
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.017575

Article

An Optimized SW/HW AVMF Design Based on High-Level Synthesis Flow for
Color Images

Turki M. Alanazi1, Ahmed Ben Atitallah1,2,* and Imen Abid2

1Department of Electrical Engineering, Jouf University, Sakaka, Aljouf, Saudi Arabia
2LETI (E.N.I.S.), University of Sfax, Sfax, Tunisia

*Corresponding Author: Ahmed Ben Atitallah. Email: abenatitallah@ju.edu.sa
Received: 28 January 2021; Accepted: 04 March 2021

Abstract: In this paper, a software/hardwareHigh-level Synthesis (HLS) design
is proposed to compute the Adaptive Vector Median Filter (AVMF) in real-
time. In fact, this filter is known by its excellent impulsive noise suppression
and chromaticity conservation. The software (SW) study of this filter demon-
strates that its implementation is too complex. The purpose of this work
is to study the impact of using an HLS tool to design ideal floating-point
and optimized fixed-point hardware (HW) architectures for the AVMF filter
using square root function (ideal HW) and ROM memory (optimized HW),
respectively, to select the best HLS architectures and to design an efficient HLS
software/hardware (SW/HW) embedded AVMF design to achieve a trade-off
between the processing time, power consumption and hardware cost. For that
purpose, some approximations usingROMmemory were proposed to perform
the square root and develop a fixed-point AVMF algorithm. After that, the
best solution generated for each HLS design was integrated in the SW/HW
environment and evaluated under ZC702 FPGA platform. The experimental
results showed a reduction of about 65% and 98% in both the power consump-
tion and processing time for the ideal SW/HW implementation relative to the
ideal SW implementation for an AVMF filter with the same image quality,
respectively. Moreover, the power consumption and processing time of the
optimized SW/HW are 70% and 97% less than the optimized SW implemen-
tation, respectively. In addition, the Look Up Table (LUTs) percentage, power
consumption and processing time used by the optimized SW/HW design are
improved by nearly 45%, 18% and 61% compared the ideal SW/HW design,
respectively, with slight decrease in the image quality.

Keywords: AVMF filter; SW/HW design; HLS flow; ZC702 FPGA platform

1 Introduction

The contamination of the color images by “salt and pepper” impulse noise presents the most
common problem in image processing. In fact, starting from communication field to the field of
security and health, image processing has a vital role to play. Therefore, it is very important to

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.017575

2926 CMC, 2021, vol.68, no.3

determine the corruption produced by this noise and ameliorate the quality of the image before
further processing.

Image filtering is the most important stage in the image processing operation [1,2]. It helps to
suppress the noise and to restore and ameliorate the image quality. Image filtering is used in a vast
array of applications such as satellite images where the noise can affect the image quality through
the capture and transmission processes [3]. Thus, it is vital to eliminate the noise from satellite
imagery because it is used in several vital fields such as security, water bodies, changing lands and
planet health [4]. Besides, in the medical profession, images can contain “salt and pepper” noise,
which affects image quality, especially in ultrasound imaging and Magnetic Resonance Imaging
(MRI) [5]. It is, hence, critical to eliminate noise from medical images as crucial information may
be affected.

The earliest filters were based on linear approaches which cannot take account of the non-
linearity of human vision [6] and cannot be suitable for the non-linearities of transmission
channels. For that, the non-linear filters are appropriate to the digital color images. Many non-
linear filters have been proposed in the literature such as the Vector Median Filter (VMF) [7],
the Adaptive Vector Median Filter (AVMF) [8], the Vector Median Rational Hybrid Filter
(VMRHF) [9], etc.

Many researchers have noted the time consuming and the high complexity of non-linear
filters [10,11]. However, to reduce this complexity, researchers have adopted hardware acceleration
as a solution. In fact, Trivedi et al. [12] propose a hardware implementation of the median filtering
on Field-Programmable Gate-Array (FPGA) which consumes less power and less hardware area.
Hu et al. [13] propose two hardware architectures to implement the median filtering counting
standard and multi-level median filters. In [14], an optimized hardware architecture based on
systolic array is developed to implement median filtering. This architecture uses the pipeline
structure which requires seven clock cycles to determine the median value. Lee et al. [15] detail
a 3× 3 window median filtering based on a bit serial sorting algorithm, which has high speed
of operation and less hardware complexity. In [16], a hardware implementation of the VMRHF
for color images is described. This hardware architecture uses some approximations to reduce
the implementation complexity of the relational function. Boudabous et al. [10] suggest an effi-
cient fast parallel architecture to implement the VMF. This architecture uses approximation to
implement an L2 norm for the VMF filter.

But these hardware architectures miss the flexibility of design updating and take more devel-
opment time. Indeed, the development and implementation of these architectures are done by
Low-Level Synthesis (LLS) using hardware description language (HDL) on an FPGA circuit. With
LLS design, it is possible to adjust the Register Transfer Level (RTL) description to give a very
great, optimized netlist. However, producing such an RTL description requires a lot of effort
and time to describe the operations of each low-level circuit and, especially for complex appli-
cations [17,18]. Nevertheless, designing a complex system is only possible for hardware designers
who have specific knowledge and skills. Therefore, there is a real need to raise the design space
abstraction level from LLS to High-Level Synthesis (HLS) [19,20] in order to reduce the FPGA
design complexity. In fact, HLS allows designers to formalize algorithms using software high-level
language (systemC, C/C++, etc.) and synthesizes them via the HLS tool to form a behavioral
and structural of the RTL hardware description. In this context, several academic and commercial
HLS tools are developed such as Xilinx Vivado HLS, Intel OpenCL [21], Catapult-C [22], and
ROCCC [23]. However, without any expertise and skills in hardware design, designers can develop
and generate automatically from high-level language a complex hardware design which permits

CMC, 2021, vol.68, no.3 2927

designers to explore and simulate a large design space in the shortest of times, identify design
performances (power consumption, processing time and hardware cost) and eliminate the source
of many design errors. Unfortunately, to design an optimized and high performant RTL circuit
with HLS tools, the code should be restructured in a specific style. Without such restructuring,
the HLS tools can still generate an RTL circuit but with poor performance [24].

Given this context, our goal in this work is to use HLS flow to design various hardware
architectures for the AVMF filter and integrate these architectures as intellectual property (IPs)
blocks with Hardcore ARM processor on Xilinx Zynq FPGA in order to design an efficient
software/hardware (SW/HW) embedded system. The SW/HW design should reduce this filter’s
complexity and power consumption as well as speed up the execution time. However, HW solution
is used for performance (processing speed and power consumption). In contrast, SW solution is
used for design flexibility [25,26].

The remainder of the paper is organized as follows. In Section 2 below an overview of
the AVMF filter is presented. The description of Vivado HLS tool and directives are given in
Section 3. The proposed HLS AVMF designs are described in Section 4. Section 5 discusses the
experimental results in terms of hardware cost, power consumption and processing time of the
SW/HW AVMF implementation on ZC702 platform. Finally, conclusion is given in Section 6.

2 Overview of the AVMF Filter

In [8], the author presents an Adaptive Vector Median Filter (AVMF) which is based on the
VMF filter. It is enhanced by using a threshold to detect the probability of the pixel to be noisy
as shown in Fig. 1.

X1 X2 X3

X4 X5 X6

X7 X8 X9

Euclidean distance(di)
Computation of ΨAVMF

Computation of ξAVMFd(N-1)/2≥ξAVMF

Yes

No

yAVMFF = x(N-1)/2

Noisy Image

Filtering
Window

yAVMFF = x1

Figure 1: AVMF filter algorithm

2928 CMC, 2021, vol.68, no.3

We define by V = (xi ∈ Zl; i = 1, 2, . . . , N) the size (N) of the filtering window. The noisy
pixels are presented by x1, x2, . . . , xN . The position of the filtering window is determined by
central pixel which is x(N+1)/2. We consider that each multichannel pixel xi is associated with a
distance measure di which is calculated by Eq. (1).

di =
N∑
j=1

∥∥xi−xj
∥∥
2 , i= 1, . . . , N (1)

where
∥∥xi−xj

∥∥
2 measures the distance between to channel pixels xi and xj when using the

Euclidean distance.

The output yAVMF of the AVMF is expressed in (2) below:

yAVMF =
{
x(1) for d(N+1)/2 ≥ ξAVMF

x(N+1)/2 otherwise
(2)

where the vector x(1) represents the VMF output obtained by x(1) ≤ x(2) ≤ . . . ≤ x(N). It corre-
sponds to the minimum vector distance d(1) ∈ {d1, d2, . . . , dN} inside the filtering window. d(1) is
expressed by (3).

d(1) =
N∑
j=1

∥∥x(1) −xj
∥∥
2 (3)

The vector x(N+1)/2 corresponds to the distance measure d(N+1)/2 of the center pixel. ξ(N+1)/2
defines the threshold value given in (4):

ξAVMF = d(1) +λAVMFΨAVMF (4)

where λAVMF allows the adjustment of the proposed method’s smoothing properties. ΨAVMF is
the estimated variance which is defined in (5).

ΨAVMF = d(1)

N − 1
(5)

The approximation presented in (5) determines the mean distance between the vector median
and the different pixels held in V . In this equation, d(1) is divided by (N − 1) that gives the
number of distances from x(1) to all other pixels in V . However, from Fig. 1, we can see that
if the distance d(N+1)/2 is greater than the threshold ξ(N+1)/2, therefore x(N+1)/2 is noisy and is
changed by the vector x(1). But, if the distance d(N+1)/2 is less than or equal to ξ(N+1)/2, then
x(N+1)/2 remains unchanged.

3 Xilinx Vivado HLS Tool

The purpose of HLS methodology is to simplify and accelerate the hardware implementation
specially for FPGA circuits. For that, an HLS tool is developed by Xilinx to help engineers
to rapidly implement algorithms on the FPGA with gains in resource, power, and performance.
This tool is called Vivado HLS which gives a design environment to interpret, analyze, optimize,
and transform a software language like C/C++ to RTL design. This design is synthesized and
implemented for Xilinx FPGA. Indeed, with the Vivado HLS tool, it is possible to apply different

CMC, 2021, vol.68, no.3 2929

optimizations to increase the hardware design performances by using several directives such as
pipelining, loop unrolling, resource, etc. Some optimizations lead to decreasing the hardware area
by applying the ALLOCATION directive. This directive can minimize the number of resources
using in design by sharing resource between several functions. Moreover, RESOURCE directive
can be used to replace vectors and arrays by specific memory blocks (BRAMs). But, to raise
the data rate and achieve a higher throughput, the UNROLL or PIPELINE directives can be
used. In this case, by unrolling loops, several hardware blocks are built in parallel to operate
the loop iterations in parallel. Otherwise, the PIPELINE directive performs pipelining to reach
higher throughput. In fact, the pipeline technique permits the loop iteration to begin before the
completion of its predecessor. For that, the data dependencies should be satisfied. Furthermore,
the ARRAY PARTITION directive divides the large memory into individual registers or multiple
smaller memory blocks for parallel data accesses. However, these optimizations lead to an excessive
use of FPGA resources. For that, the level of pipelining or parallelism should be customized.

With Vivado HLS tool, some steps should be followed to generate an RTL description. In
Step 1, the C/C++ code should be written in a specific style to permit the HLS tool to create an
optimized RTL description. In Step 2, the source code is explored to extract the control path and
dataflow. In Step 3, a various specific directive is applied for each algorithm for better hardware
optimization. In the last step, the Export RTL tool is used to export as an IP module the created
RTL design to the Xilinx Vivado tool in order to generate the bitstream file.

4 HLS Architecture of the AVMF Filter

The developed AVMF C code is given as input to the Vivado HLS tool 18.1 in order to
generate a hardware architecture for AVMF algorithm. The generated architecture is illustrated in
Fig. 2. This architecture is optimized to reconstruct the filtered color image in minimum of clock
cycles. In fact, to optimize the load of pixels, tree lines of image are sent in parallel to the AVMF
coprocessor. In order to form a (3× 3) filtering window, three pixels from each line are selected
to be stored in the register bank. Each pixel is composed of three colors (R, G, B). However, the
81 Elementary Distances (ED) which are dij(xi, xj) should be calculated for each (3× 3) filtering
window. The dij(xi, xj) is given by Eq. (6).

dij =
√(

Ri−Rj
)2+ (

Gi−Gj
)2+ (

Bi−Bj
)2 (6)

From Fig. 2, we can see that the EDs are implemented based on Eq. (6) and computed
by using 81 loop iterations. In fact, the loop 1 is used nine times to accumulate nine EDs
(di1, di2, di3, di4, di5, di6, di7, di8, di9) and loop 2 is used also nine times to calculate the nine
Euclidean distances di. When the nine Euclidean distances are ready, the comparator determines
the minimum distance from these nine distances. With the search for the minimum of nine
distances di, the filtered pixel is supplied and another filtering window for another pixel is started.
At the end, to optimize the memory access, the three colors (R, G, B) for the filtered pixel which
is determined based on minimum distance di in the filtering window are concatenated in 24-bits
and stored in image memory. All these steps are repeated N×N loop iterations which depend on
the image size in order to filter all pixels in the image.

The bottleneck of this architecture is the implementation of the square root (SQRT) which
is used to calculate the EDs for the AVMF filter and the floating-point values. Thus, the purpose
of this work is to generate two HLS architectures for the AVMF filter. The first architecture is
based on the SQRT function. The second architecture is based on the approximation of the SQRT

2930 CMC, 2021, vol.68, no.3

function in order to use the fixed-point values only and reduce the hardware complexity. Our main
goal is to design floating-point and fixed-point architectures using Vivado HLS tool and compares
the power consumption, the processing time and the area cost of the designed architectures.

-

NxN
Image memory

Pixel
G7

-
-

x x x

+

SQRT

Accumulator

Pixel
R6

d1 d2 d3 d4 d5 d6 d7 d8 d9

Pixel
R7

Pixel
B6

Pixel
G6

Comparator

Pixel
B7

RGB Filtred
Pixels output

RGB Pixels
concatenation

Lo
op

1
Ite

ra
ti o

n
(9

)

Lo
op

2
Ite

ra
tio

n
(9

)

Vector 1

Vector 2

Vector 3

Filtering Window

+

Lo
op

3
Ite

ra
tio

n
(N

x N
)

Pixel
G8

Pixel
R8

Pixel
B8

Pixel
G4

Pixel
R3

Pixel
R4

Pixel
B3

Pixel
G3

Pixel
B4

Pixel
G5

Pixel
R5

Pixel
B5

Pixel
G1

Pixel
R0

Pixel
R1

Pixel
B0

Pixel
G0

Pixel
B1

Pixel
G2

Pixel
R2

Pixel
B2

Figure 2: AVMF coprocessor

4.1 HLS Floating-Point AVMF Design
Several designs are generated from AVMF C floating-point code. These designs are generated

by adding incrementally specific directives through the Vivado HLS tool and synthesized for Xilinx

CMC, 2021, vol.68, no.3 2931

XC7Z020 FPGA. After that, we are compared the performance in terms of number of clock
cycles and hardware resources (LUTs, FFs, BRAMs and DSPs).

#Design 1: In this first design, the software code is implemented under the Xilinx XC7Z020
FPGA without any optimizations. The synthesis results are given in Tab. 1 for hardware resources
and Fig. 3 for number of clock cycles. From Tab. 1, we can notice that this design uses 14%
LUTs, 5% FFs, 93% BRAMs and 10% DSPs and can reach a maximum 261265418 clock cycles.

Table 1: Synthesis results of the HLS floating-point AVMF designs

Designs LUTs FFs BRAMs DSPs

Design 1 7609 5334 130 23
Design 2 8892 7695 128 23
Design 3 41398 32133 128 116
Design 4 25442 20888 142 104

0

50000000

100000000

150000000

200000000

250000000

300000000

Design 1 Design 2 Design 3 Design 4

C
lo

ck
 C

yc
le

s

Figure 3: Number of clock cycles of the HLS floating-point AVMF designs

#Design 2: In the second experiment, the ARRAY PARTITION directive is applied to the
filtering window array in order to partition this array into multiple smaller memory modules. This
allows a data parallel access. The experimental results record an increase in the percentage of
LUTs by 16% and a decrease of about 5% in the number of clock cycles relative to #Design 1.

#Design 3: In this design, the PIPELINE directive is applied to the loop iterations with an
interval equal to 1 to decrease time latency. This optimization allows a decrease by 97% in number
of clock cycles compared to #Design 2, but with an increase of about 79% in the percentage of
LUTs and 80% in the number of DSP blocks.

#Design 4: For this last design, the ALLOCATION directive is added to process the multi-
plication for good improvement in the FPGA resources by the fact that it permits the sharing
of the hardware resources. This optimization shows a reduction in the percentage of LUTs and
DSPs by 39% and 10%, respectively, compared to #Design 3, but with an increase of about 6%
in clock cycles.

From these experimental results, #Design 4 is selected for HLS AVMF implementation using
the SQRT function (ideal HW). Indeed, it provides a good compromise between number of clock
cycles and FPGA area cost. This implementation is done by the Xilinx HLS Vivado tool under
the Xilinx XC7Z020 FPGA.

2932 CMC, 2021, vol.68, no.3

4.2 HLS Fixed-Point AVMF Design
The AVMF filter is based on the calculation of the SQRT which should be approximated

to decrease the complexity of the hardware architecture. In fact, to simplify the implementation
of the AVMF filter, a ROM (Read-Only Memory) is used to store the obtained values of the
SQRT [27]. Accordingly, a quantity A in Eq. (7) is defined as follows:

A= (
Ri−Rj

)2+ (
Gi−Gj

)2 + (
Bi−Bj

)2 (7)

The SQRT(A) is computed and stored in a ROM memory. To determine the size of memory
and the precision of the fixed-point values of the SQRT(A), we have conducted an experiment
simulation for two standard images (Sailboat and Peppers) which are contaminated with 3% of
impulsive noise. In this simulation, we have measured the image quality of the filtered image
using Normalized Color Difference (NCD) for several memory sizes to store 512, 1024 and 2048
fixed-point values of the SQRT(A) with precision from 1-bit to 12-bit. The simulation results
are presented in Fig. 4 where we notice that the NCD is decreased when the memory size and
precision bit increase. To have a compromise between the memory size and quality of image, we
have chosen to store 1024 values in the ROM memory with the 9-bit as the precision bit. With
these parameters, we can see that the NCD of approximated AVMF is nearer than the ideal
AVMF. To justify this, the relative error is calculated for NCD between ideal and approximated
AVMF. The relative error is given by Eq. (8):

Errorrelative =
valideal− valapproximated

valideal
(8)

0.0246

0.0248

0.025

0.0252

0.0254

0.0256

0.0258

0.026

0 2 4 6 8 10 12

N
C
D

Precision bit

Sailboat 3%

0.0116
0.0117
0.0118
0.0119

0.012
0.0121
0.0122
0.0123
0.0124
0.0125
0.0126

0 2 4 6 8 10 12

N
C
D

Precision bit

Peppers 3%

Figure 4: Approximation of the ROM memory size and bit precision of the SQRT function

From Tab. 2, it is worth noting that the average of the relative error for several standard
images is equal to 0.05. This error is very small and ensures the quality of image for the
approximated AVMF. Consequently, SQRT(A) is established in the manner presented in Fig. 5
in which we remark that the first step consists in subdividing the interval [0, 195075] into five
subintervals. Subsequently, when A is in the range of [0, 1024], we read directly the value of
the SQRT(A) from the ROM memory. But, when A is in the intervals 2, 3, 4, or 5, the ROM
value is divided by 4, 16, 64 or 256, respectively. The new value is determined from this interval
[0, 1024]. Then, it is multiplied by 2, 4, 8, 16, respectively, to obtain the desired values of the

CMC, 2021, vol.68, no.3 2933

SQRT(A). To reduce the hardware cost, the multiplication and division operations are done by
using shifting operations.

Table 2: Comparison of NCD values for ideal and approximated AVMF filters

Images Noisy image Ideal AVMF Approximated AVMF Error (%)

Lena 0.086713 0.010456 0.010464 0.08
Flower 0.097257 0.011546 0.011548 0.02
Peppers 0.079007 0.011974 0.011976 0.02
Sailboat 0.091487 0.025104 0.025110 0.02
Mandrill 0.090096 0.022715 0.022744 0.13
Monalisa 0.109486 0.009365 0.009369 0.04
Average 0.092341 0.015193 0.015202 0.05

Figure 5: Approximation of the SQRT(A) computation [27]

The proposed AVMF C code is used to generate and implement different designs for the
AVMF algorithm based on ROM memory. This implementation is realized with the Xilinx Vivado
HLS tool.

#Design 1: In the first experiment, the fixed-point AVMF C code is synthesized for the
XC7Z020 FPGA without any optimizations. The experimental results in terms of FPGA resources
and the number of clock cycles are given in (Tab. 3) and (Fig. 6), respectively. As evident in
Fig. 6, this design can reach a maximum of 44150282 cycles. Furthermore, the FPGA resources
are distributed between 4.8% LUTs, 2% FFs, 95% BRAMs and 4% DSP blocks as shown
in Tab. 3.

2934 CMC, 2021, vol.68, no.3

Table 3: Synthesis results of the HLS fixed-point AVMF designs

Designs LUTs FFs BRAMs DSPs

Design 1 2546 2287 133 9
Design 2 3417 4558 131 9
Design 3 7807 6706 151 81
Design 4 8145 6413 140 81

0

10000000

20000000

30000000

40000000

50000000

Design 1 Design 2 Design 3 Design 4

C
lo

ck
 c

yc
le

s

Figure 6: Number of clock cycles of the HLS fixed-point AVMF designs

#Design 2: In this design, the ARRAY PARTITION directive is applied for parallel data
accesses. The synthesized results show an increase in the percentage of LUTs by 25% and a
diminution of about 32% in the number of clock cycles relative to #Design 1.

#Design 3: In the third design, the PIPELINE directive is added to the loop iterations. The
experimental results reveal a gain about 91% in clock cycles compared to #Design 2 with an
increase of 56% in percentage of LUTs and 89% in number of DSP blocks.

#Design 4: In this last design, to reduce the hardware cost for the multiplication operations,
the ALLOCATION directive is used. This optimization provides a reduction in the percentage of
FFs by 4% and 7% in the number of BRAM blocks relative to #Design 3 with an increase of
about 17% in clock cycles.

From synthesized results, we can notice that #Design 4 offers the best compromise between
FPGA area cost and number of clock cycles. For that, this design is selected for HLS AVMF
implementation using ROM memory (optimized HW).

From these experimental results, we can conclude that the PIPELINE and the ARRAY
PARTITION directives are mainly used to decrease the processing time, but with a concomitant
increase in hardware cost. In contrast, the ALLOCATION directive is exploited to decrease the
hardware cost but with an increase in the processing time. The purpose of the next section is
to investigate the HLS approach in an SW/HW environment to design and verify a standalone
IP (Intellectual property) of the AVMF filter (ideal HW and optimized HW) on the ZC702
development board [28].

5 SW/HW Performance Validation of AVMF Filter Architecture

ZC702 is a Zynq 7000 development board. The Zynq 7000 is a Xilinx programmable SoC
which is used for quickly prototyping and evaluating the functionality of any designed system
in SW/HW environment. The inside of the Zynq architecture contains two main parts: The
Programmable Logic (PL) for hardware implementation and the Processor System (PS). In the
PS part, we find a 32-bit dual Hardcore ARM processor, 32 KBL1 data and instruction caches

CMC, 2021, vol.68, no.3 2935

per core, 512 KBL2 cache and 1GB DDR3. The PS is operating at 667 MHz and supports
operating systems or software routines. In Zynq architecture, the connection between the PL
and the PS parts are realized using the Advanced eXtensible Interface (AXI4) of the Advanced
Microcontroller Bus Architecture (AMBA) protocols.

Fig. 7 illustrates the designed SW/HW AVMF architecture. This architecture is developed
using the Xilinx Vivado 2018.1 tool and evaluated on the ZC702 development board which is
based on the Xilinx XC7Z020 FPGA. In this architecture, the AVMF coprocessor is connected
to the SW parts (ARM Cortex-A9 processor) through Direct Memory Access (DMA) by using
an AXI4-stream interface which is designed for maximum bandwidth access to DDR memory of
the PS [26]. This mode of transfer supports unlimited data burst sizes and offers point-to-point
streaming data without using any addresses. However, in our SW/HW AVMF architecture three
DMAs are used. Indeed, the DMA1 is used in read/write mode while the DMA2 and DMA3 are
configured in read mode only.

Initially, the color image (RGB format) is stored in DDR memory. Then, as shown in Fig. 8,
when the Start_transfert and TREADY signals will be asserted, the PS starts to send the noisy
pixels to the AVMF coprocessor. TREADY signal indicates that the AVMF coprocessor is ready
to receive data. However, three DMAs (DMA1, DMA2, and DMA3) are used to send three image
lines in parallel from DDR memory to the hardware coprocessor. The AVMF coprocessor receives
the valid data when TVALID signal will be asserted by AXI stream interface and start to perform
the AVMF algorithm for the noisy pixels as soon as the nine pixels for the first 3× 3 filtering
window are provided. Then, the coprocessor calculates nine Euclidean distances, determines the
RGB filtered pixel which reduces the distance between all pixels in a filtering window and stores
the concatenated RGB filtered pixel in the internal image memory. From Fig. 8, we can see
that all these steps are done in pipeline to decrease the processing time. To construct the next
filtering window, we select the last 6 pixels from the previous window and adding 3 new pixels.
Once the AVMF coprocessor finishes the filtering of all pixels in the image, the TREADY and
TLAST signals will be asserted and the PS starts to receive RGB filtered pixels through DMA1,
disconcatenates and stores them in the DDR memory to construct the filtered image (Fig. 7).
Our SW/HW design, proposed in Fig. 7, uses the AXI interface and 3 DMAs to increase the
throughput. Further, our design supports various image sizes (i.e.,: 32× 32, 64× 64, 128× 128,
256× 256). The image size can be increased by increasing the memory size of the image output.

To evaluate the proper functioning of the SW/HW AVMF design for the HLS ideal and
optimized HW IPs blocks, we have followed the design flow which is presented in Fig. 9. In fact,
the Vivado HLS is used to apply directives and create a stream interface in order to connect the
IP blocks with the processor. After that, when the HLS synthesis is completed, the compressed file
(.ZIP) including all HDL files is generated and exported to the Xilinx Vivado tool which is used
to implement a multiple accelerators blocks connected to the embedded processor across an AXI
interface. Then, the Xilinx Vivado tool is used to synthesis, implement the SW/HW design and
generate and load the Bitstream file (.bit) in the FPGA platform. Besides, the SW is carried out
using the ARM Cortex-A9 processor and compiled with a standalone application using the Xilinx
software development toolkit (SDK) to generate the executable file (.elf) which will be performed
per the embedded processor.

Tab. 4 reports the implementation results for the ideal and optimized SW/HW AVMF design
under the XC7Z020 FPGA. It is obvious from this table that the optimized SW/HW AVMF
design presents a decrease per nearly 45% in the number of LUTs and 22% in the number of
DSPs compared to the ideal SW/HW design.

2936 CMC, 2021, vol.68, no.3

DMA2

RGB Pixels
Concatenation

Image Output

Memory
(image)

Line(i+2)Line(i+1)Line(i)

R

DMA1

R/W

DMA3

R

x(i,j)R x(i,j)G x(i,j)B x(i,j+1)R x(i,j+1)G x(i,j+1)B x(i,j+2)R x(i,j+2)G x(i,j+2)B

x(i+1,j)R x(i+1,j)G x(i+1,j)B x(i+1,j+1)R x(i+1,j+1)G x(i+1,j+1)B x(i+1,j+2)Rx(i+1,j+2)Gx(i+1,j+2)B

x(i+2,j)R x(i+2,j)G x(i+2,j)B x(i+2,j+1)R x(i+2,j+1)G x(i+2,j+1)B x(i+2,j+2)Rx(i+2,j+2)Gx(i+2,j+2)B

Filtering Window

AVMF Filter

24-bits 24-bits 24-bits

8-bits

8-bits

8-bits

8-bits8-bits8-bits

24-bits

24-bits

AVMF Coprocessor

Figure 7: The SW/HW AVMF design

CMC, 2021, vol.68, no.3 2937

CLK

DMA1

TVALID
(DMA1,2&3)

X(R,G,B)1 X(R,G,B)2 X(R,G,B)3 X(R,G,B)n

Writedata_line(1) Writedata_line(2) Writedata_line(n-2)

X(R,G,B)1 X(R,G,B)2 X(R,G,B)3 X(R,G,B)n

Writedata_line(2) Writedata_line(3) Writedata_line(n-1)

X(R,G,B)1 X(R,G,B)2 X(R,G,B)3 X(R,G,B)n

Writedata_line(3) Writedata_line(4) Writedata_line(n)

DMA2

DMA3

AVMF
Coprocessor

Performing the AVMF algorithm for noisy pixels

TREADY

TLAST

Image
Memory

Store the filtred pixel
Y(R,G,B)1 Y(R,G,B)2 Y(R,G,B)3 Y(R,G,B)mY(R,G,B)4 Y(R,G,B)5 Y(R,G,B)6

Read filtered image
Y(R,G,B)1 Y(R,G,B)2 Y(R,G,B)m

Start_Transfert

Figure 8: Behavior of the SW/HW AVMF design

The next step consists in evaluating the performance in terms of the processing time, power
consumption and image quality parameters under the ZC702 FPGA board. The processing time
measurement is done by means of the processor timer while power consumption is measured by
the Texas Instruments fusion digital power designer software using the Texas Instruments device
which is connected to the ZC702 board through a USB interface adapter. Accordingly, taking
subjective measurement as an effective way of judging the efficiency of the filter, from Fig. 10,
we can see that the implemented filter conserves the chromaticity components as well as the fine
details of a color image (Monalisa) using 3% of impulsive noise. Consequently, no differences are
noticeable between the images filtered by the SW/HW solutions and those in the output of the
SW solutions (ideal and optimized).

To prove that, the NCD and the Peak Signal to Noise Ratio (PSNR) are used in these
simulations and performed for different standard test images (Lena, Flower, Peppers, Sailboat,
Mandrill, Monalisa). The size of these color images is 256 × 256 and are contaminated by “salt
and pepper” impulsive noise with an intensity equal to 3%. Tab. 5 and 6 present the PSNR and
the NCD values of test standard test images for the ideal and optimized SW/HW and SW imple-
mentations of the AVMF filter. Otherwise, Fig. 11 and Tab. 7 illustrate the power consumption
and the processing time for the SW/HW and the SW ideal and optimized implementations of
the AVMF filter, respectively. Fig. 11 and Tab. 7 reflect a reduction of about 65% and 98% in the
power consumption and the processing time for the ideal SW/HW implementation relative to the
ideal SW implementation of the AVMF filter, respectively, with the same value of PSNR (Tab. 5)
and NCD (Tab. 6). Besides, we notice that the power consumption and the processing time of
the optimized SW/HW are 70% and 97% less than the optimized SW implementation for same
image quality, respectively. These results prove not only the efficiency of the HLS approach, but
also the reliability of the proposed SW/HW AVMF design. Furthermore, the LUTs percentage,
the power consumption and the processing time required by the optimized SW/HW design are
improved by nearly 45%, 18% and 61%, respectively, compared with the ideal SW/HW design
for the AVMF filter, with slight decrease in the quality of image. As obvious from the results
when performing the HLS to a software code that includes elementary functions of floating-point
numbers, the processing time and the hardware size of the converted hardware increase compared
to the fixed-point number. Yet, the floating-point architecture yields the same quality of results

2938 CMC, 2021, vol.68, no.3

(QoR) relative to the ideal SW and accelerates design time and time-to-market (TTM) which is
not the case for the fixed-point architecture. However, with the fixed-point architecture, a long
process is needed to transform a floating-point algorithm and implement it as fixed-point while
taking into account the QoR.

Vivado HLS

Constraints/
Directives

C\C++ code

RTL generation
(VHDL)

AVMF
specification

Export RTL as IP
(.ZIP)

Vivado Tool

SDK Tool

C\C++ code

Generate (.elf)

Run synthesis

Run
Implementation

Generate (.bit)

Design HW/SW
System

Figure 9: HLS flow of the SW/HW AVMF design

CMC, 2021, vol.68, no.3 2939

Table 4: SW/HW implementation results

Designs LUTs FFs BRAMs DSPs

Ideal SW/HW 27701 (52%) 30494 (29%) 70 (50%) 104 (47%)
Optimized SW/HW 15175 (29%) 16417 (15%) 77 (55%) 81 (37%)

)4()3()2()1(

)6()5(

Figure 10: (1) Original RGB images, (2) noisy RGB images, filtered RGB images with (3) ideal
SW, (4) ideal SW/HW, (5) optimized SW, and (6) optimized SW/HW

Table 5: Comparisons of the PSNR values for the SW/HW and the SW AVMF designs

Images Ideal SW Ideal SW/HW Optimized SW Optimized SW/HW

Lena 33.485 33.485 33.483 33.483
Flower 32.135 32.135 32.133 32.133
Peppers 34.245 34.245 34.242 34.242
Sailboat 32.024 32.024 32.022 32.022
Mandrill 26.574 26.574 26.571 26.571
Monalisa 34.425 34.425 34.424 34.424

Compared to other realizations, we can notice from Tab. 8 that our design produces better
performance results than in [8] for the floating-point implementation of the AVMF filter. As a
matter of fact, the throughput of our design is 6.8 times faster than [8]. Moreover, our design
has better performance than results in [29,30] which present the floating-point implementation
of AVMF and VMF filters in Intel Core (TM) i7-4790 at 3.2 GHz and DSP TMS320C6701 at

2940 CMC, 2021, vol.68, no.3

150 MHz, respectively. It is crucial to mention that our design is implemented on the ZC702
board which has an ARM cortex-A9 core running on 667 MHz and the IP was implemented
with a 100 MHz clock frequency. On the other hand, the throughput of our design is 4.9 times
faster than [27] for the fixed-point implementation of the AVMF filter in SW/HW environment.
Knowing that, it is important to remind that the LLS method is used in [27].

Table 6: Comparisons of NCD values for the SW/HW and the SW AVMF designs

Images Ideal SW Ideal SW/HW Optimized SW Optimized SW/HW

Lena 0.010456 0.010456 0.010464 0.010464
Flower 0.011546 0.011546 0.011548 0.011548
Peppers 0.011974 0.011974 0.011976 0.011976
Sailboat 0.025104 0.025104 0.025110 0.025110
Mandrill 0.022715 0.022715 0.022744 0.022744
Monalisa 0.009365 0.009365 0.009369 0.009369

Ideal AVMF
Approximated

AVMF

SW 0.45 0.43

HW/SW 0.16 0.13

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

P
ow

er
 (

W
at

t)

Figure 11: Power consumption measurement for the SW/HW and SW AVMF designs

Table 7: Comparisons of processing time for the SW/HW and SW AVMF designs

Ideal SW Ideal SW/HW Optimized SW Optimized SW/HW

Processing time (ms) 5820 88 1100 34

In light of the above findings, the HLS approach presents a good solution to elevate the
abstraction level from RTL to algorithms and accelerate both the design time and the time to
market (TTM). But, we can notice that with HLS approach, the reference software should be
rewrite in a specific format and select the right directives to attain a better performance in terms
of FPGA area cost, power consumption and processing time. Thus, for example with the Xilinx
Vivado HLS, the ALLOCATION directive allows to reduce the FPGA area cost. Moreover, the
PIPELINE and ARRAY PARTITION directives can be used to improve pipeline and parallel
processing between loop iterations which helps to reach higher throughput. Besides, it becomes
possible to design a HW floating-point architecture where the performance in terms of processing
time and power consumption is better than that of the SW solution and with the same QoR.
Further, HLS approach can be combined with SW/HW design methodology to guarantee on the

CMC, 2021, vol.68, no.3 2941

one hand the acceleration of the conception and the flexibility to update the design, on the other
hand the performance in terms of processing time and power consumption.

Table 8: Performance comparisons of the filter implementation

Ref. Filter Image
size

Processing time
(ms)

Power consumption
(Watt)

Specification

[8] AVMF
(floating-point)

256× 256 602 – Intel Pentium IV@2.4 GHz

[27] AVMF
(fixed-point)

256× 256 168 – NIOS II processor+AVMF
accelerator@140 MHz

[29] AVMF
(floating-point)

512× 512 200 – Intel Core (TM) i7-4790@3.2 GHz

[30] VMF
(floating-point)

320× 320 931 – DSP TMS320C6701@150 MHz

Our design AVMF
(floating-point)

256× 256 88 0.16 ARM Cortex-A9
processor@667 MHz+AVMF
accelerator@100 MHz

AVMF
(fixed-point)

256× 256 34 0.13

6 Conclusion

In this work, the HLS approach is used to design floating-point and fixed-point hardware
architectures for the AVMF filter by applying specific directives (ALLOCATION, PIPELINE and
ARRAY PARTITION) to the AVMF C codes. The first design was based on the square root
function (ideal HW). The second design was based the ROM memory (optimized HW). These
designs are integrated as coprocessor with ARM cortex-A9 processor in the SW/HW environment.
The AXI-stream interface is used to speed up the data transfer between the PL part and the
DDR memory. The experimental results under the ZC702 FPGA platform show that the SW/HW
AVMF designs give a better performance in terms of processing time, power consumption and
hardware cost relative to the SW implementation with the same QoR. These results prove not
only the efficiency of HLS tool, but also the reliability of the proposed SW/HW AVMF design
which can be used for several image sizes.

Acknowledgement: The authors would like to express their deepest gratitude to Prof. Ali M. AMRI
of ENET’Com, University of Sfax, Tunisia, for his meticulous proofreading of their paper.

Funding Statement: The authors extend their appreciation to the Deanship of Scientific Research
at Jouf University (Kingdom of Saudi Arabia) for funding this work through research Grant No.
DSR2020-06-3663.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

2942 CMC, 2021, vol.68, no.3

References
[1] S. Wang and C. Wu, “A New impulse detection and filtering method for removal of wide range impulse

noises,” Pattern Recognition, vol. 42, no. 9, pp. 2194–2202, 2009.
[2] Z. Ramadan, “Monochromatic-based method for impulse noise detection and suppression in color

images,” Circuits, Systems, and Signal Processing, vol. 32, no. 4, pp. 1859–1874, 2013.
[3] H. Jagadish and J. Prakash, “A new approach for denoising remotely sensed images using DWT based

homomorphic filtering techniques,” International Journal of Emerging Trends & Technology in Computer
Science, vol. 3, no. 3, pp. 90–96, 2014.

[4] Q. Wang, W. Shi, Z. Li and P. Atkinson, “Fusion of sentinel-2 images,” International Archives of the
Photogrammetry, Remote Sensing of Environment, vol. 187, pp. 241–252, 2016.

[5] I. Pitas and A. Vanetsanpoulas, “Nonlinear mean filters in image processing,” IEEE Transaction on
Acoustics, Speech, Signal Processing, vol. 34, no. 3, pp. 573–584, 1986.

[6] R. Shapley, “Linear and nonlinear systems analysis of the visual system: Why does it seem so
linear?: A review dedicated to the memory of Henk Spekreijse,” Vision Research, vol. 49, no. 9,
pp. 907–921, 2009.

[7] J. Astola, P. Haavisto and Y. Neuvo, “Vector median filter,” Proceedings IEEE, vol. 78, no. 4, pp. 678–
689, 1990.

[8] L. Rastislav, P. N. Konstantinos, V. N. Anastasios and S. Bogdan, “A statistically-switched adaptive
vector median filter,” Journal of Intelligent and Robotic Systems, vol. 42, no. 4, pp. 361–391, 2005.

[9] L. Khriji and M. Gabbouj, “Vector median-rational hybrid filters for multichannel image processing,”
IEEE Signal Processing Letters, vol. 6, no. 7, pp. 186–190, 1999.

[10] A. Boudabous, L. Khriji, A. Ben Atitallah, P. Kadionik and N. Masmoudi, “Efficient architecture and
implementation of vector median filter in co-design context,” Radioengineering-Prague, vol. 16, no. 3,
pp. 113–119, 2007.

[11] A. Boudabous, A. Ben Atitallah, L. Khriji, P. Kadionik and N. Masmoudi, “Hardware implementation
and experiment validation of the VDDRHF color image filter,” in 7th Int. Multi-Conf. on Systems,
Signals and Devices, Amman, Jordan, 2010.

[12] B. Trivedi, J. Popat and K. Govani, “Optimized implementation of median filter algorithm on FPGA,”
International Journal of Emerging Technologies and Applications in Engineering, Technology and Sciences,
vol. 7, no. 1, pp. 246–249, 2014.

[13] Y. Hu and H. Ji, “Research on image median filtering algorithm and its FPGA implementation,” in
WRI Global Congress on Intelligent Systems, Xiamen, China, pp. 226–230, 2009.

[14] M. A. Vega-Rodríguez, J. M. Sánchez-Pérez and J. A. Gómez-Pulido, “An FPGA-based implementation
for median filter meeting the real-time requirements of automated visual inspection systems,” in 10th
Mediterranean Conf. on Control and Automation, Lisbon, Portuga, 2002.

[15] T. W. Lee, J. H. Lee and S. B. Cho, “FPGA implementation of a 3/SPL times/3 window median filter
based on a new efficient bit-serial sorting algorithm,” in The 7thKorea–Russia IEEE Int. Symp. on Science
and Technology, Ulsan, South Korea, pp. 237–242, 2003.

[16] A. Boudabous, A. Ben Atitallah, L. Khriji, P. Kadionik and N. Masmoudi, “HW/SW design-based
implementation of vector median rational hybrid filter,” International Arab Journal of Information
Technology, vol. 7, no. 1, pp. 70–74, 2010.

[17] M. Kthiri, B. Le Gal, P. Kadionik and A. Ben Atitallah, “A very high throughput deblocking filter for
H.264/AVC,” Journal of Signal Processing Systems, vol. 73, no. 2, pp. 189–199, 2013.

[18] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi et al., “Optimization and imple-
mentation on FPGA of the DCT/IDCT algorithm,” in IEEE Int. Conf. on Acoustics Speech and Signal
Processing Proc., Toulouse, France, 2006.

[19] A. Ben Atitallah, M. Kammoun, K. M. A. Ali and R. Ben Atitallah, “An FPGA comparative study of
high-level and low-level combined designs for HEVC intra, inverse quantization, and IDCT/IDST 2D
modules,” International Journal of Circuit Theory and Applications, vol. 48, no. 8, pp. 1274–1290, 2020.

CMC, 2021, vol.68, no.3 2943

[20] M. Kammoun, A. Ben Atitallah, K. M. Ali and R. Ben Atitallah, “Case study of an HEVC decoder
application using high-level synthesis: Intra prediction, dequantization, and inverse transform blocks,”
Journal of Electronic Imaging, vol. 28, no. 3, pp. 1, 2019.

[21] Intel, “OpenCL Intel Corporation,” 2019. [Online]. Available: https://www.intel.com/content/www/us/en/
tool/programmable/sdk-for-opencl/overview.html.

[22] CALYPTO, “Catapult C Synthesis,” 2021. [Online]. Available: https://eda.sw.siemens.com/en-US/ic/
catapult-high-level-synthesis/.

[23] J. Villarreal, A. Park, W. Najjar and R. Halstead, “Designing modular hardware accelerators in C
with ROCCC 2.0,” in 18th IEEE Annual Int. Symp. on Field-Programmable Custom Computing Machines,
Charlotte, NC, USA, 2010.

[24] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort et al., “A survey and evaluation of FPGA high-level
synthesis tools,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, 2016.

[25] A. Ben Atitallah, H. Loukil, P. Kadionik and N. Masmoudi, “Advanced design of TQ/IQT component
for H.264/AVC based on SoPC validation,” WSEAS Transactions on Circuits and Systems, vol. 11, no. 7,
pp. 211–223, 2012.

[26] M. Kammoun, A. Ben Atitallah, R. Ben Atitallah and N. Masmoudi, “Design exploration of efficient
implementation on SOC heterogeneous platform: HEVC intra prediction application,” International
Journal of Circuit Theory and Applications, vol. 45, no. 12, pp. 2243–2259, 2017.

[27] I. Abid and A. Ben Atitallah, “An optimized sequential architecture of the AVMF filter,” in 4th Int.
Conf. on Recent Advances in Electrical Systems, Hammamet, Tunisia, pp. 48–52, 2019.

[28] Xilinx, “Xilinx Zynq-7000 SoC ZC702 Evaluation Kit,” 2021. [Online]. Available: https://www.xilinx.
com/products/boards-and-kits/ek-z7-zc702-g.html.

[29] L. Jin, Z. Zhu, E. Song and X. Xu, “An effective vector filter for impulse noise reduction based on
adaptive quaternion color distance mechanism,” Signal Processing, vol. 155, no. 12, pp. 334–345, 2019.

[30] L. C. Dominguez and V. I. Ponomaryov, “Non-Linear filters for colour imaging implemented by DSP,”
in 2nd Int. Conf. on Electrical and Electronics Engineering and XI Conf. on Electrical Engineering, Mexico
City, Mexico, 2005.

https://www.intel.com/content/www/us/en/tool/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/tool/programmable/sdk-for-opencl/overview.html
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html

