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Abstract:Gait recognition is a biometric technique that captures human walk-
ing pattern using gait silhouettes as input and can be used for long-term
recognition. Recently proposed video-based methods achieve high perfor-
mance. However, gait covariates or walking conditions, i.e., bag carrying and
clothing, make the recognition of intra-class gait samples hard. Advanced
methods simply use triplet loss formetric learning, which does not take the gait
covariates into account. For alleviating the adverse influence of gait covariates,
we propose cross walking condition constraint to explicitly consider the gait
covariates. Specifically, this approach designs center-based and pair-wise loss
functions to decrease discrepancy of intra-class gait samples under differ-
ent walking conditions and enlarge the distance of inter-class gait samples
under the same walking condition. Besides, we also propose a video-based
strong baseline model of high performance by applying simple yet effective
tricks, which have been validated in other individual recognition fields. With
the proposed baseline model and loss functions, our method achieves the
state-of-the-art performance.

Keywords: Gait recognition; metric learning; cross walking condition
constraint; gait covariates

1 Introduction

Gait, as a type of effective biometric feature, can be used to identify persons at a distance.
Since gait is an unconscious behavior, it can be recognized without cooperation of subjects. There-
fore, besides person re-identification approaches [1,2], gait recognition methods have extensive
deployment prospect on surveillance video and public security. Recent years, gait recognition has
attracted the attention of many researchers. The past years has witnessed the rapid development
of deep learning in image recognition and retrieval [3–5]. With the development of deep learning,
many neural-network-based gait recognition methods are proposed. Typically, gait recognition can
be divided into image-based methods and video-based methods.

Image-based methods [6–8] take Gait Energy Images (GEI) as input and use CNN to judge
whether the input GEI pair belongs to the same identity. Reference [9] introduces GAN to get
rid of the adverse influence of viewpoints. However, GEI-based methods which take image as
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input cannot capture spatial temporal gait information. Video-based methods capture motion
pattern from a gait sequence. Reference [10] uses LSTM to extract feature from pose estimated by
OpenPose to get rid of the adverse influence bag-carrying and clothing. Recently proposed video-
based methods focus on aggregating frame-level features from silhouettes sequence via temporal
pooling such as GaitSet [11] and GaitPart [12], and use triplet loss as supervision signal. These
methods achieve the state-of-the-art performance.

Nevertheless, one issue of gait recognition is that the variance of walking conditions or gait
covariates, i.e., normal walking (NM), bag carrying (BG) and clothing (CL), changes the appear-
ance of gait silhouettes. As shown in Fig. 1, the visual differences of cross walking condition
intra-class GEI pairs ((a) and (b), (a) and (c)) are large, while the visual difference of inter-class
GEI pair from the same walking condition ((a) and (d)) is small.

Figure 1: Gait covariates change the appearance of GEI (synthesized by a sequence of silhou-
ettes). (a) is the GEI of NM. (b) and (c) are GEI of BG and CL, respectively. (a)–(c) belong to
the same identity. (d) is the GEI of NM from another identity

Thus, the issue of variance of walking conditions results in large distance of positive pairs
from different walking conditions, as well as small distance of negative pairs from the same
walking condition. Unfortunately, this issue is ignored by the state-of-the-art video-based methods
which only employs triplet loss [13] and do not explicitly take walking conditions into account and
results in the large intra-class distance and small inter-class distance. We attach more importance
on the cross-walking-condition samples, and aim at devise loss functions to explicitly reduce the
distance of intra-class gait samples under different walking conditions and enlarge the distance
of inter-class gait samples under the same walking condition at feature space. This approach is
referred as cross walking condition constraint. Practically, we design center-based and pair-based
loss functions.

The center-based loss is named as cross walking condition center loss (XCenter loss). Specifi-
cally, this loss contracts the intra-class centers of different walking conditions as well as repulses
the inter-class centers of same walking condition. The pair-based loss named as cross walking con-
dition pair-wise loss (XPair loss), which focuses on local pair-wise similarity, intends to decrease
distance of cross walking condition positive pairs, as well as enlarge the distance of same walking
condition negative pairs.

Secondly, we propose a strong baseline model of high performance for video-based gait
recognition by applying simple yet effective tricks, which have been validated in other individual
recognition fields [14]. Specifically, we involve batch normalization (BN) layers in our model to
mitigate the covariate shift issue as well as make the model easier to train, and combine identifica-
tion loss (ID loss) and metric learning as the training signal. We also use the second-order pooling
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for frame-level part feature extraction. With these simple tricks, our baseline model achieves
high performance.

Our contributions can be summarized as follows:

• We propose cross walking condition embedding constraint to explicitly constrain distance
between gait samples under different walking conditions, and enlarge the distance of inter-
class samples under the same walking condition.

• We explore tricks which is beneficial for the training of the model. With these tricks, we
devise a stronger video-based gait recognition baseline model of high performance. The
baseline model can be further used in the future researches.

• Compared with other existing methods, we achieve a new state-of-the-art performance of
cross-view gait recognition on CAISA-B and OU-MVLP dataset. We further validate the
proposed methods by ablation experiment.

2 Related Work

2.1 Video-Based Gait Recognition
Video-based methods take a sequence of gait silhouettes as input and aggregate frame-level

features into a video-level feature. Reference [15] uses LSTM and CNN to extract spatial and
temporal gait features. Reference [16] apply 3D convolution operation on feature maps of frames.
GaitNet [17] disentangles gait features from colored images via novel losses and uses LSTM to
extract temporal gait information. Recently, GaitSet and GaitPart, as video-based methods, focus
on aggregating features from gait silhouettes via spatial pooling and temporal pooling. GaitSet [11]
extract frame-level feature by CNN and then propose Set Pooling (SP), which is practically an
order-less temporal max pooling, to generate the video-level feature map. GaitPart [12] capture
temporal information by a short-term motion capture module. These video methods focus on
capturing discriminative spatial temporal information, yet do not explicitly consider the issue
of gait covariates. Our method is closely related with GaitSet [11] and GaitPart [12], both of
which achieve the state-of-the-art performance, and focuses more on cross walking condition
gait recognition.

2.2 GEI-Based Cross Walking Condition Gait Recognition
In the real situation, gait representation can be interfered by bag-carrying or clothing change

(referred as variance of walking condition), since the real shape of human and motion pattern
of limbs are invisible or occluded by clothes. Many GEI-based methods strive for cross walking
condition gait recognition. Early works [6,18] design networks to learn the similarity of cross
walking condition GEI pairs. Reference [7] learn the similarities of GEI pairs in a metric learning
manner. Some works devise Generative Adversarial Network (GAN) based methods to solve this
issue. Generative methods [9,19] use GAN based methods to overcome the influence of variance
of views. References [9,20] generate GEI images of normal walking condition. Reference [21] uses
AutoEncoder based network disentangles gait features from GEI of different walking condition
to get rid of the influence of clothing and bag-carrying. Reference [22] designs a visual attention-
based network to focus on limbs that is invariant for clothing change. However, these GEI-based
methods fail to capture dynamic motion information, since they only take one image as input,
and cannot take advantages of the recently proposed video-based model, which achieve the state-
of-the-art performance.
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3 Proposed Method

In this section, we first introduce the loss functions, designed for cross walking condition
constraint, i.e., XCenter and XPair loss, in Sections 3.1 and 3.2. Then, we introduce the framework
of the proposed baseline model, and simple yet effective tricks involved in the framework.

3.1 Cross Walking Condition Center Loss (XCenter)
In this section, we present our cross-walking-condition center loss, which is named as XCenter

loss. As discussed in Section 1, the variance of walking conditions results in large intra-class
discrepancy and small inter-class discrepancy. Two manipulations of centers are proposed. The
first manipulation is the Center Contraction Loss (CCL) which intends to decrease the distance of
intra-class centers to reduce the discrepancy of intra-class distribution, while the second manip-
ulation is Center Repulsion Loss (CRL) which manages to repulse the inter-class centers of the
same walking condition to enlarge the inter-class distance.

Computation of Centers: We compute the centers of samples under different walking condition
for each identity. Take i-th identity we sample in a mini-batch, the centers of three walking
conditions, i.e., normal walking (NM), bag-carrying (BG) and clothing (CL) are computed as:

cnmi = 1
|Sinm|

∑
j∈Sinm

fj, cbgi = 1

|Sibg|
∑
j∈Sibg

fj, ccli = 1

|Sicl |
∑
j∈Sicl

fj (1)

Here, Sinm, S
i
bg and Sicl are three sets of samples of i-th identity of NM, BG and CL,

respectively. cnmi , cbgi , ccli denote three centers of i-th identity of the three walking conditions,
which are computed by averaging the features of corresponding walking conditions (denoted as fj
in the above equation). Note that the computation of centers is conducted within a mini-batch.

Center Contraction Loss (CCL): To reduce the intra-class discrepancy, we propose a loss
named as Center Contraction Loss (CCL) that helps the intra-class centers contract. Since the
gait samples of NM are not interfered by other gait covariates (clothing and bag-carrying) and
represent the real gait information of humans. As shown in Fig. 2a, we intend to decrease the
distance between the center of NM and the intra-class centers of other two walking conditions.

Figure 2: A diagram of XCenter loss. (a) Center contraction loss (CCL), (b) Center repulsion loss
(CRL)

Points of different color represent samples of different identities. Squares, circles, and triangles
denote samples of NM, BG and CL, respectively. The solid stars enclosed by samples denote the
centers of corresponding samples. Fig. 2a is the diagram of CCL, where intra-class centers of
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different walking conditions (stars of same color yet enclosed by points of different shape) are
pulled closer. Fig. 2b is the diagram of CRL, where the inter-class centers of the same walking
condition (stars of different colors yet enclosed by points of same shape) are repulsed. Thus, CCL
can be represented as:

Lcon = 1
K

K∑
i=1

d
(
cnmi , cbgi

)
+ d

(
cnmi , ccli

)
(2)

where K is the number of identities in a mini-batch, and d (·, ·) measures the Euclidean distance

of two given centers. d
(
cnmi , cbgi

)
, d

(
cnmi , ccli

)
denote the Euclidean distance between the center of

NM and the center of BG, the center of NM and the center of CL, respectively.

Center Repulsion Loss (CRL): We design a center-based repulsion loss to enlarge the discrep-
ancy of interclass samples under the same walking condition. As shown in Fig. 2b, CRL repulses
the inter-class centers under the same walking condition away. CRL can be expressed as follow:

Lrep = 1
K

∑
i,t

[
m−min

j �=i
d

(
cti , c

t
j

)]
+

(3)

Here, subscript i and superscript t are the indicator of identities and walking conditions (i ∈
{1, 2, . . . ,K} and t ∈ {nm,bg, cl}), respectively. j is the indicator of negative identities. [·]+ denotes
the hinge function. This loss enlarges the distance of the hardest inter-class centers of the same
walking condition. The XCenter loss can be represented as:

Lxcen =Lcon+Lrep (4)

3.2 Cross Walking Condition Pair-Wise (XPair) Loss
As shown in Fig. 3, we also design a pair-wise loss function which focuses on local sample

pairs. Intuitively, the dissimilarity of cross walking condition positive (Xpos) pairs should be
decreased, while the distance of same walking condition negative (Sneg) pairs should be enlarged.
Thus, XPair loss consists of two loss functions.

Figure 3: The diagram of XPair loss

We reduce the distance of sample pairs from the same identity (same color) yet different
walking condition (different shape), and enlarge the distance of pair from different identities
(different color) yet same walking condition (same shape).
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Xpos Pair Loss: This loss intends to decrease the dissimilarity of cross walking condition
positive (Xpos) pairs. Similar with Section 3.1, we intend to minimize the distance between
samples of NM and samples of other two walking condition. Two corresponding sorts of cross
walking condition pairs are selected.

LXpos= 1
|Snm|

|Snm|∑
a∈Snm

max
p

d
(
f nma , f bgp

)
+max

p
d

(
f nma , f clp

)
(5)

Here, f nma is the anchor feature of NM. f bgp and f clp are the positive features of BG and CL,
respectively. This loss decreases the dissimilarity of two kinds of cross walking condition hardest
sample pairs.

Sneg Pair Loss: This loss intends to enlarge the distance of negative yet of same walking
status (Sneg) pairs. Practically, hardest negative pairs of NM, which is of smallest dissimilarity,
are selected:

LSneg =
1

|Snm|
|Snm|∑
a∈Snm

[
m−min

n
d

(
f nma , f nmn

)]
+

(6)

Here, n is the indicator of negative samples of anchor a. f nmn is the negative feature of NM.
m is the margin for Sneg pair. The XPair consists of the above two loss functions, and can be
represented as:

Lxpair=LXpos+LSneg (7)

3.3 Framework with Effective Tricks
Typical video-base gait recognition framework includes frame-level feature extractor, aggrega-

tion of video-level feature, horizontal mapping and part-level feature learning. The framework of
our model, as shown in Fig. 4, also consists of the above components. The framework takes a
sequence of gait images, the length of which is T , as input. In the following, we introduce the
details and proposed tricks of all the components.

The frame-level feature extractor generates a matrix of temporal part features, Z= (
zp,i

)
P×T ,

which represents features of P parts and T frames. SP represents Set Pooling. BNHM denotes
Horizontal Mapping with BN layers. SP and BNHM are applied on each part to generate the
final video-level part features f1, f2 . . . fP. Then ID loss with BNNeck, triplet loss and proposed
loss functions are used for supervision.

Frame-Level Feature Extractor with PSP: As shown in Fig. 5, a base CNN network is used to
extract feature maps for frames. For i-th frame, the extraction of the base network is as:

Xi = F (Ii) (8)

Here, Ii denotes i-th gait image. and Xi is the feature map of Ii. F represents the base
convolution neural network. Then, Xi is partitioned into horizontal part-level feature maps.

Xi =
(
X1,i,X2,i, . . . ,XP,i

)
(9)
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Figure 4: The overall framework of our method

We also use second-order pooling to generate features for different parts, which is called as
Part-based Second-order Pooling (PSP) and is introduced in Section 3.4.

zp,i =PSPp
(
Xp,i

)
(10)

Here, P is the number of parts and p ∈ {1, 2, . . . ,P}. zp,i represents the feature of p-th part of
i-th frame. As shown in Fig. 5, parallel PSP blocks produce features for horizontal parts.

Figure 5: Frame-level feature extractor

Aggregation of Video-Level Feature: As shown in Fig. 4, given T frames, PSP blocks produce
the matrix of part temporal features Z = (

zp,i
)
P×T , which represents features of P parts and

T frames. Previous work [12] also produce similar feature matrix. Temporal features of each
part are aggregated into video-level part feature by Set Pooling (SP) [11]. Taking p-th part as an
example, the p-th part video-level feature mp generated by SP can be expressed as:

mp = SP
(
zp,1, zp,2, . . . , zp,T

)
(11)

Usage of BN (BNHM and BNNeck): Since the gait dataset has many different types of gait
samples, it is hard to sample all types of data in a mini-batch. This causes the issue of covari-
ate shift. Thus, we involve BN layers in our framework. First, horizontal mapping uses part
independent FC layers to project part video-level features into discriminative space. We combine
horizontal mapping with BN layers, which is named as BNHM. The p-th part BNHM which
generates p-th part video-level feature fp can be denoted as fp = FC

(
BN

(
mp

))
. Secondly, we also

involve identification loss (ID loss) in the training process with BNNeck [14]. Practically, the part
feature fp first goes through a BN layer, f bnp =BN

(
fp

)
. And ID loss takes f bnp as input.
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Part-Level Feature Learning: For the baseline model, only ID Loss and triplet loss are involved.
For our model, as shown in Fig. 4, ID Loss, Triplet loss, and proposed XCenter, XPair loss are
applied separately on each part, where ID loss is applied with BNNeck while other loss functions
are applied directly on video-level part features.

3.4 Part-Based Second-Order Pooling (PSP)
We use part-based second-order pooling to extract discriminative frame-level part features,

since the second-order pooling increases the non-linearity for features and is able to capture
discriminative high-order information [23,24].

Suppose that frame-level part feature map Xp,i given in (10) is of c× hw dimensions (denote
channel, height, and width, as shown in Fig. 6). For simplicity, subscripts p, i are ignored
below. Typically, second-order pooling of X (denoted as B(X)) generate image representation by
computing channel-wise covariance matrix:

B (X)= vec
(
XXT

)
(12)

Here, vec represents vectorization, and B (X) ∈ R
c2 , which is of high dimensions. Recent years,

many works [25,26] focuses on reducing the computational cost and memory requirement for
second-order pooling. We also formulate a light weight second-order pooling module.

Figure 6: Structure of part-based second-order pooling (PSP)

As shown in Fig. 6, we replace XT with WT in (12). Thus, B (X)= vec
(
XWT

)
, where W is

another part-level feature map generated by a convolutional layer, and the dimension of W is
c′ ×HW , where c′ < c. The dimension of B (X) is reduced and B (X) ∈R

cc′ . To further reduce the
dimension of the matrix, a FC layer is followed to generate the final frame-level part feature of
d dimension. Thus, PSP that generates frame-level part feature z can be expressed as:

z=B (X)= FC
(
vec

(
XWT

))
(13)

Note that the PSP blocks are applied on horizontal parts and the parameters of FC layers
of PSP are part independent.

3.5 Overall Loss Function
In this part, we first introduce the base loss function which consists of triplet loss and

identification loss. Then the overall loss is presented. Base Loss Identification loss and triplet loss
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are involved in the training process, which are separately applied on each part. The triplet hard
loss can be represented as:

Ltri =
M∑
a=1

[
max
p∈P(a)

d
(
fa, fp

)+m− min
n∈N(a)

d (fa, fn)
]
+

(14)

where a, p and n represent anchor, corresponding positive and negative sample, respectively.
P (a) and N (a) represent the sets of positive samples and negative samples of the given anchor.
Different from previous work [11,12], we also incorporate identification loss during training. The
features go through a BN layer and FC layer (BNNeck [14]) to generate the classification scores.
Thus, the identification loss can be denoted as:

Lid =−
M∑
k=1

log

⎛
⎝ eW

T
yk
f bnk

∑N
c=1 e

WT
c f

bn
k

⎞
⎠ (15)

Here, superscript bn denotes the features generated by the BN layer, and subscript ·k denotes
k-th sample in the mini-batch. N is the number of identities in the training set. Wc denotes the
weight vector of c-th class, and Wyk is the weight vector of the ground truth identity of k-th
sample. The combination of Ltri and Lid are referred as base loss functions: Lb =Ltri+Lid .

Overall Loss: The overall loss includes hard triplet loss, identification loss, XCenter loss and
XPair loss. The equation of overall loss function can be expressed as:

L=Lb+λxcenLxcen+λxpairLxpair (16)

where λxcen and λxpair control the importance of XCenter loss and XPair loss, respectively.

3.6 Implementation Details
Experiments are implemented based on pytorch with an Nvidia RTX2080Ti GPU. In this

part, we introduce the configuration and details of our network. The input silhouettes, the channel
of which is set as 1, are cropped into 64× 44 in all experiments. For fair comparison, we adopt
the same backbone used in previous video-based model [11]. The output channels of each layer
in backbone are 32, 32, 64, 64, 128, 128. As for the PSP used in frame-level feature extractor,
W mentioned in Section 3.4 is generated by an extra convolutional layer. The channel of W
(defined as c′ in Section 3.4) is set as 32. The dimension of frame-level part feature, i.e., d defined
in Section 3.4, is set as 256. The Set Pooling is set as max pooling, since previous works [11,12]
validate that this setting achieves better performance. The dimension of the final video-level part
feature fp is set as 256.

4 Experiment

Two prevailing gait recognition benchmarks, CASIA-B and OU-MVLP, are included in our
experiments. In this section, we first introduce two datasets, and then comparative and ablative
results are given. In comparison experiments, we report the state-of-the-art models and proposed
method on the two datasets. We also visualize the gait features to validate whether the proposed
loss functions decrease the intra-class discrepancy.
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4.1 Datasets
CASIA-B [27] dataset contains 124 identities. Although the number of subjects is limited,

each subject has 110 samples of 11 different views and 10 walking types, and the 10 walking
types consists of 6 types of normal walking condition (indexed as nm-01—nm-06), 2 types of bag
carrying (BG) (indexed as bg-01, bg-02) and 2 types of clothing (CL) (indexed as cl-01—cl-02).
Thus, the dataset contains samples for cross-view and cross-condition evaluation. During training,
the samples of first 74 subjects are taken as training data. During testing, the samples of the
rest subjects are involved. Concretely, the samples from nm-01–nm-04 are taken as probes. The
samples of other types are taken as gallery.

OU-MVLP [28] is a gait dataset of largest population in the world. It contains 10307 per-
sons. 5153 persons consist training set and the other 5154 persons consist testing set. Each
person has image sequences of 14 views. The views consist of two groups: (0◦, 15◦, . . . , 90◦) and
(180◦, 195◦, . . . , 270◦), and each view of one person have two gait sequences, where the sequences
indexed 01 are used as probes and the sequences indexed 02 are used as gallery, during training.

Evaluation Protocol: For fair comparison, we use cross-view evaluation protocol which is
employed in previous work to measure the performance of our model. During evaluation, the
probes are used to retrieve the gallery of different views, and mean rank-1 accuracy of galleries of
other views is reported. Except for cross-view evaluation, cross-walking-condition evaluations are
considered in CASIA-B, which use probes to retrieve the galleries of different walking conditions
in the cross-view manner.

Training Parameters: During training, Adam Optimizer is employed in all experiment, where
the momentum is 0.9 and the learning rate is 1e−4. The margin of triplet loss is set as 0.2. The
margin of CRL is set as 0.5. Batch size can be denoted as (p, k), where p represents the number
of subjects, and k represents the number of samples selected from each subject. The batch size of
experiment implemented on CASIA-B is (4, 16). We train our model for 15K iterations, which is
notable that our model converges significantly faster than previous state-of-the-art models [11,12]
during training. In the experiment of OU-MVLP, the batch size is set as (32, 4). We train our
model on OU-MVLP for 150K iterations. The learning rate decays to 1e−5 in the last 50K
iteration. Since OU-MVLP only contains gait sequences of normal walking condition, proposed
loss functions (Lxcen and Lxpair) is not involved in the experiment.

4.2 Comparison Experiment
Comparative results on CASIA-B and OU-MVLP are given in Tabs. 1 and 2, respectively.

CASIA-B: Tab. 1 demonstrates the cross-view and cross walking condition recognition result.
As shown in the table, our method achieves the state-of-the-art result. For the three walking
conditions, we report the rank-1 accuracy of different probe view and the average rank-1 accuracy
for different walking condition. Our model achieves 97% and 80.2% rank-1 accuracy under NM
and CL. This performance surpasses most of cross-view gait recognition methods to our best
knowledge. Several conclusions can be observed: 1) Compared with CNN-LB which takes GEI
as input, our method and other video-based methods perform better. This further demonstrates
the superiority of video-based methods [11,12] which aggregate frame-level features via temporal
pooling or set pooling. 2) Compared with GaitNet [17], our method achieves better results. Both
of our method and GaitNet intend to mitigate the adverse impact of the variance of walking
conditions on the extraction of gait features. GaitNet introduces LSTM and auto-encoder based
disentanglement learning to extract walking condition invariant gait features, while our method
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intends to apply simple yet effective loss functions to alleviate the discrepancy of the gait features
from different walking conditions. 3) Our method is better than GaitSet [11] and GaitPart [12]
which are so far the state-of-the-art approaches. Specifically, the two cross walking condition
recognition performance (reported by the rows of BG and CL in Tab. 1) surpass [11,12] by a large
margin. We believe the reason is that the proposed loss functions focus more on cross walking
condition gait recognition, while GaitSet and GaitPart simply use BA+ triplet loss [13] and do
not take the variance of walking conditions into account.

Table 1: Performance of advanced methods

Gallery NM1-4 0◦–180◦ Mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM 5–6 CNN-LB 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.0
GaitNet 91.2 92.0 90.5 95.6 86.9 92.6 93.5 96.0 90.9 88.8 89.0 91.6
GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
Ours 94.0 99.5 99.6 99.7 96.1 94.3 96.3 99.2 99.9 98.1 90.4 97.0

BG 1–2 CNN-LB 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitNet 83.0 87.8 88.3 93.3 82.6 74.8 89.5 91.0 86.1 81.2 85.6 85.7
GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
Ours 88.1 95.7 96.3 93.8 88.2 84.6 90.1 94.4 96.3 93.6 85.1 91.5

CL 1–2 CNN-LB 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitNet 42.1 58.2 65.1 70.7 68.0 70.6 65.3 69.4 51.5 50.1 36.6 58.9
GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
Ours 71.1 84.4 89.7 87.4 81.2 78.8 80.4 81.7 84.1 79.3 63.8 80.2

OU-MVLP: Since this dataset is so far the largest gait dataset, we implement experiments on
this dataset to further validate our method. Tab. 2 reports performance of our method and other
advanced methods under the cross-view evaluation protocol. Since the proposed loss functions
focus on clothing and object carrying invariant gait recognition, and this dataset does not contain
corresponding samples, we only report the performance of the proposed baseline model without
using the XCenter and XPair loss functions. It can be observed that our method performs better
than previous methods. Time consuming is tested on this dataset. During evaluation, which is
implemented with one RTX2080Ti GPU, GaitSet costs 17 min while ours costs 10 min. Note that
since the hardware setting in our experiment is different with [11], the time costed by evaluations
of GaitSet reported in our implementation is different with that given in [11].

4.3 Ablation Study on Involved Tricks of Framework
In Tab. 3, we validate several options that benefit the proposed framework, including PSP

block, BNHM, and BNNeck. The results of four models are given.

Model-a replaces the PSP with max-pooling and a FC layer for fair comparison, while
model-b removes the BN layers in BNHM, which is turned into ordinary horizontal map-
ping [11]. Model-c removes BNNeck. Model-d is the strong baseline model trained with all the
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proposed tricks. Both above models are trained with base loss function Lb. Following points
can be observed: 1) Effectiveness of PSP: We compare model-a with model-d. It can be seen
that model-d with PSP block surpasses the model-a with max pooling (first-order pooling). This
indicates that the proposed light-weight second-order pooling is better for extracting local frame-
level feature from gait silhouettes. 2) Effectiveness of BNHM: Model-b removes the BN layer before
horizontal mapping. Obvious performance drop proves the necessity of BNHM. We believe that
since the variance of walking conditions causes the discrepancy of gait features, the BN layer
is beneficial for horizontal mapping. 3) Effectiveness of BNNeck: Model-c removes BNNeck and
degrades in performance. This proves the effectiveness of BNNek used in our framework.

Table 2: Performance of advanced methods on OU-MVLP

Probe Gallery all 14 views

GEINet [29] GaitSet [11] ours

0◦ 11.4 79.5 80.8
15◦ 29.1 87.9 88.7
30◦ 41.5 89.9 90.5
45◦ 45.5 90.2 90.7
60◦ 39.5 88.1 89.1
75◦ 41.8 88.7 89.3
90◦ 38.9 87.8 88.6
180◦ 14.9 81.7 83.5
195◦ 33.1 86.7 87.7
210◦ 43.2 89.0 89.5
225◦ 45.6 89.3 89.7
240◦ 39.4 87.2 88.3
255◦ 40.5 87.8 88.3
270◦ 36.3 86.2 87.3
Mean 35.8 87.1 88.0

Table 3: Results of ablation study on proposed framework

Model index Removed option Performance
NM BG CL

model-a PSP 96.0 89.3 75.8
model-b BNHM 96.4 89.1 76.4
model-c BNNeck 95.9 87.2 71.7
model-d – 96.6 90.4 76.7

The three tricks are simple and effective. Furthermore, they make the model easier to train.
Our baseline model can converge after 15K iterations, while GaitSet converges after 80K iterations.
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4.4 Ablation Study on Loss Functions
In Tab. 4, we report the ablative results of proposed loss functions. Four rows of results are

given. The first row is the baseline model trained with base loss function Lb. The second row
gives the result of model trained with Lb and center contraction loss Lcon. The third row gives
the result of model trained with Lb function and XCenter loss Lxcen. The fourth row shows the
result of model trained with Lb and XPair loss Lxpair. The last row gives the performance of the
model trained with both Lb, Lxcen and Lxpair.

Columns of BG and CL in Tab. 4 report the accuracy of using NM probes to retrieve BG
and CL galleries, respectively. Thus, the two columns report the performance of cross walking
condition recognition. The 2-nd row is the model trained with Lb and Lcon (which means the
XCenter loss without Lrep). Thus, comparison between 3-rd row and 2-nd row proves the effective-
ness of Lrep. From 3-rd row and 4-th row, we can observe that both two loss functions improve
the accuracy of cross walking condition gait recognition. The last row shows that joint training
of two loss functions is effective for both cross view and cross walking condition recognition.
Consequently, we believe the proposed loss functions are able to reduce the intra-class discrepancy
caused by gait covariates. We also test λxcen and λxpair. In the experiment, λxcen is set from 0.1 to
0.5 and λxpair is set from 0.01 to 0.05. We find the best λxcen is 0.1 and the best λxpair is 0.02 for
the joint training of XCenter and XPair loss.

Table 4: Ablation study on proposed loss functions

Loss function Performance
NM BG CL

only Lb 96.6 90.4 76.7
+Lcon 96.7 91.0 79.8
+Lxcen 96.9 91.3 80.0
+Lxpair 97.1 91.3 78.9
+Lxcen,Lxpair 97.0 91.5 80.2

4.5 Analysis of Gait Features
The features are visualized by T-SNE [30] in Fig. 7, where Fig. 7. Fig. 7a is the visualization

result of the features from the model trained with proposed losses and Fig. 7b is the result of
features generated by the baseline model. It can be seen from Fig. 7b that features of CL (triangle
shaped points) are separable from other features that belongs to the same person, since the triangle
points can be easily circled out by the red circles. However, features from the same subject tend
to stay together in Fig. 7a. It can be concluded that the intra-class divergence is decreased by the
constraint of proposed methods.

We select several identities to visualize their samples, where squares, circles and triangles
represent the features of NM, BG and CL, respectively. Points of different colors represent
features from different identities. Fig. 7a visualizes features generated from the model trained with
proposed loss functions. Fig. 7b visualizes features produced by the baseline model.

We also present the statistical result of the distance of cross walking condition positive (Xpos)
pairs in Fig. 8. Blue curve is the distribution of Xpos pairs computed from the baseline model,
while red curve is the distribution of Xpos pairs generated from the model trained with the
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constraint of proposed loss functions. It can be seen that with the constraint of Lxcen and Lxpair,
the distribution shift left, which means the discrepancy of Xpos pairs decreases.

Figure 7: Visualization of features from CASIA-B by T-SNE. (a) With proposed constraint
(b) baseline model

Figure 8: Distribution of distance of cross walking condition positive (Xpos) pairs

5 Conclusion

In this paper, we propose cross walking condition constraint, which specifically con-
tains center-based and pair-wise loss, manages to constrain cross walking condition intra-class
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discrepancy as well as enlarge inter-class discrepancy of same walking condition. We also present
a more effective video-based gait recognition model, which utilizes and simple yet effective tricks
such as part-based second-order pooling, usage of BN layers and joint training with ID loss, as
a strong baseline model. The proposed method achieves a new state-of-the-art performance.
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