Computers, Materials & Continua <Téch Science Press

DOI:10.32604/cmc.2021.017461
Article

Optimal Sprint Length Determination for Agile-Based Software Development

Adarsh Anand', Jasmine Kaur', Ompal Singh' and Omar H. Alhazmi*"

'Department of Operational Research, University of Delhi, Delhi, 110007, India
’Department of Computer Science, Taibah University, Medina, 30001, Saudi Arabia

*Corresponding Author: Omar H. Alhazmi. Email: ohhazmi@taibahu.edu.sa
Received: 29 January 2021; Accepted: 22 March 2021

Abstract: A carefully planned software development process helps in main-
taining the quality of the software. In today’s scenario the primitive software
development models have been replaced by the Agile based models like
SCRUM, KANBAN, LEAN, etc. Although, every framework has its own
boon, the reason for widespread acceptance of the agile-based approach is its
evolutionary nature that permits change in the path of software development.
The development process occurs in iterative and incremental cycles called
sprints. In SCRUM, which is one of the most widely used agile-based software
development modeling framework; the sprint length is fixed throughout the
process wherein; it is usually taken to be 1-4 weeks. But in practical appli-
cation, the sprint length should be altered intuitively as per the requirement.
To overcome this limitation, in this paper, a methodical work has been pre-
sented that determines the optimal sprint length based on two varied and yet
connected attributes; the cost incurred and the work intensity required. The
approach defines the number of tasks performed in each sprint along with the
corresponding cost incurred in performing those tasks. Multi-attribute utility
theory (MAUT), a multi-criterion decision making approach, has been utilized
to find the required trade-off between two attributes under consideration. The
proposed modeling framework has been validated using real life data set. With
the use of the model, the optimal sprint for each sprint could be evaluated
which was much shorter than the original length. Thus, the results obtained
validate the proposal of a dynamic sprint length that can be determined before
the start of each sprint. The structure would help in cost as well as time savings
for a firm.

Keywords: Agile principles; agile-based software development; dynamic
sprint length; multi-attribute utility theory; scrum; software development
life cycle

1 Introduction

Software is no longer restricted to sophisticated scientific activities, nor is it merely recre-
ational or optional but a product of daily use. The Covid-19 pandemic forced the majority of the
world into a lockdown. The changing times required us to practice social distancing and minimize

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.017461

3694 CMC, 2021, vol.68, no.3

physical human interactions. This forced us to adopt technology at a pace for which the world
was not yet ready. To meet the gap, we need to come up with sustainable, adaptable, secure, and
resilient software. We need to focus more on the quality of the product being created rather than
the quantity. In the quest to reach the market early, quality should not be compromised. To ensure
quality, one important point to be considered is the product creation process.

Software life cycle includes everything from its inception to its retirement. The software
development life cycle (SDLC) is a systematic procedure for creating, deploying, and maintaining
the software. Every piece of software undergoes a certain number of steps throughout its lifecycle:
defining the requirements and their detailed analysis, designing the software, building the software,
its rigorous testing and maintenance in the operational phase. The Waterfall Model, which was
very widely used till a few years ago, lost its place due to its biggest drawback-rigidity. The
waterfall approach does not allow scope for change in a particular phase once it is over. The
Waterfall Model was designed to create small-scale projects, and it cannot meet the demands
of complex systems required today. With changing times and demands, modified versions of the
basic SDLC model appeared, and we now have a handful of SDLC models like the V-shaped
model, spiral model, iterative and incremental model, agile-based models, prototype model, etc.
These models follow the five steps of software development, but the order and implementation
of each phase varies from model to model. Different software development projects use different
SDLC models according to the project’s size, complexity, development cost, skill limitation, etc.
These days, the most prevalent approach for software development is the Agile-based Software
Development Life Cycle Model.

Before going into Agile Software development process details, one needs to understand the
term agile and Agile Principles. The word agile means active and lively, and represents something
quick and well-coordinated. It is a mindset that helps to deal with uncertainty. Keeping this in
mind, the Agile Manifesto was designed in 2001 by 17 people who laid the ground rules of a new
technique [1].

The Agile Manifesto gave higher importance to customer satisfaction, active user involve-
ment, simplicity, welcoming change, working on software, face-to-face conversations, frequent and
continuous delivery, working together daily, reflections, and adjustment, among other things. The
manifesto did not provide a methodology or a method. Instead, it provided the principles which
could make a methodology agile. The Agile Principles can be applied to software development,
project management, business management, etc., and are being used in the construction indus-
try, education sector, marketing and advertising companies, finance-related industries, and event
planning, to name a few.

The agile software development process follows an incremental and iterative approach. The
whole project is divided into small incremental builds where each iteration (sprint) adds specific
functionality to the previous build. At the end of each sprint, we obtain a working product, which
is presented to the user. The user is highly involved in the development process, and their feedback
is incorporated in the next iteration. The process is perceived to be very lightweight because of
the low amount of documentation work required. The Agile SDLC can overcome the waterfall
model’s major shortcomings by being highly flexible, fast, and responsive.

Like any other technique, Agile SDLC also has a fair number of shortcomings. It requires a
team of highly skilled professionals who can handle the dynamic development environment. The
user also needs to be very clear about the product they want. Without these, the project can easily
overrun the budget, the time, and often result in an unsatisfied customer.

CMC, 2021, vol.68, no.3 3695

There are numerous agile-based approaches available but among these, the Scrum development
process is widely used for software development. According to the State of Agile Report [2],
75% of the 40,000 surveyed agile executives used Scrum or a modified version of it. Scrum
is a framework for developing and sustaining complex projects. In 2013, Sutherland et al. [3]
wrote the Scrum Guide, which is an industry-standard document defining the Scrum process
and its implementation. According to them, “Scrum is a framework within which people can
address complex adaptive problems, while productively and creatively delivering products of the
highest possible value. Scrum is lightweight, simple to understand and difficult to master.” The
word Scrum was picked up from the word scrummage, a rugby formation, to denote the high-
performing, cross-functional teams in the scrum process. Scrum has been used to develop software,
hardware, embedded software, networks of interacting function, autonomous vehicles, schools,
government, marketing, managing the operation of organizations and almost everything we use
in our daily lives, as individuals and societies.

The Scrum defines three groups: product owner, scrum master, and the development team.
The members of the development team create the Increment, i.e., a workable functionality. The
Increment may be a small part of the whole product, but it is standalone complete. In the initial
sprints, priority is given to those functionalities which are the essence of the product. Here, the
80-20 rule is followed, i.e., 80% of the functionality is contained in 20% of the code and only
the most essential features are developed.

The progress in the Scrum framework can be understood through Fig. 1. Each development
project has a comprehensive list of requirements called the product backlog. It is a dynamically
changing document wherein the requirements of feature enhancements, functions, features, etc.
keep changing as the product progresses. The tasks mentioned in the product backlog are arranged
in the order of their priority and an achievable target is set for each Sprint. This sprint planning
is done through collaboration of the whole scrum team. The sprint backlog is a subset of
the product backlog to be catered to in a particular sprint. Sprint backlog plans the delivery
of the sprint and the plan to achieve it. It is a highly visible, real-time picture of the work
that the development team plans to accomplish during the sprint, and it belongs solely to the
development team.

Sprints contain the sprint planning, daily scrums, the development work, the sprint review,
and the sprint retrospective. Each sprint has a defined task and a flexible plan to achieve it. The
Scrum requires the sprint length to be fixed, but it usually varies at the start of the project when
the right fit is being determined. For a shorter duration project, the sprint length is kept shorter,
while for a longer duration project, it is kept around four weeks. As per Scrum guidelines, a
sprint must not be shorter than one week or exceed four weeks. It is this attribute around which
this present proposal revolves. Here, an attempt has been made to understand the reasons for
the above time limits and show that these cannot always be followed under every condition. The
sprint duration would depend on the situation.

The current proposal has been designed as follows. Section 2 discusses the literature review
and the research questions addressed in the current proposal. The notations used in the model
development have been discussed in Section 3, followed by the detailed mathematical framework
in Section 4. To show the applicability of the developed model, an illustration has been discussed
in Section 5. Section 6 concludes the work and is followed by a list of references to the articles
used in this work.

3696 CMC, 2021, vol.68, no.3

SCRUM PROCESS

@

A

Scrum Master

Product Backlog

Product Owner

Sprint
1-4 Weeks

: ;) Sprint Review
Sprint Planning Meeting -

sprint retrospective

Team Sprint Backlog

cﬁﬂﬂ

Finished
Work

Figure 1: The scrum framework

2 Literature Review

In the recent past, the use of Agile practices in software development has attracted the
attention of developers and researchers. Reference [4] compared and analyzed the various Agile-
based software development techniques. Reference [5] have provided a detailed literature review
on the use of Scrum in software development. Reference [6] explored the Agile practices through
the Agile wheel reference model (AWRM). Reference [7] identified the challenges in adopting
Agile. Reference [8] wrote comprehensive literature on the principles, evolution and criticisms of
the Agile development approach. Reference [9] explored the importance of the various principles
of Agile methods and their relationships. Reference [10] discussed the implementation of Agile
practices in maintenance activities. Reference [11] evaluated the teamwork quality and its impact
on the success of an agile-based software development project. Reference [12] identified the
important factors which are necessary for successful implementation of lean Six-sigma implemen-
tation. Reference [13] combined the best practice of open-source software development (OSSD)
and Scrum to create OSCRUM. Reference [14] proposed the S-SDLC model, which uses Agile
principles to maximize software security without compromising its quality. Reference [15] identified
the shortcomings of Scrum and how it has evolved into Scrumban. They also proposed a new
framework, Structured Kanban Iteration (SKI), for DevOps and continuous delivery.

The Agile technique has been very well explained theoretically, but few mathematical models
exist to explain its dynamics. Reference [16] proposed a linear optimization model to plan the
multiple sprints. Reference [17] conducted an empirical study on the distribution of software met-
rics in software developed using Agile principles. Reference [18] proposed quantitative measures
to assess the quality and reliability of software developed using Agile methods. Reference [19]
have discussed using non-homogenous Poisson process (NHPP) based models to determine the
reliability of software in an Agile-based environment. Reference [20] discussed a mathematical
framework for the fault removal process in the multiple sprints of Agile software.

It can be observed from the set of aforesaid studies that though much work has been done in
the context of Agile development, only a small number of researchers have discussed the optimal

CMC, 2021, vol.68, no.3 3697

sprint length and its determination. The research in the current work has attempted to further
improve the Agile method, specifically Scrum, by using mathematical models. The aim and scope
of this research have been discussed through the following research questions.

Research Question 1: Do we really need a fixed Sprint Length?

The Scrum guidelines [3] require a fixed sprint length throughout the project. The factors
taken into consideration are the project duration, the environment provided by the customer or
the stakeholders in the project, the work efficiency of the Scrum team, etc. Whatever the optimal
length is determined to be, it is considered the same for each sprint. A very valid question that
arises here is why is it necessary to have a predetermined sprint length for each sprint? And can
different sprints have different sprint lengths?

The manifesto developers chose the word agile because it represented adaptiveness in response
to change, which was important for the process they were defining. Even though the Scrum
development process effectively implements the Agile principles, it still maintains rigidity in the
sprint length determination. Nevertheless, in practice, not each sprint requires the same number
of days. While some tasks may take a longer time, others may not need the predetermined one
week or so. On implementation, it was found that not all user stories can be defined so that they
meet the definition of done (DOD) in a single sprint. Often extra days or extended working hours
were required, i.e., a buffer period or a buffered sprint was needed to complete a given task. In
Scrum, a sprint is a time-boxed event, and tasks are broken down in such a way that they fit into
these time frames. However, it seems that we require an alternative approach which is task-bound
and the sprint length is determined considering the task. The wasted time, effort, and resources
spent waiting for the next sprint to begin or the need to lengthen a sprint should be catered to in
the planning process. The agile process is about adaptability and flexibility. We propose that this
flexibility should be extended to the sprint, and the duration of each sprint should be dynamic.

Research Question 2: What are the possible benefits or repercussions of varying the Sprint Length?

After an extensive search, we concluded that no notable research work has been done regard-
ing sprint length. Hence, we had to rely heavily on the experiences shared on various discussion
forums and blogs to support our claim. The opinions of people and their problems with sprint
length implementation expressed on the Internet fall into two major classes. The first is those
who strictly follow the Scrum guidelines and hence opine that sprints should be time-boxed events
that cannot be changed. Further, the current sprint length should never be altered to consider
the leftover tasks of a sprint that might require a day or two more to reach a deliverable. Many
arguments for the same can be found on Quora and Reddit, which are mostly centered on con-
sistency. A repeatedly changing sprint length brings uncertainty into the work environment. For
a big firm, where a resource person is simultaneously working on several projects, different sprint
lengths in different projects can be confusing. Another major concern that arises is measuring the
velocity of the team in an ever-changing scenario [21].

Another option is the implementation of a buffer sprint, which allows an extra day or so
to complete the sprint goal. The buffer also allows the developers to deal with unexpected tasks
that crop up amid a sprint and take precedence over the other tasks. Different firms use different
strategies: Some earmark a fixed percentage of their time and resources as a buffer, while others
may vary it or deal with it as and when the situation arises. Reference [22] conducted a study to
see what changes a company makes while implementing Scrum. According to their conclusion, one
of the surveyed companies allowed flexibility in the sprint length for developing a new product
but not in the cases of enhancing established products. Most companies did not calculate a

3698 CMC, 2021, vol.68, no.3

buffer in the sprint task but some used a variable or fixed buffer time for various needs like
unforeseen works, technological issues, debugging, etc. The work of [15] discussed the issues faced
in implementing Scrum and the issue of a fixed sprint length. They also suggest that a fixed sprint
length does not always make sense; it can be varied according to the project need. Furthermore,
aiming to break down each requirement to fit in a fixed time frame may not always be possible.

One apparent reason for this conflict of opinions is that one size cannot fit all. Not all
firms can implement Scrum according to the guidelines. The nature of the project, the work
environment, the team members, etc. all influence the sprint outcome.

Dynamic sprint length can be implemented by deciding the sprint length in the sprint planning
phase, keeping in mind the sprint goals. Since the sprint length will be determined at the start of
the iteration itself, there should not be any confusion about the next sprint’s start time. A dynamic
sprint length would allow better utilization of the time, manpower, and other project resources.
The optimal time allocation for certain tedious tasks would reduce the developers’ deadline stress
and eventually lead to greater productivity. According to [23], there is a U-shaped relationship
between time pressure and productivity, i.e., too much time pressure from the boss can decrease
the employees’ output and cause higher user stories being carried over to the next sprint which,
in turn, will increase the technical debt. The unexpected bugs and discrepancies can also be easily
tracked and tackled. Often, when new teams implement Scrum, there is a remarkable increase
in their output. The tasks which were likely to be completed over several sprints are completed
in a single sprint. In such cases, when the team has more time than required, productivity can
often decrease. Factors such as procrastination, lack of motivation, and the effect demonstrated
by Parkinson’s Law [24] come into play. Thus, the tasks which could have been completed earlier
take much longer. This has immediate economic repercussions and impacts on the team’s spirit,
individual morale, and long-term output.

Research Question 3: How to determine the Optimal Sprint Length for a particular sprint?

Organizations new to the Agile development process commonly follow the practice of altering
the sprint length till the best fit is found. Moreover, these organizations find the solution either
intuitively or by trial and error as they seek the best fit. A decision-making approach that
considers different attributes and finds the trade-off for the various attributes mathematically
could prove more efficient and less effortful, and cost-and time-effective. The current proposal
presents a mathematical model that considers the number of enhancements/tasks to be dealt with
in a sprint and the cost incurred in its implementation. We have used MAUT, a multi-criterion
decision making (MCDM) technique to determine the optimal sprint length.

3 Notations
The notations used in the development of the model are as follows:
n: The total number of sprints required to complete the project.
i: A counter variable representing a particular sprint, i=1,2, ..., n.
k; (t): Cumulative number of tasks to be dealt with till time ¢ in the 7ith sprint of software
z; (f): Probability distribution function
Z;(t): Cumulative distribution function
a;: Number of tasks in the ith Sprint of software

Cirorar: The total developmental cost incurred for the ith Sprint

CMC, 2021, vol.68, no.3 3699

¢io: Per unit developmental cost for ith Sprint

¢i1: Developmental cost for the user stories in ith Sprint’s backlog
¢p: Developmental cost for the leftover stories of i — Ith Sprint
¢i3: Cost incurred in performing additional tasks in the ith Sprint

cp: Total developmental budget available for the project

4 Model Development

In the current modeling framework, the focus is on determining the suitable sprint length.
As discussed earlier, the development team actively works and manages its activities to achieve
the sprint goal. The teams often have to deal with some tasks that could not be completed
in the previous sprint and have to be dealt with now. Moreover, a sprint may include various
tasks such as bug repair, feature enhancement, and new feature development. The development
team’s job is to incorporate all these tasks and write reliable code. The reliability of the code is
tested rigorously.

The optimal sprint length is determined as follows. In the first section, Section 4.1, we have
determined the number of tasks that will be dealt with in a particular sprint. Section 4.2 discusses
the costs which would be incurred in completing these tasks. Section 4.3 uses the optimization
tool MAUT to determine the optimal sprint length with the help of the framework obtained from
Sections 4.1 and 4.2.

4.1 Modeling the Software Developmental Process

This section discusses the modeling framework for the software development process through
various sprints. Each of the tasks to be performed in the sprint is assigned to one of three
categories, namely, the items in the sprint backlog of the particular sprint, the leftover items
from the previous sprint (Technical debt) that should be catered to in the current sprint, and
the issues which may arise when the increment of the previous sprint becomes operational. The
third category would also include the changes necessary in the product after the stakeholders
and customers/users give their feedback on the product. These tasks could be refactoring and
debugging. The tasks of this category may or may not arise. Depending on the project and the
stakeholders, these changes might be demanded in the ongoing sprint or may be deferred to the
next sprint. According to [25], 54% of the high-level requirements are not met in their planned
iteration. The rising technical debt compels the developers to pass on tasks to the next iteration.

The modeling framework bears a close resemblance to the fault removal phenomena in
software reliability. Hence, we have drawn an analogy from the software reliability literature and
defined an NHPP-based model that defines the expected number of tasks dealt with till a given
time t. It can be mathematically represented using the approach discussed in [19,26] as:

de() z()
d 1-Z®)

(A—k () (D

where k(f) represents the expected number of tasks performed in a sprint till time t; 4 represents
the initial number of tasks which were to be performed throughout the Sprint; Z(7) is the
probability distribution function and Z(z) is the cumulative distribution function which defines the
pattern in which tasks are performed. Also, Z (1) = [z (¢)dt.

3700 CMC, 2021, vol.68, no.3

t
Here, we can define v (¢) as v(7) = ILZ)U) which is the instantaneous rate at which tasks are
performed. Hence, we get:
dk (1
T v k) @

On solving Eq. (2) with initial condition, i.e., at t =0, k(f) =0, we obtain the following unified
expression:

k(t)y=AZ (1) 3)
Here, Z(t) can take different functional forms depending on the nature of the data,
problem etc.

For a better visual understanding, a timeline has been shown in the following Fig. 2.

Sprint 1 . Sprint 2 I Sprint 3 | I Sprint 1 i I Sprintn

| | | | II‘. If

3 i-1 i n-1 n

Figure 2: Timeline depicting the subsequent sprints

Using the generalized structure for k(¢) in Eq. (3), the phenomena for the different sprints
can be described as follows.

4.1.1 Modeling Pertaining to Sprint 1

Sprint 1 is the first iteration, and it occurs between time (7, #1). All the sprint activities, such
as sprint planning, daily scrum, designing, development, and testing occur here. The teams set out
with a predefined set of tasks outlined in the sprint backlog. The expected number of tasks that
will be completed in the first sprint can be mathematically expressed as:

ki (t—to)=a1Z, (t—ty) +e1Z (t—tg)

“4)
=A1Z) (1 — 1)

where A| =aj;+ej. Here, a; represents the new user stories/tasks that were to be done in Sprint 1
and e; denotes any additional task the sprint may have to deal with. Since this is the first sprint,
the chances of having to perform additional tasks are low but not ruled out. In the initial sprints,
the teams are still figuring out their flow and some unforeseen changes might be required.

4.1.2 Modeling Pertaining to Sprint 2

The second sprint (¢1, t2) adds on to the software created in the first sprint. Each phase of
the SDLC is revisited and with the mutual understanding and joint efforts of the various teams,
features are added in the second sprint. Software testing is carried out and any leftover tasks of
the previous sprint along with the new features, if any, requested by the user are incorporated here.

CMC, 2021, vol.68, no.3 3701

Any tasks which could not be completed in the first sprint will also be completed here. It can be
represented as:

k(t—t)=aZt—t)+A1(1=2Z1 (1)) Zr(t—t1)+exZr(t—11)

)
=AryZ> (t—11)

where Ar =ap + Aj(1 — Z1(t1)) + e represents the total number of tasks being handled in the
second sprint. Here, a, represents the tasks already in the sprint backlog, A;(1 —Z(t;)) represents
the leftover task of the previous sprint, and e, represents some feature additions needing to
be done.

4.1.3 Modeling Pertaining to Sprint 3

The third sprint (#, #3) is the third iteration in the development cycle which means the
product has begun taking a fairly good shape and evolving toward the desired end product.
Feature enhancements are made by developing the user stories in the sprint backlog. The following
Eq. (6) models the said phenomena as:

ks(t—t)=a3Z3(t—t)+ Ay (1 —=Zr (1) Z3(t — 1) + €323 (1 — 1)

(6)
=A3Z3(t— 1)

where A3 = a3 + Ax(1 — Z»(tp)) + e3. Here, a3 represents the new tasks pertaining to sprint 3,
Ar(1 —Z5(ty)) represents the tasks that were not completed in Sprint 2 and are being completed
in Sprint 3, and e3 represents the last-minute changes that need to be made to the software in
the third sprint.

4.1.4 Modeling Pertaining to ith Sprint.

The ith sprint (#;,_1, ;) represents any general sprint. As discussed earlier, any sprint will be
dealing with three major categories of tasks. The modeling framework for the ith sprint (z;_1, #;)
can be represented as follows:

kitt—ti_)=a;Zi(t—ti_)+ A1 (A =Ziy (i) Zi(t—tim) + e Zi (t—ti—1)

(7
=A;Z;(t—ti_1)

where 4;=a;+A;_1(1—Z;_1(t;_1)) +e¢;. Here, a; represents the first category, i.e., the new tasks of
each sprint. A;_1(1—7Z;_1(t;_1)) denotes the leftover tasks or the technical debt from the previous
sprints and ¢; denotes extra tasks and other required changes to be made in the itk sprint (which
were initially not in the sprint backlog). The changes demanded by the user after reviewing the
outcome of the previous sprints may be required to be inculcated in the ongoing sprints or be
deferred to the next sprint. As is apparent in Eq. (4), for Sprint 1 the second category of leftover
tasks will be equal to zero.

Using the mathematical structure described here, the cost modeling has been computed in the
following section.

4.2 Cost Modeling for the Sprints

Each project starts with a fixed budget which is allocated to the various processes. Four
types of costs that will be incurred in the developmental process are identified here. The per-unit
development cost majorly meets the cost incurred whether or not any progress is made, i.e., the

3702 CMC, 2021, vol.68, no.3

cost incurred till the time the team is working on the current project. It could also include all the
indirect costs incurred on tasks that help improve the team’s output. The second cost is the cost
of developing a new user story. It will consume a major portion of the budget. The third cost
is the cost incurred on completing the leftover stories of the previous sprint. It will also include
the penalty for not meeting the deadline and loss of opportunity. The fourth is the cost that will
be incurred on performing additional tasks. It could include the changes that the customer has
suggested after reviewing the increment of the previous version, some debugging activity, or some
security issue, etc., which will take precedence over the designated sprint tasks. This cost needs to
be defined separately because it is much easier to write an altogether new code than re-visit an
old code and debug it.

Here, we have represented the cost structure for the first three sprints, followed by a
generalized representation for the ith sprint.

4.2.1 Cost Structure for Sprint 1

The cost incurred in the first sprint of the software Cj . includes per unit developmental
cost, 1.e., ciot since developmental activities take place till time t (#) <t <1t;)). The second cost,
cria1Z1(t—ty), is the cost incurred in developing new features specific to Sprint 1. The third cost,
c13e1Z1(t —ty), is the cost incurred in incorporating any last-minute change requests. The total
cost can be represented as:

Cliow =crot+cria1Zy (t—to) +cize1 Z1 (t—ty) th<t<t ®)

4.2.2 Cost Structure for Sprint 2

The cost incurred in Sprint 2 Cs;s includes the per-unit development cost c¢yof, the cost
due to new feature development cy1axZ>(t — t1), the cost due to the leftover tasks of Sprint 1
A1 (1l —Zi(t;1)Z5(t — t1), and the cost due to additional tasks performed in the sprint, i.e.,
cx3exZy(t—t1). The following equation can represent the total cost:

Crrota1 = 20t + 210222 (t — 1)) +cnA1 (1 =Z1 (1) Za (t—t1) +c3exZr(t—1) 1 <t<l ©)

4.2.3 Cost Structure for Sprint 3
The total cost for Sprint 3 can be represented as:

Cstoa1 = 30t + 310323 (1 — 1) + A2 (1 =25 (02)) Z3 (1 —) +c33e3Z3(t— 1)) 1 <I=<I3 (10)

The cost incurred in the Sprint Csioty 1S similar to the cost incurred in Sprint 2 and includes
the per-unit development cost ¢3pz; cost due to enhancements decided to be made to the software
in Sprint 3, i.e., ¢31a3Z3(t — t2); the heavy cost incurred due to unfulfilled tasks of Sprint 2, i.e.,
c3pAx(1—2Z5(ty))Z3(t—tz) and last, the cost of performing additional tasks which were not in
the sprint backlog, i.e., c33e3Z3(t — t).

4.2.4 Cost Structure for ith Sprint

The cost associated with the ith sprint Cjsy Will comprise the following four costs: devel-
opmental cost throughout the sprint, i.e., Cjt; the cost of developing new user stories in the
sprint, i.e., ¢;ja;Z;(t — t;_1); the cost of dealing with the leftover tasks of the previous sprint,

CMC, 2021, vol.68, no.3 3703

cpAi—1(1—Zi_1(t,_1))Z;(t—ti—1); and the cost associated with additional tasks, i.e., ¢;3e;Z;(t —
ti—1). The following equation represents the total cost incurred in the ith sprint:

Citotal = ciot+cna; Zi(t — ti—1)+cpdi-1 (1 =Zi 1 (4i-1) Zi (t — tim) +cpei Zi(t— 1) i) <[=1
(11)
and ¢jp» =0 for the first sprint.

4.3 Optimal Sprint Length Determination

Software engineers not only want the system to be secure, but they also wish to minimize the
money, time, and resources spent on the project. There are several existing techniques, algorithms,
and theories on how to make a better or the best decision in a given situation. Multi-attribute
utility theory (MAUT), one such decision-making technique, relies heavily on the utility theory
from the field of economics to quantify the preference or the satisfaction derived from a particular
attribute. MAUT provides a trade-off between the desired values of multiple conflicting attributes.
Each attribute has its set of constraints and the decision-maker decides how much they are willing
to give up or derive from an attribute.

Major contributions to the field were made by [27-29]. Reference [30] used MAUT in the
context of product remanufacturing. In the field of software reliability, [31-33] have used MAUT
to determine software release time in various situations. The present proposal has used their work
as a guideline.

Methodology for developing the utility function for MAUT follows a four-step decision-
making process:

e Selection of attributes

We were able to identify the scope of the sprint and investment as the most important
attribute. For computational purposes, we have interpreted the scope of the sprint as the number
of tasks that have to be performed in a sprint. The team’s performance can be measured by
the number of tasks performed and the effort required to maximize that number with each
successive sprint, i.e., maximize the team’s work intensity. It is highly desirable, especially in agile-
based processes, to maximize the team’s output and achieve the team’s maximum potential. If
the work intensity is low, the teams will most likely not achieve the sprint goal and will produce
compromised software in terms of quality and security [34].

Given k(t), we can define the objective function for work intensity, A(¢), as:
K' (1)

Maximize A (t) = X0
max

(12)

The second attribute is the cost incurred in performing the number of tasks in a sprint which
we wish to minimize. If the project cost overruns, it can lead to a financial loss for the firm,
opportunity loss, and bad word-of-mouth publicity. If an affordable product is developed, the cost
to the end-user would also be modest and it will attract a larger number of buyers. Hence, the
objective for the ith sprint under MAUT is:

Ci total
Cp

Minimize C =

(13)

3704 CMC, 2021, vol.68, no.3

e Selection of attribute bounds

The decision-maker should choose the bounds of the attributes. The best and the worst
performance in an individual attribute is denoted by the upper and lower bounds, respectively.
All the possible outcomes for an attribute lie between these bounds. The best and worst values
of work intensity are denoted by u(A*) and u(A~), and these take the values 0 and 1 as their
boundary points, denoting that either no tasks are completed, or all the tasks are completed.
Similarly, for the cost, at the boundary points, we have u(C*) =1 and u(C~) =0, i.e., total
consumption of budget and no budget consumption, respectively.

e Estimation of weight parameters

The weights associated with work intensity and budget have been taken as w; and w.. Let
(A, C*) and (A=, C~) denote the best and worst possible consequence, respectively. The joint
outcome (AT, C7) comprises two attributes A and C at the best and worst levels with probability
p and (1 —p), respectively. Here, the weight of A equals p, i.e., indifference probability between
them [32]. At indifference, p is equal to the weight parameter w. for cost. Since the sum of weight
must be equal to one, hence the other weight w; can be obtained.

e Structure of MAUF (Multi-Attribute Utility Function)

Based on the Single-Attribute Utility Function (SAUF), the scaling constants for each
attribute in the MAUF in additive linear form can be given as:

UM, C)=w) xur)+wcxu(C) (14)
where w; +w: = 1.

SAUF of the work intensity and cost are u(A) and u(C), respectively. Here, SAUF for one
attribute is of maximization type and another has minimization type. Therefore, to orchestrate
both utilities we must convert the SAUF for cost into a maximizing function by multiplying it
with a negative sign. Now, by maximizing the U(A, C), we can obtain the optimal length of a
sprint. Hence, our final optimization problem is:

Max (U (X, C) =wy xu(A) —wc xu(C)) (15)

where w; +w: = 1.

5 Model Validation

The proposed model can be validated on any dataset that contains a detailed description of
the project development process. The project requirements can be broken down into epics and
user stories to create the product backlog. Project planning would lead to prioritizing these tasks
and planning the sprints, sprint goal, and sprint backlog. The initial values of the parameters
thus obtained can be used to evaluate the model using the non-linear least square method. The
lack of access to such privy details of any project forces us to perform our model validation on
secondary data.

For this, let us consider a special case wherein the set of activities in a sprint is related to the
debugging process of, for example, a project on software maintenance. The dataset given by [20],
which contains a description of 287 faults that were debugged in 7 sprints, has been used in this
study. The length of each sprint was fixed at four weeks. The structure of the problem defined in
section 4 remains the same. The interpretation changes slightly as the a; now corresponds to the
task of debugging in the ith sprint. The previous sprint’s leftover tasks now refer to the faults

CMC, 2021, vol.68, no.3 3705

that could not be perfectly removed in the earlier sprint and must be dealt with in the next one.
The current project does not consider additional tasks hence, ¢; = 0Vi.

Considering the nature of the data used here, we have assumed that the rate of performing
the tasks is logistical [26]. Hence, taking

b
V()= (7) in Eq. (2), we obtain
1+ Bebt

A(1—e7")

CO= T e

(16)

The Statistical Analytical Systems (SAS) software [35] was used to estimate the parameter
values of the equations set out in Section 4.1 and the values obtained for each sprint are shown
in the following Tab. 1.

Table 1: Parameter estimates

Sprints\ Parameters A; b; Bi

Sprint 1 11.4588 0.1509 8.7575
Sprint 2 31.1643 0.1073 8.7980
Sprint 3 19.2055 0.1009 8.8843
Sprint 4 69.3292 0.1149 3.2981
Sprint 5 71.3275 0.1009 2.7557
Sprint 6 71.603 0.1290 3.6874
Sprint 7 33.685 0.1061 3.8236

Tab. 2 shows the assumed cost parameters used to evaluate each sprint’s total cost as
discussed in Section 4.2.

Table 2: Assumed values for Cost Parameters (1 unit = $1000)

Cost Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Sprint 7

cio 5 15 12 14 13 13 15
cit 15 10 15 15 2 2 5
¢ - 12 19 15 8 7 12
cB 5000 5000 10000 10000 10000 10000 10000

Using the estimated values of the parameters (Tab. 1) and assumed values of cost (Tab. 2),
we have evaluated the optimization problem (Eq. 15) defined in Section 4.3.

For our example, we have taken the least value of the work intensity (which is failure inten-
sity) to be 60% and maximum to be 100%. For the cost attribute, we want the least consumption
to be 70% and the maximum consumption to be 100%. Further, we have assigned equal weight
to both the attributes, i.e., 0.5.

Tab. 3 shows the optimal sprint length and the utility value achieved by taking both the cost
and work intensity as attributes.

3706

CMC, 2021, vol.68, no.3

Table 3: Utility values and optimal sprint length

Sprint

Utility level

Optimal sprint length

Sprint 1
Sprint 2
Sprint 3
Sprint 4
Sprint 5
Sprint 6
Sprint 7

0.713186
0.544948
0.634858
0.546487
0.648378
0.654557
0.658607

14
20
21
10
10
10
12

The utility curves obtained after the application of MAUT are as shown in Figs. 3-9.

07

06

0.5

0.4

03

02

0.1

10

15

20

Figure 3: Utility curve for sprint 1

As can be seen in Fig. 4, the maximum utility that can be achieved is 0.71 for Sprint 1 at
time point 14. This indicates that having a sprint length greater than this would lead to a reduced
utility level due to the attributes. In Sprint 2, the utility curve reached its maximum value of
0.54 at the 20th time point. Hence, the ideal sprint length in such a situation would be 20 days.
Similarly, in Sprint 3, the maximum utility that could be achieved was 0.63 at time point 21. For
Sprints 4-6, the utility curve attained its peak at the 10th time point with a maximum utility level
of 0.54, 0.64, and 0.65, respectively. Hence, the ideal sprint length for these three sprints should
be 10 days instead of the originally considered 30 days. In Sprint 7, the maximum utility level of
0.65 was attained at the 12th time point.

CMC, 2021, vol.68, no.3

3707

0.5

0.4

03

0.2

0.1

10 15 20 25 30
f

Figure 4: Utility curve for sprint 2

06

0.5

04

03

02

0.1

10 15 20 25 30
f

Figure 5: Utility curve for sprint 3

3708

0.6

0.5

04

03

0.2

0.1

o
¥]

10 15 20 25
f

Figure 6: Utility curve for sprint 4

0.6

0.5

0.4

0.3

0.2

0.1

o
L%

10 15 20
f

Figure 7: Utility curve for sprint 5

CMC, 2021, vol.68, no.3

CMC, 2021, vol.68, no.3

3709

D6

0.5

D4

03

0.2

0.1

0) 10 15 20
f

Figure 8: Utility curve for sprint 6

06

0.5

0.4

03

02

0.1

Figure 9: Utility curve for sprint 7

3710 CMC, 2021, vol.68, no.3

The results show especially clearly when the two attributes, work intensity (failure intensity)
and cost, are considered simultaneously. Then the optimal sprint length is around or less than
20 days. According to the current cycle, 30 days are being spent on a single sprint. Thus, for
the resources to be used optimally, the sprint length cannot be fixed. It would be better to
mathematically determine the length of each sprint beforehand based on the tasks to be handled
in each sprint and the availability of resources. An alternative to the commonly used fixed sprint
length approach is proposed here. It provides a mathematical basis to treat a sprint as a task-based
event instead of a time-bound event.

6 Conclusion

Currently, Agile-based models are the most prevalent technology for software development.
Scrum, an Agile-based model, develops the software through successive iterations known as
sprints. The sprint length is generally taken to be 1-4 weeks and is predetermined by the firm.
The main aim is to complete every task in the sprint within the allotted time. If the sprint needs
more time to complete, the leftover tasks are deferred to the next sprint. Often, the tasks allocated
for a sprint take up less or more time than the fixed sprint length. Therefore, it is proposed
that the sprint length should be based on the tasks to be performed in it. The length could be
different from sprint to sprint. This would help to do away with the uncertainties caused by buffer
sprints. It is further proposed that the length be determined mathematically before undertaking
each sprint instead of being fixed at the beginning of the project. A mathematical framework has
been discussed here to determine the optimal sprint length for each sprint within the available
budget and at the required work intensity. The results obtained here satisfactorily support the
claimed advantage of having dynamic sprint length. According to the case discussed here, the
determined sprint lengths were much shorter than the fixed lengths and there was considerable
time-saving in each sprint. In future work, if the appropriate data is available, the application of
the proposed method can be fully demonstrated. It is also proposed to explore how the dynamic
sprint length can be determined in a distributed environment.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References

[11 K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham et al, “Manifesto for agile
software development,” 2001. [Online]. Available: https://agilemanifesto.org/.

[2] VersionOne Inc., “The 14th annual state of agile report,” Technical Report, VersionOne Inc., 2020.
[Online]. Available: https://stateofagile.com/.

[3] J. Sutherland and K. Schwaber, The Scrum guide. In: The Definitive Guide to Scrum.: The Rules of the
Game, pp. 268, 2013. [Online]. Available: SCRUM.org.

[4] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta, Agile Software Development Methods: Review and
Analysis, vol. 478. Espoo, Finland: VTT publication, pp. 107, 2002.

[5] E. Hossain, M. A. Babar and H. Y. Paik, “Using scrum in global software development: A systematic
literature review,” in Proc. Fourth IEEE Int. Conf. on Global Software Engineering, Limerick, Ireland:
IEEE, pp. 175-184, 2009.

[6] S. Meredith and D. Francis, “Journey towards agility: The agile wheel explored,” TOM Magazine,
vol. 12, no. 2, pp. 137-143, 2000.

https://agilemanifesto.org/
https://stateofagile.com/
SCRUM.org

CMC, 2021, vol.68, no.3 3711

[7]

[13]

[14]

S. C. Misra, V. Kumar and U. Kumar, “Identifying some critical changes required in adopting Agile
practices in traditional software development projects,” International Journal of Quality & Reliability
Management, vol. 24, no. 4, pp. 451-474, 2010.

S. Misra, V. Kumar, U. Kumar, K. Fantazy and M. Akhter, “Agile software development practices:
Evolution, principles, and criticisms,” International Journal of Quality & Reliability Management, vol. 29,
no. 9, pp. 972-980, 2012.

M. Doyle, L. Williams, M. Cohn and V. Rubin, “Agile Software Development in practice,” in
G. Cantone, M. Marchesi (Eds), Agile Processes in Software Engineering and Extreme Programming. X P
2014. Lecture Notes in Business Information Processing, vol. 179. Cham, Switzerland: Springer, 2014.

L. T. Heeager and J. Rose, “Optimising Agile development practices for the maintenance operation:
Nine heuristics,” Empirical Software Engineering, vol. 20, no. 6, pp. 1762-1784, 2015.

Y. Lindsjorn, D. 1. Sjeberg, T. Dingsoyr, G. R. Bergersen and T. Dyba, “Teamwork quality and project
success in software development: A survey of agile development teams,” Journal of Systems and Software,
vol. 122, no. 3, pp. 274-286, 2016.

L. Papic, M. Mladjenovic, A. Carrion Garcia and D. Aggrawal, “Significant factors of the successful
lean six-sigma implementation,” International Journal of Mathematical, Engineering and Management
Sciences, vol. 2, no. 2, pp. 85-109, 2017.

S. S. M. M. Rahman, S. A. Mollah, S. Anirban, M. H. Rahman, M. Rahman et al, “OSCRUM:
A modified scrum for open-source software development,” International Journal of Simulation: Systems,
Science and Technology, vol. 19, no. 3, pp. 20-21, 2018.

J. De Vicente Mohino, J. Bermejo Higuera, J. R. Bermejo Higuera and J. A. Sicilia Montalvo, “The
application of a new secure software development life cycle (S-SDLC) with Agile methodologies,”
Electronics, vol. 8, no. 11, pp. 1218, 2019.

J. Saltz and A. Sutherland, “SKI: A new agile framework that supports, develops, continuous delivery,
and lean hypothesis testing,” in Proc. of the 53rd Hawaii Int. Conf. on System Sciences, Hawaii, United
States, pp. 6217-6226, 2020.

M. Golfarelli, S. Rizzi and E. Turricchia, “Multi-sprint planning and smooth replanning,” An optimiza-
tion mode Journal of Systems and Software, vol. 86, no. 9, pp. 2357-2370, 2013.

G. Destefanis, S. Counsell, G. Concas and R. Tonelli, “Software metrics in Agile software: An empirical
study,” in Proc. Int. Conf. on Agile Software Development, Rome, Italy: Springer, Cham, pp. 157-170,
2014.

S. Yamada and R. Kii, “Software quality analysis for Agile development,” in Proc. 4th Int. Conf. on
Reliability, Infocom Technologies and Optimization (Trends and Future Directions), Amity University Uttar
Pradesh (AUUP), Noida, India: IEEE, pp. 1-5, 2015.

S. Rawat, N. Goyal and M. Ram, “Software reliability growth modeling for agile software develop-
ment,” International Journal of Applied Mathematics and Computer Science, vol. 27, no. 4, pp. 777-
783, 2017.

P. Mishra, A. K. Shrivastava, P. K. Kapur and S. K. Khatri, “Modeling fault detection phenomenon
in multiple sprints for Agile software environment,” in Quality, IT and Business Operations. Singapore:
Springer, pp. 251-263, 2018.

Visual Paradigm,, “Why fixed length of sprints in Scrum,” 2020. [Online]. Available: https://www.visual-
paradigm.com/scrum/why-fixed-length-of-sprints-in-scrum/.

P. Diebold, J. P. Ostberg, S. Wagner and U. Zendler, “What do practitioners vary in using scrum?,” in
Proc. Int. Conf. on Agile Software Development, Helsinki, Finland: Springer, Cham, pp. 40-51, 2015.

M. Cohn, “Time pressure improves productivity & quality up to a point,” 2020. [Online]. Available:
https://www.mountaingoatsoftware.com/blog/time-pressure-improves-productivity-qualityup-to-a-point.
C. N. Parkinson and R. C. Osborn, Parkinson’s Law, and Other Studies in Administration. vol. 24, Boston:
Houghton Mifflin, 1957.

K. Blincoe, A. Dehghan, A. D. Salaou, A. Neal, J. Linaker ef al, “High-level software requirements
and iteration changes: A predictive model,” Empirical Software Engineering, vol. 24, no. 3, pp. 1610-
1648, 2019.

https://www.visual-paradigm.com/scrum/why-fixed-length-of-sprints-in-scrum/
https://www.visual-paradigm.com/scrum/why-fixed-length-of-sprints-in-scrum/
https://www.mountaingoatsoftware.com/blog/time-pressure-improves-productivity-qualityup-to-a-point

3712 CMC, 2021, vol.68, no.3

[26] P. K. Kapur, H. Pham, A. Gupta and P. C. Jha, Software Reliability Assessment with OR Applications.
London: Springer, 2011.

[27]1 P. C. Fishburn, Utility Theory for Decision Making. McLean VA: Research Analysis Corp., 1970,
(No. RAC-R-105).

[28] R. J. Ferreira, A. T. de Almeida and C. A. Cavalcante, “A multi-criteria decision model to determine
inspection intervals of condition monitoring based on delay time analysis,” Reliability Engineering &
System Safety, vol. 94, no. 5, pp. 905-912, 2009.

[29] X. Li, Y. E Li, M. Xie and S. H. Ng, “Reliability analysis and optimal version-updating for open-
source software,” Information and Software Technology, vol. 53, no. 9, pp. 929-936, 2011.

[30] G. Bansal, A. Anand and M. Agarwal, “Modeling the impact of remanufacturing process in determin-
ing demand-cost tradeoff using MAUT,” American Journal of Mathematical and Management Sciences,
pp. 1-14, 2020.

[31] O. Singh, P. K. Kapur and D. Aggrawal, “Reliability analysis and optimal release time for a software
using multi-attribute utility theory,” Communications in Dependability and Quality Management—An
International Journal, vol. 5, no. 1, pp. 50-64, 2012.

[32] O. Singh, P. K. Kapur and A. Anand, “A multi-attribute approach for release time and reliability trend
analysis of a software,” International Journal of System Assurance Engineering and Management, vol. 3,
no. 3, pp. 246-254, 2012.

[33] P. K. Kapur, J. N. Singh and O. Singh, “Application of multi-attribute utility theory in multiple releases
of software,” International Journal of System Assurance Engineering and Management, vol. 6, no. 1,
pp. 61-70, 2015.

[34] N. Bhatt, A. Anand, V. S. S. Yadavalli and V. Kumar, “Modeling and characterizing software vul-
nerabilities,” International Journal of Mathematical, Engineering and Management Sciences, vol. 2, no. 4,
pp. 288-299, 2017.

[35] S AS Institute Inc., SAS/ETS User’s Guide Version 9.1. Cary, NC: SAS Institute Inc., 2004.

