the study of the biological, biophysical, and biochemical effects of
antibiotics, drugs, and steroids on DNA. This paper presents an efficient
approach for DNABPs identification based on deep transfer learning, named
“DTLM-DBP.” Two transfer learning methods are used in the identifica-
tion process. The first is based on the pre-trained deep learning model as
a feature’s extractor and classifier. Two different pre-trained Convolutional
Neural Networks (CNN), AlexNet 8 and VGG 16, are tested and compared.
The second method uses the deep learning model as a feature’s extractor
only and two different classifiers for the identification process. Two classifiers,
Support Vector Machine (SVM) and Random Forest (RF), are tested and
compared. The proposed approach is tested using different DNA proteins
datasets. The performance of the identification process is evaluated in terms
of identification accuracy, sensitivity, specificity andMCC, with four available
DNAproteins datasets: PDB1075,PDB186,PDNA-543, andPDNA-316. The
results show that the RF classifier, with VGG-Net pre-trained deep transfer
learning features, gives the highest performance. DTLM-DBP was compared
with other published methods and it provides a considerable improvement in
the performance of DNABPs identification.
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1 Introduction

Deoxyribonucleic Acid (DNA) represents the cell blueprint that contains the main informa-
tion that codes all organisms. DNA can perform its functions with the help of thousands of
proteins, which are called DNA binding proteins (DNABPs). DNABPs have several jobs, such
controlling protein production, regulating cell growth and storing DNA in the nucleus. DNABPs
play an important role in the structural composition of DNA. In addition, they regulate and
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control different cellular processes such as the transcription, replication, recombination, repair and
modification of DNA.

DNABPs identification is considered a major challenge of genome annotation because they
have several linked cellular functions. The identification process may include: identifying the
DNABPs (positive sample) from the non-DNABPs (negative sample) [1], identifying the single-
stranded DNABPs from the double-stranded DNABPs [2], or identifying the DNABPs from the
Ribonucleic acid-binding proteins (RNABPs) [3–5]. In this paper, the identification process is
formulated as a binary classification problem to identify DNABPs and non-DNABPs. DNABPs
are the proteins that have DNA binding domains and they generally interact with the major
groove of B-DNA. Non-DNABPs, on the other hand, are the structural proteins within the
chromosomes.

Several experimental technical methods can be used for identifying DNABPs, but they are
time-consuming and expensive [6]. Therefore, there is a significant need to find a suitable and
efficient computational method for replacing these experimental methods. Recently, several com-
putational and statistical methods have been proposed for DNABPs identification, but most of
these methods cannot provide the invaluable knowledge base for DNABPs identification. With the
advancements in machine and deep learning techniques over recent years, several methods based
on machine and deep learning have been presented.

Zhu et al., proposed a method for DNABPs identification based on the position-specific
scoring matrices (PSSM) and co-occurrence matrix. The results achieved an accuracy of 97.06%
for Yeast dataset, 98.95% for Human dataset, and 89.69% for H.Pylori dataset [7]. The PSSM
with SVM (PSFM-DT) tested by Xu et al. [8] achieved an accuracy of 79.96% for PDB1075
dataset, and 79.96% for PDB186 dataset. In addition, the PSSM with RF tested by Waris et al. [9]
achieved an accuracy of 92.3% for their tested dataset. Chowdhury et al., proposed a method
(iDNAProt-ES) for DNABPs identification by extracting the structural and evolutionary features
that feed the SVM predictor. The results achieved an accuracy of 90.18% for the jack-knife
dataset [10]. Xu used the random forest for DNABPs identification. The results achieved an
accuracy of 85.57 for the jack-knife dataset [11].

Zhang et al., proposed a method for DNABPs identification by combining the position-
specific frequency matrix and the distance-bigram transformation (PSFM-DBT). The results
achieved an accuracy of 81.02% for PDB1075 dataset, and 80.65% for PDB186 dataset [12].
Zhang et al., made features with a fusion of evolutionary, structural, and physicochemical features
for DNABPs identification, and used the binary firefly optimization for removing the redundant
features. The results achieved an accuracy of 91% for the DNA dataset, and 0.80.9% for PDB186
dataset [13]. Ma et al., proposed a method for DNABPs identification based on selecting the
hybrid features using the random forest. The results achieved an accuracy of 89.56% for Mainsett
dataset [14].

Moreover, Shen et al., used the multi-scale local average blocks approach for DNABPs
identification. The results achieved an accuracy of 91.80% for PDNA-543 dataset, 92.06% for
PDNA-41 dataset, 90.23% for PDNA-316 dataset, and 77.6% for PDNA-52 dataset [15]. Krishna
et al., proposed a DNABPs identification (DNA-Prot) method by incorporating the evolutionary
features into the pseudo-amino acid composition. The results achieved an accuracy of 81.83% for
DNA-Prot dataset, and 61.42% for DNA binder dataset [16]. This method was modified by adding
the grey model and named iDNA-Prot [17]. Fu et al., applied the same method on the jack-knife
test and independent test, which achieved an accuracy of 89.77% and 88.71%, respectively [18].
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Wei et al. [19] used RF in the training, called the Method by Local-DPP model. Moreover,
Liu et al. [20] used SVM and called it iDNAPro-PseAAC. This method was improved through
dimension reduction by Liu et al. [21] and renamed iDNA-Pro-dis. The concept of Pse-AAC
was applied in other models called DNABinder [22], PseDNA-Pro [23], and DPP-PseAAC [24].
Biological information was added by Zaman et al. [25] and named (HMMBinder).

Szilagyi et al. presented a method for DNABPs identification (DNABIND) based on
the amino acid proportions in the sequence of the protein. The results achieved an accu-
racy of 67.70% for PDB186 dataset [26]. Gao et al. presented a threading-based method for
DNABPs identification (DNA-Threader). The results achieved an accuracy of 59.7% for PDB186
dataset [27]. Szilagyi et al. presented a DNABPs identification method (DNABIND) based on
hybrid feature selection using RF and Gaussian naive Bayes (DBPPred). The results achieved an
accuracy of 76.90% for PDB186 dataset [28].

Zhang et al., proposed a DNABPs identification method using bootstrap multiple CNN.
The results achieved an accuracy of 90.77% for PDNA-543 dataset and 91.04% for PDNA-316
dataset [29]. They used the long short-term memory and CNN. The results achieved an accuracy
of 81.83% for DNA-Prot dataset, and 89.19% for Chip-seq dataset [30]. Liu et al., proposed a
method for DNABPs identification by combining the auto-cross covariance with ensemble learning
(iDNA-KACC). The results achieved an accuracy of 75.16% for the tested dataset [31]. Qu
et al., proposed a method for DNABPs identification using mixed feature representation methods.
The results achieved an accuracy of 77.43% for PDB1075 dataset, and 81.58% for PDB186
dataset [32]. Hu et al. [33] combined the sequence features with multiple SVMs and named the
method TargetDNA. Si et al. [34] presented a meta-based DNABPs identification and named it
MetaDBSite.

The main contribution of this paper is the testing and adaptation of pre-trained deep transfer
learning models for DNABPs sequence identification. The paper presents a novel approach for
DNABPs identification using deep transfer learning. In this approach, two transfer learning
methods were tested and compared; in the first method, the pre-trained deep CNN (AlexNet
8 or VGG 16) learning model was used as a feature’s extractor and classifier. In the second
method, the deep learning model was used as a feature’s extractor only, while the classifier was
either the SVM or RF. The proposed approach was tested using different DNA proteins datasets.
The performance of the identification process was evaluated in terms of identification accuracy,
sensitivity, specificity, and MCC with four available DNA proteins datasets: PDB1075, PDB186,
PDNA-543, and PDNA-316 datasets. The results show that the RF classifier with VGG-Net
pre-trained deep transfer learning features produced the highest performance. DTLM-DBP was
compared with the other published methods and found to represent a considerable improvement
in the performance of DNABPs identification. The remainder of the paper is organized as follows:
the second section will present the proposed methodology, the third section gives the results, and
the conclusion will be given in the last section.

2 Materials and Methods

The general block diagram of the DNABPs identification process in this paper is shown in
Fig. 1. Two transfer learning methods were carried out. In the first method, the protein sequences
were adapted to CNN models using 1D convolutions layers, then one of the pre-trained deep
CNN learning models was used as a feature’s extractor and classifier. In the second method, the
deep learning model was used as a feature’s extractor only, while the classifier was either the SVM
or RF. More details about each block will be presented in the following subsections.
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Figure 1: DNABPs identification process

2.1 Datasets
There are several publicly available protein sequences datasets, most of which were collected

from the protein data bank (PDB). The researchers collected the sequences data from the PDB
website by searching for words such as ‘DNA binding,’ ‘DNA protein’ and other related terms,
Then, certain processing procedures were undertaken to avoid the inclusion of redundant data,
and finally, the obtained datasets were used in the research. To guarantee the reliability of the
proposed approach and for performance evaluation comparison purposes, pre-collected publicly
available datasets were used that had been used by several researchers in the literature.

The experimental work was implemented on four different DNABPs datasets: PDB1075,
PDB186, PDNA-543, and PDNA-316 datasets. PDB1075 dataset was collected by Liu et al. [21],
and included 1,075 protein samples; 525 samples were positive DNABPs and 550 samples were
negative non-DNABPs. PDB186 dataset was collected by Lou et al. [28], and included 186
protein samples; 93 samples were positive DNABPs and 93 samples were negative non-DNABPs.
PDNA-543 dataset was collected by Hu et al. [33], and included 144,544 protein samples; 9,549
samples were positive DNABPs and 134,995 samples were negative non-DNABPs. PDNA-316
dataset was collected by Si et al. [34], and included 72,718 protein samples; 5,609 samples were
positive DNABPs and 67,109 samples were negative non-DNABPs.

2.2 Deep Transfer Learning Models
In this paper, two pre-trained deep transfer learning models, AlexNet and VGG-Net, were

adapted for the identification of DNABPs sequences. The model architecture of each training
model will be presented. These two models had been selected from the large number of pre-trained
deep learning transfer models because, according to the literature, they are the most successful
models in terms of the identification process, while their architectures are simple and contain
different numbers of convolution layers.
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2.2.1 AlexNet-8 Pre-Trained Deep Transfer Learning Model
AlexNet-8 is a CNN that is 8 layers deep, and was introduced by Krizhevsky et al. [35].

The number of parameters in AlexNet-8 is 60 million and the number of neurons is 650,000. It
consists of 8 layers (5 convolutional and 3 fully connected), as shown in the model architecture
in Fig. 2 [36]. The first and second convolutional layers are followed by normalization and a
max-pooling layer, the third and fourth convolutional layers are connected directly, and the last
convolutional layer is followed by a max-pooling layer. The output of the convolutional layer
passes through a series of two fully connected layers, in which the second fully connected layer is
fed into the SoftMax classifier.

Figure 2: AlexNet-8 model architecture

2.2.2 VGG-16 Pre-Trained Deep Transfer Learning Model
VGG-16 is a CNN model which is 16 layers deep, and was introduced by Simonyan and

Zisserman in 2014 [37,38]. According to the literature, VGG-16 offers a considerable improvement
over AlexNet in several applications because it is rich with several feature representations that can
be used for a wide range of applications. The VGG-16 model architecture is shown in Fig. 3 [39].
It consists of a 16-layer network comprised of convolutional layers.

Figure 3: VGG-16 model architecture

2.3 Classifiers
The DNA proteins identification process is mainly a binary classification problem between

two classes. The first class is the DNABPs that have DNA binding domains and interact with
the DNA. The second class is the non-DNABPs, such as the structural proteins within the
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chromosomes. Several classifiers are suitable for binary classification; the most commonly used
classifiers for DNA proteins identification are SVM [8,22,33] and RF [14,16,17,28]. In this paper,
the two classifiers were used and compared.

2.3.1 SVM Classifier
SVM is a set of related supervised-learning models introduced by Cortes et al. [40]. It min-

imizes the identification error and maximizes the geometric margin. SVMs are the most suitable
binary linear identification methods [40–43]. SVM works for two-class problems by separating the
data by a separating hyperplane, as shown in Fig. 4.

Figure 4: SVM separating hyperplanes

In Fig. 4, consider that the training sequences are represented by {xi, yi}, i= 1, . . . , l, yi =±1,
xi ∈Rd, x points lie on the hyperplane and satisfy the condition x. w+ b= 0, w a is normal to
the hyperplane. This can be formulated as [44]:

xi.w+ b≥+1 for yi =+1 (1)

xi.w+ b≤−1 for yi =−1 (2)

The primal Lagrange is given as [44]:

Lp = 1
2
‖w‖2−

l∑

i=1

αi(xi.w+ b)− 1) (3)

where αi, i= 1, . . . , l are the positive Lagrange multipliers, ‖w‖ is the Euclidean norm of w.

For minimizing LP with respect to w, b, using the conditions:

δLP
δw0

= 0 gives w0 =
l∑

i=1

αiyixi (4)

δLP
δb0

= 0 gives b0 =
l∑

i=1

αiyi (5)



CMC, 2021, vol.68, no.3 3569

Using Eqs. (3)–(5), the dual Lagrangian will be:

Ld (α)=
∑

αi− 1
2

l∑

i, j=1

αiαjyiyjxixj (6)

The mapping of training vectors xi into the higher dimensional space uses a function called
kernel function K(xi, xj)≡�(xi)�(xj). There are several SVMs kernel functions, such as:

Linear kernel:

K(xi, xj)= xi.xj (7)

Polynomial kernel:

K(xi, xj)= (γ xi.xj + r)d, γ > 0 (8)

RBF kernel:

K(xi, xj)= exp(−γ
∥∥xi−xj

∥∥2), γ > 0 (9)

Sigmoid kernel:

K(xi, xj)= tanh(γ xi.xj+ r) (10)

where γ , r and d are kernel parameters.

Figure 5: RF algorithm

The DNA protein sequences identification was carried out using the SVM Matlab Toolbox
with different kernel functions: linear, polynomial, RBF, and sigmoid kernel. DNABPs identifi-
cation using SVM can be carried out in two steps. The first step is building the identification
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simulation model, while the second step is the feature matching for the model performance
evaluation. In the modelling step, the features related to the DNA protein sequences are stored.
When a tested sequence arrives, its features are matched with the stored features in the model and
the identification decision is taken based on the matching process.

2.3.2 RF Classifier
RF is a tree collection introduced by Ho [45]; each tree is grown through a subset of all the

possible attributes of the input features vectors [46]. It constructs the decision ensemble in random
trees based on the input features, and the final identification decision is obtained by combining
the results from the trees via voting, as shown in Fig. 5.

3 Results and Discussions

3.1 Performance Evaluation Metrics
The performance of the DNA protein sequences identification system is normally evalu-

ated using wide performance metrics, such as identification accuracy, sensitivity, specificity, and
Matthew’s correlation coefficient. These metrics can be calculated using four parameters obtained
from the testing of the identification system with a certain dataset. The system tests the DNA
protein sequences if it is a DNABP (positive sample) or non-DNABP (negative sample). For
each DNABP testing, if the test result is positive, this means that the system identifies it as
correct (True), and accumulating the positive true results for all the tested protein sequences in
the dataset gives the Tp number. If the test result is negative, this means that the system identifies
it as incorrect (False) and the accumulation gives the Fn number. For each non-DNABP testing,
if the test result is positive, this means that the system identifies it as incorrect (False), and
the accumulation gives the Fp number. If the test result is negative, this means that the system
identifies it as correct (True) and the accumulation gives the Tn number. Using these four numbers,
it is possible to calculate:

1. Accuracy

Acc= TP+TN
TP+TN +FP+FN

× 100% (11)

2. Sensitivity

Sen= TP
TP+FN

× 100% (12)

3. Specificity

Acc= TN
TN +FP

× 100% (13)

4. Matthew’s correlation coefficient

MCC= (TPTN)− (FPFN)√
(TP+FP)(TP+FN)(TN +FP)(TN +FN)

(14)

The accuracy, the sensitivity and the specificity are percentages, while the MCC ranges from
−1 to +1; the perfect classifier should give 100% for the three first parameters and +1 MCC.
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3.2 Deep Transfer Learning Models
This section presents the results of the first DNABPs identification method, which is based

on the pre-trained deep transfer learning models as the features extractor and classifier. Two pre-
trained deep transfer learning models, AlexNet and VGG-Net, were tested and compared in terms
of identification accuracy, sensitivity, specificity, and MCC for the four examined DNA proteins
datasets, as shown in Tab. 1.

Table 1: Performance comparison between deep transfer learning models

Dataset Method Acc (%) Sen (%) Spe (%) MCC

PDB1075 AlexNet 93.02 91.51 94.56 0.86
VGGNet 92.56 91.74 93.36 0.85

PDB186 AlexNet 75.27 82.19 70.79 0.52
VGGNet 77.42 85.91 72.17 0.56

PDNA-543 AlexNet 86.01 30.21 98.80 0.45
VGGNet 91.67 43.56 99.12 0.58

PDNA-316 AlexNet 88.23 36.31 97.26 0.45
VGGNet 90.93 44.03 96.95 0.48

The results in Tab. 1 show that the VGG-Net 16 pre-trained deep transfer learning model
gives higher performance than AlexNet. This may be because the 16-layer VGGnet is deeper than
the 8-layer AlexNet, and the VGGnet is rich with several feature representations.

3.3 Classifiers Tuning
This section presents the results of the second DNABPs identification method, which is based

on the pre-trained deep transfer learning models as the features extractor. The classifier is one
of the two different classifiers (SVM or RF) used for the identification process. The identification
accuracy, sensitivity, specificity, and MCC for the four examined DNA proteins datasets are as
shown in Tab. 2.

The results in Tab. 2 show that the RF classifier with VGG-Net pre-trained deep transfer
learning features gives the highest performance compared to the other approaches.

3.4 Performance Comparison with Existing Methods
The performance of the proposed DNABPs identification method (DTLM-DBP) was com-

pared with the other published methods for the four available DNA proteins datasets: PDB1075,
PDB186, PDNA-543, and PDNA-316 datasets. For PDB1075 dataset, DTLM-DBP was com-
pared with DNAbinder [22], DNA-Prot [16], iDNA-Prot [17], iDNA-Prot-dis [21], PSSM-DT [8],
PseDNA-Pro [23], iDNAPro-PseAAC [20], PSFM-DBT [12], Mixed Feature [32], Local-DPP [19],
iDNAProt-ES [10], HMMBinder [25], iDNA-KACC [31], and DPP-PseAAC [24], as shown
in Tab. 3.

The results in Tab. 3. show that the proposed method gives a better performance than the
other published methods.

For PDB186 dataset, DTLM-DBP was compared with DNABIND [26], DNAbinder [22],
DNA-Threader [27], DNA-Prot [16], DBPPred [28], iDNA-Prot [17], iDNA-Prot-dis [21],
PSSM-DT [8], iDNAPro-PseAAC [20], Mixed Feature [32], PseDNA-Pro [23], iDNAProt-ES [10],
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PSFM-DBT [12], Local-DPP [19], HMMBinder [25], DPP-PseAAC [24], and iDNA-KACC-
EL [31], as shown in Tab. 4. The results show the superiority of the proposed method over the
other published methods.

Table 2: Performance comparison between SVM and RF classifiers

Dataset Features Classifier Acc (%) Sen (%) Spe (%) MCC

PDB1075 AlexNet SVM 92.00 90.28 93.77 0.84
RF 94.23 92.63 95.86 0.88

VGGNet SVM 92.28 90.62 93.97 0.85
RF 96.34 94.83 97.94 0.93

PDB186 AlexNet SVM 75.27 83.10 70.48 0.52
RF 79.57 87.67 74.33 0.61

VGGNet SVM 76.88 84.72 71.93 0.55
RF 81.18 91.43 75.00 0.64

PDNA-543 AlexNet SVM 84.92 20.27 95.66 0.22
RF 90.07 34.90 96.89 0.40

VGGNet SVM 87.07 24.29 95.87 0.27
RF 93.05 48.11 97.57 0.53

PDNA-316 AlexNet SVM 87.15 32.61 96.59 0.39
RF 90.03 42.06 97.98 0.52

VGGNet SVM 88.69 35.63 96.28 0.39
RF 93.38 55.35 97.69 0.60

Table 3: Comparison of DTLM-DBP with previous methods for PDB 1075 dataset

Method Acc (%) Sen (%) Spe (%) MCC

DNAbinder [22] 79.09 48.00 81.40 0.48
DNA-Prot [16] 72.55 82.67 59.76 0.44
iDNA-Prot [17] 75.40 83.81 64.73 0.50
iDNA-Prot-dis [21] 77.30 79.4 75.27 0.54
PSSM-DT [8] 79.96 81.91 78.00 0.62
PseDNA-Pro [23] 76.55 79.61 73.63 0.53
iDNAPro-PseAAC [20] 76.76 75.62 77.45 0.53
PSFM-DBT [12] 81.02 84.19 78.0 0.62
Mixed feature [32] 77.43 77.84 77.05 0.55
Local-DPP [19] 79.20 84.00 74.50 0.59
iDNAProt-ES [10] 90.18 90.38 90.00 0.80
HMMBinder [25] 86.33 87.00 85.50 0.72
iDNA-KACC [31] 75.16 77.52 72.90 0.50
DPP-PseAAC [24] 95.91 94.10 97.64 0.92
DTLM-DBP (proposed) 96.34 94.83 97.94 0.93

For PDNA-543 dataset, DTLM-DBP was compared with TargetDNA [33], EC-RUS [15], and
Bootstrap [30], as shown in Tab. 5.
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Table 4: Comparison of DTLM-DBP with previous methods for PDB 186 dataset

Method Acc (%) Sen (%) Spe (%) MCC

DNABIND [26] 67.70 66.70 68.80 0.35
DNAbinder [22] 60.80 57.00 64.50 0.22
DNA-Threader [27] 59.70 63.70 95.70 0.28
DNA-Prot [16] 61.80 68.00 53.80 0.24
DBPPred [28] 76.90 79.60 74.20 0.54
iDNA-Prot [17] 67.20 66.70 66.70 0.34
iDNA-Prot-dis [21] 80.64 80.00 80.00 0.54
PSSM-DT [8] 80.00 87.09 72.83 0.65
iDNAPro-PseAAC [20] 69.89 77.00 62.40 0.40
Mixed Feature [32] 78.95 73.68 84.21 0.58
PseDNA-Pro [23] 76.55 79.61 79.61 0.53
iDNAProt-ES [10] 80.64 81.00 80.00 0.61
PSFM-DBT [12] 80.65 90.32 70.97 0.62
Local-DPP [19] 79.00 92.00 65.60 0.63
HMMBinder [25] 69.02 61.00 76.30 0.39
DPP-PseAAC [24] 77.42 83.00 70.90 0.55
iDNA-KACC-EL [31] 79.03 94.62 63.44 0.61
DTLM-DBP (proposed) 81.18 91.43 75.00 0.64

Table 5: Comparison of DTLM-DBP with previous methods for PDNA-543 dataset

Method Acc (%) Sen (%) Spe (%) MCC

TargetDNA [33] 91.40 40.60 95.00 0.34
EC-RUS [15] 91.80 47.62 94.92 0.39
Bootstrap [30] 90.77 78.77 92.36 0.63
DTLM-DBP (proposed) 93.05 48.11 97.57 0.53

For PDNA-316 dataset, DTLM-DBP was compared with MetaDBSite [34], TargetDNA [33],
EC-RUS [15], and Bootstrap [30], as shown in Tab. 6.

The results confirmed the efficacy and viability of the proposed method for different datasets.

Table 6: Comparison of DTLM-DBP with previous methods for PDNA-316 dataset

Method Acc (%) Sen (%) Spe (%) MCC

MetaDBSite [34] 77.00 77.00 77.00 0.32
TargetDNA [33] 90.99 43.02 95.00 0.37
EC-RUS [15] 91.50 49.35 95.00 0.42
Bootstrap [30] 91.03 82.47 92.34 0.67
DTLM-DBP (proposed) 93.38 55.35 97.69 0.60
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4 Conclusions

The paper presented an efficient new approach for DNABPs identification based on deep
transfer learning “DTLM-DBP.” The protein sequences were adapted to CNN models using
1D convolutions layers, then the VGG-NET 16 pre-trained deep transfer learning models were
used as a feature’s extractor. Finally, the RF classifier was used for sequence features matching.
DTLM-DBP was tested using different DNA proteins datasets and compared with the other
published DNABPs identification methods, and it has provided a considerable improvement in the
performance of DNABPs identification.
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