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Abstract: Event extraction is one of the most challenging tasks in information
extraction. It is a commonphenomenonwheremultiple events exist in the same
sentence. However, extracting multiple events is more difficult than extracting
a single event. Existing event extraction methods based on sequence models
ignore the interrelated information between events because the sequence is
too long. In addition, the current argument extraction relies on the results of
syntactic dependency analysis, which is complicated and prone to error trans-
mission. In order to solve the above problems, a joint event extraction method
based on global event-type guidance and attention enhancement was proposed
in this work. Specifically, for multiple event detection, we propose a global-
type guidance method that can detect event types in the candidate sequence in
advance to enhance the correlation information between events. For argument
extraction, we converted it into a table-filling problem, and proposed a table-
filling method of the attention mechanism, that is simple and can enhance the
correlation between trigger words and arguments. The experimental results
based on the ACE 2005 dataset showed that the proposed method achieved
1.6% improvement in the task of event detection, and obtained state-of-the-art
results in the argument extraction task, which proved the effectiveness of the
method.

Keywords: Event extraction; event-type guidance; table filling; attention
mechanisms

1 Introduction

Event extraction (EE) is an essential yet challenging task for information extraction. It is
widely used in natural language processing, especially in the fields of automatic expansion of
large-scale knowledge bases, automatic summarization, and biomedicine [1]. Therefore, in recent
years, a lot of research has been conducted on event extraction tasks, that aimed to extract trigger
words from unstructured natural text, determine the event type of trigger words, and extract
the argument related to the event and determine the role played in the event. The ACE 2005
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evaluation conference defined event extraction as two subtasks: event detection (identifying and
classifying event triggers) and argument extraction (identifying arguments of event triggers and
labeling their roles).

The traditional methods generally handle event extraction as a pipeline of two separate tasks:
event detection and argument extraction. The pipeline method achieves good results, especially
when deep learning techniques are used. The most successful pipelined method was proposed by
Chen et al. [2], who used dynamic multiple pooling convolutional neural networks to automati-
cally learn features from sentences and represented words with continuous representations [3–5].
However, as the pipeline method is divided into two subtasks, the interrelationship between the
subtasks is ignored. Specifically, the result of event detection affects the following argument
extraction, and the effect of argument extraction promotes the result of event detection [6]. Thus,
researchers turned to the method of joint extraction.

Li et al. [6] performed one of the most successful studies of the joint method, which is based
on a structure-aware algorithm with sets of local and global features for EE. The interdependence
between trigger words and arguments is captured by global features. This method alleviates the
shortcomings of the pipeline method and achieves good results. However, this feature extraction
relies on natural language processing tools (e.g., part of speech tagging) and has poor gener-
alization capabilities for new words and unseen features. Therefore, Nguyen et al. [7] proposed
joint event extraction based on the Recurrent Neural Network (RNN). They used recurrent neural
networks to automatically learn rich contextual semantic representations. In order to capture
the interdependence between trigger words and arguments, memory vectors and matrices are
introduced in the method to store prediction information in the process of sentence labeling. To
a certain extent, this method solves the deficiencies of Li et al. [6] method, but it does not make
full use of the syntactic dependence between the components in the sentence. Sha et al. [8] used a
dependency bridge based on a bi-directional RNN to learn the syntactic dependency between each
component in a sentence and introduce a tensor to learn the interdependence between arguments.
However, all of the above methods have a common disadvantage: They ignore the interdependence
of multiple events in the sentence.

In actual event extraction scenarios, there will inevitably be multiple events in one sentence.
Compared with single event extraction, it is more complicated to accurately extract multiple events.
There is a strong correlation among events drawn from the same sentence. For example, as shown
in Fig. 1, the Attack event helps us determine that the word died triggers the Die event rather than
the Inject event. It is worth noting that multiple event phenomena are ubiquitous in natural lan-
guage. According to statistics, there are 3,978 incident-related sentences in the ACE 2005 dataset,
and 1,042 sentences contain multiple events, accounting for 26.6% of the entire incident dataset.
It is common for multiple events in the sentence to require extraction. Liu et al. [9] conducted an
in-depth study on multiple event extraction. They used the graph convolutional neural to learn the
dependency syntax relationship between the components in the sentence, and tried to capture the
correlation between events. However, owing to the complexity of the dependency syntax tree and
reliance on NLP tools for preprocessing, this method inevitably encounters the error propagation
problem and the interdependence between events is not fully resolved.

In order to solve the above problems, we proposed a joint event extraction method based on
global event type guidance and the attention enhancement mechanism. Recent studies on multi-
task learning (MTL) in deep neural networks for NLP revealed that multi-task gains were more
likely for target tasks that quickly plateaued with non-plateauing auxiliary tasks [10]. Because of
the compelling benefits of MTL, we proposed a multi-task setup for identifying and classifying
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events and arguments. Specifically, we first use the BERT pre-training model to encode the
sentence in order to obtain the context information of each token. Next, the event guidance
layer is exploited to predict the candidate event types of the input sentence. At the same time,
we introduce the CRF layer to identify the candidate arguments. Then, we feed the candidate
event types and context features into the softmax layer for trigger word recognition and event
classification. Finally, we enumerate the combinations between two tokens in the sentence. The
corresponding context features, candidate argument features, trigger words and event-type features
are attentively considered for argument role classification in a table-filling [11–13] manner (see
Fig. 2). From the above, we noticed that the event types predicted by the event guidance layer
helped to guide event classification. With the injected events, we allow the network to be aware of
all the events that exist in the sentence in advance. Thus, the interdependencies of events are taken
into account. Moreover, we use an attention mechanism to comprehensively take all tokens into
account for the role classification of any two tokens. Therefore, the correlation between trigger
words and arguments is taken into account at the table filling stage. In summary, the contributions
of this work can be summarized as follows:

In Baghdad, a cameraman died when an American tank fired on the Palestine Hotel

Target
Place

Target
VictimPlace Instrument

Instrument

AttackDie or Inject

Place

Figure 1: An example of multiple events. There are two events in the sentence: a Die event
triggered by the word died, with four arguments in the red, and an Attacked event triggered by
the word fired, with four arguments in the blue

Figure 2: The Triggers-Argument role table for the example in Fig. 1. “Died” and “fired” are
two trigger words. Place, Victim, Instrument and Target represent the argument roles. Blank cells
indicate there is no argument role

(1) We proposed a novel event-type guidance layer to predict the event types of the input
sentence. The candidate event types are used to guide trigger word recognition and event
detection, which can strengthen the complex interdependencies of events.
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(2) The method converts the argument extraction as a table-filling problem. An attention mech-
anism is introduced to involve the representations of multiple tokens, which automatically
discovers some useful contextual information for argument role classification.

(3) We conducted wide experiments on the ACE 2005 dataset. The experimental results
indicate that the proposed method outperforms several strong baselines.

2 Related Work

Traditional event extraction methods usually exploit a pipelined way to extract events where
arguments are identified using a classifier after event detection [14,15]. These methods have a
fatal flaw: They ignore the underlying interdependencies between event detection and argument
extraction and suffer from error propagation.

To address the above problem, a joint event extraction method based on the Markov
logic network [16–18] was proposed. Afterward, the structured perceptron [6,19] and the dual
decomposition method [20] were successively proposed for event extraction.

Recently, with the widespread application of neural networks in machine translation, text
classification, steganography analysis [21,22], and other fields, researchers have also tried to use
neural networks to complete event extraction. For example, Chen et al. [2] employed dynamic
multi-pooling convolutional neural networks to automatically learn features, in which the input
words are represented by pre-trained word embeddings [3–5]. However, they achieved promising
results, and the method still follows the pipelined framework. Similarly, Nguyen et al. [7] proposed
a joint approach named JRNN, in which recurrent neural networks are used to automatically learn
the rich contextual semantic representation of sentences. The relations between event triggers with
specific subtypes and their corresponding arguments are captured by the devised memory vectors
and matrices. Similarly, Sha et al. [8] exploited dependency bridges to connect syntactically related
words based on a bidirectional recurrent neural network. Moreover, a tensor layer was proposed
on each pair of two candidate arguments, which enables intensive, argument-level information
interaction. Liu et al. [9] conducted an in-depth study on multi-event extraction, which introduced
a syntactic dependency tree and used the graph convolutional neural networks to learn the
syntactic dependency of each component for the sentence.

The above mentioned joint extraction methods have achieved good results. However, these
existing methods have a common disadvantage: They do not consider the situation where multiple
events appear in one sentence at the same time. To solve this problem, we proposed an event-
guided and attention enhancement joint approach for event extraction. The pre-predicted event-
type information allows for better event detection, and the attention mechanism is exploited to
leverage the sentential context.

3 Methodology

Our proposed joint model consists of six modules: (i) BERT, (ii) NER, (iii) Event-Types
Proposal, (iv) Event Detection (v) Token Pair Attention, and (vi) Table Filling, as illustrated in
Fig. 3. Given a sentence as the model input, the model first generates a deep contextualized word
representation for each token using BERT. Next, the event guidance layer is exploited to predict
the candidate event types of the input sentence. At the same time, we introduce the CRF layer
to identify the candidate arguments. Then, we feed the candidate event types and context features
into the softmax layer for trigger word recognition and event classification. Finally, we enumerate
the combinations between two tokens in the sentence and comprehensively consider the BERT
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output, NER label, predicted event types and attention results to fill the trigger word-argument
role table. We explain the model details in the following subsections.

Pre-trained BERT Encoder

1 0  1 0  0  … 0

Event Types Proposal

...

+ + + + +

...

...

B-DIED

EOO

[CLS] cameraman died … tank fired … Palestine Hotel.

...

...

O B-ATTACK O O... ... Softmax 

B B B CRF... ...

... ...

Victim(died; cameraman) Table Filling

Attention Layer

Event type Embedding

Weight

NER 

Event Detection

Token Pair Attention

Figure 3: The overall architecture of the global-event-type guidance and attention enhancement

3.1 BERT
BERT’s model architecture is a multiple layer bidirectional Transformer encoder. The encoder

is as tack of identical blocks (BERT-Base stacks comprising 12 blocks on top of each other).
Each block is composed of a multi-head self-attention layer and a position-wise, fully connected
feed-forward layer. Assuming the output sequence of the previous layer is packed together into a
matrix H, the output matrix Z of a multi-head self-attention layer is computed as

Z= [T1, T2, . . . , Th−1,Th]W
O (1)
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where h is the number of attention heads, dk is the dimension of queries and keys, and

WO,WQ
i ,WK

i ,WV
i are the parameter matrices. Each layerin the encoder has a residual connec-

tion around it, followed by layer normalization.
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For a given token, the input representation of BERT is the sum in the corresponding token
and segment and position embeddings. BERT uses WordPiece embeddings as token embeddings.
In addition, BERT adds a special token ([CLS]) as the first token to obtain the aggregate sequence
representation for a classification task and a special token ([SEP]) to distinguish between different
sentences in the same input sequence. In particular, as the input sequence extracted by the joint
event is only one sentence, the special token ([SEP]) is not useful in the current task.

Given an input token sequence X = (x0, x1, . . . , xn−1, xn), we denote the BERT contextual
representation of each token as Z = (z0, z1, . . . , zk−1, zk). Moreover, given that the WordPiece
tokenizer might split a token into several sub-tokens, we use the hidden state corresponding to
the first sub-token of a given token as its contextual representation.

3.2 Named Entity Recognition
We formulate the NER task as a sequence-labeling problem and use the BIEO (Beginning,

Inside, Ending, Outside) encoding scheme. A linear-chain CRF is employed to calculate the most
probable tag for each token. Formally, we first derive the emission potential that comes from the
sentence encoder output. The score of each token xi for each entity tag is calculated as follows:

si =V1f
(
W1zi+ bh

)
+ bs (3)

where f (.) is an element wise activation function (e.g., relu), si ∈Rd , d is the number of encoding
scheme tags, W1 ∈ Rl×2m, V1 ∈ Rl×d are the transformation matrixes. bh ∈ Rl, bs ∈ Rd are bias
vectors, l is the hidden size, and m is the output dimension of BERT. Given a sequence of tag
predictions Y = (y1, y2, . . . , yn−1, yn), the linear-chain CRF score is defined as

S (W , Y )=
k∑
i=1

(si,yi + ayi−1,yi) (4)

where si,yi is the score of the tag yi for the token xi, which is obtained by Eq. (3), and ayi−1,yi
is

the score of transition from tag yi−1 to tag yi. Using Eq. (4), we can get the score of a tag
sequence y, which is further converted to probability by the following softmax function:

P (Y |W)= exp (s (W , Y ))∑
Ỹ exp

(
W , Ỹ

) (5)

where Ỹ ∈Y (w) denotes the set of possible tag sequences for x. The loss function of the sequence
labeling is:

LNER=−
∑
W∈T

log
(
Y =Y∗ |W)

(6)

where T represents the training set and Y∗ is the gold standard for sequence x. During training,
we minimize the negative log likelihood LNER of the gold standard. In the decoding process,
the Viterbi algorithm is adopted to derive the optimal tag sequence. The tags are converted to
embeddings by looking up an embedding layer. We then obtain the label-embedding sequence
ener= (ener1 , ener2 , . . . , enern ), eneri ∈Rm′

, where m′ is the dimension of the label embeddings.
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3.3 Event-Types Proposal
Event-types proposal is an auxiliary task for event extraction. The task aims to predict the

possible event types in the sentence regardless of which trigger word contains them. The event-
types proposal layer employs hard parameter sharing, the most common approach used in multi-
task learning, to share the same sentence encoder with NER. We use the first token that BERT
outputs and then use a dense layer with non-linear activation to get predicted event types in this
sentence:

Etp = f
(
Wpz0+ bp

)
(7)

where z0 is the first for the BERT output. Wp ∈ R|tp|×h is the transformation matrix, bp ∈ R|tp|
is the bias vector, |tp| is the number of predefined event types, and f (.) stands for the sigmoid
function, which potentially allows multiple events to exist in the same sentence. We create a
criterion that measures the binary cross entropy between the target and the output. The loss
function of the event-types proposal is:

LETP =−
∑
W∈T

∑
i∈∇

logptp
(
Etpi =E∗

tpi |W
)

(8)

where T represents the training set, ∇ is the gold standard event types set for sequence w, and E∗
tpi

is the i-th one. ptp
(
Etpi |W

)
is calculated by applying the softmax function across event types. All

event types are converted to embeddings by looking up an embedding layer etp =
(
etp0 , . . . , etp∇

)
,

where the average-pooling operation is etp.

etp =
∑k≤∇

i=0 etpi
k

(9)

The predicted event types have two uses. On the one hand, the event-types proposal is a simple
auxiliary task that can cooperate with the event detection task. On the other hand, it creates
complex dependencies for the event types in a sentence.

3.4 Event Detection
Assume we have extracted an entire trigger candidate that meets an O label after an I-Type

label or a B-Type label. Through softmax, the event-type embeddings are concatenated with the
BERT contextual representation. Then we can get every token label category.

yc = softmax(Wc

[
Z : expand

(
etp)

]
+ bc

)
(10)

where Wc ∈ Rm×d is the parameter matrix, bc ∈ Rm is the bias vector, and expand is the dimen-
sional extension function. According to the obtained label probability distribution, the event-type
prediction label corresponding to each token can be obtained.

ŷ= argmax (yc) (11)

The loss function is the cross-entropy between the target and the output for tokens:

LED =
T∑
i=1

logp (yi | xi) (12)
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where T represents the training set. The tags are converted to embeddings by looking up an
embedding layer. We obtain the label embeddings sequence eed = (eed1 , . . . , eedn ), eedi ∈ Rm′

, where
m′ is the dimension of label embeddings.

3.5 Token Pair Attention
The filling of the vanilla table takes into account just two candidate tokens to predict the

role of the argument. We use the token pair attention mechanism to capture information between
trigger words and arguments. Specifically, the attention score of the token pair < xi; xj> for the
k-th token in a given sentence is calculated by the following equation:

atij =

⎧⎪⎪⎨
⎪⎪⎩

exp(VijWqVe
t )∑

i exp(VijWqVe
t )

t �= i or j

0 otherwise

(13)

where Vij is the average of Ve
i and Ve

j ; Wq is the attention parameter; atij is equal to 0 when t is

equal to i or j. The main reason for this strategy is that we consider the representations of the
token pair < xi; xj> in the table filling stage (see Eqs. (15) and (16)). Thus, we directly mask the
token pair themselves when performing attention calculations. The attentive result for the token
pair < xi; xj> is computed by the following equation:

sij = aijVe (14)

where aij = (a1ij, a
2
ij, . . . , akij). In the weighted average sentence representation, sij focuses on useful

contextual information for table filling.

3.6 Table Filling

For event embedding (eed ), NER embedding (ener) is then concatenated with the BERT
contextual representation to form a final feature representation V = (Ve

1 , . . . , Ve
k)=

[
eed : ener :Z

]
.

Let xi and xj be two words, Y (xi, xj) be all possible role relations, and s
(
xi, xj, r

)
be a scoring

function that assesses xi and xj for the existing role types r. We can further get the conditional
probability of role types r given xi and xj through the softmax function:

pt
(
r | xi, xj,

)= softmax
(
s
(
xi, xj, r

))
(15)

s
(
xi, xj, r

) =Wδ
(
UVc

i +VVc
j +Msij

)
(16)

Here, δ(.) is an elementwise non-linear activation function (e.g., tanh). Moreover
{W , U , V ,M} are the transformation matrixes.

Based on the probability distribution of table filling, the predictive effect of each table in table
filling is defined as

p̃t= argmax
(
pt

(
r | xi, xj

))
(17)

The loss function is the cross entropy between the target and the output for all the table cells:

LTF =−
∑
w∈T

k∑
i=0

k∑
j=0

∑
r∈R

logpt
(
r | xi, xj, x

)
(18)



CMC, 2021, vol.68, no.3 4169

where x represents a sentence in the training set T, xk is the k-th word of x, n is the sentence
length, and R is the argument-roles set between xi and xj.

In our framework, there are two main tasks: event detection and table filling, and two
auxiliary subtasks: NER and ETP. The loss function is the summation of these four tasks. For
joint event extraction, the loss function is the summation of these four tasks: LED + LETP +
LNER+LTF . The loss is calculated as the average over-shuffled minibatch, and the derivatives of
each parameter can be computed via backpropagation.

4 Experiments

4.1 Experiment Settings
4.1.1 Dataset, Resources and Evaluation Metric

We evaluated our framework on the ACE 2005 dataset. The ACE2005 dataset annotates
33 event subtypes and 36 role classes, and along with the NONE class and BIO annotation
schema, we divided each token into 67 categories in event detection and 37 categories in argument
extraction. In order to be consistent with previous work, we used the same data split as in
previous work [2,7–9]. This data split included 40 newswire articles (881 sentences) for the test
set, 30 other documents (1,087 sentences) for the development set and 529 remaining documents
(21,090 sentences) for the training set.

We then used precision, recall, and F1 score to evaluate the performance as done in previous
work [2,8,9].

4.1.2 Hyperparameter Setting
For all the experiments below, in the ETP layer and event detection, we used 200 dimensions

and 300 dimensions for the tag embeddings. We utilized a maximum length n= 120 of sentences
in the experiments by padding shorter sentences and cutting off longer ones. The batch size in
our experiments was 64, we set the dropout rate to 0.5 and the learning rate to 0.05. Adam
was used to optimize the neural networks. The experiments were trained with an NVIDIA RTX
1080Ti GPU.

4.2 Baselines and Main Results
To evaluate the performance of the proposed method, we compared our model with four

competitive baselines, as follows: 1)DMCNN [2], which uses dynamic multiple pooling to keep
multiple event information; 2) JRNN [7], which uses a bi-directional RNN and manually designed
features to jointly extract event triggers and arguments; 3) dbRNN [8], which adds dependency
bridges over bi-directional LSTM for event extraction; 4) JMEE [9] via attention-based graph
information aggregation for multiple event extraction.

Tab. 1 shows the results of comparing our model with the baseline methods. Our framework
achieved the best F1 scores in trigger recognition and trigger classification, is the scores were 1.6%
higher than the best-reported models. However, it did not achieve the best F1 score for argument
role classification. In summary, these results demonstrated the effectiveness of our method to
incorporated with the global event type guidance and attention enhancement.

4.3 Effect of ETP Layer for Extracting Multiple Events
To evaluate the effect of the ETP layer for alleviating the multiple event phenomenon, we

divided the test data into two parts (1/1 and 1/N) following [2,9,10] and then performed evaluation
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separately. Here, 1/1 means that one sentence only had one trigger or one argument playing a role
in one sentence; otherwise, 1/N was used.

Table 1: Overall performance comparing to the state-of-the-art methods with gold-standard enti-
ties

Method Trigger identification (%) Trigger classification (%) Argument identification (%) Argument role (%)

P R F1 P R F1 P R F1 P R F1

DMCNN 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
JRNN 68.5 75.7 71.9 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4
dbRNN N/A 74.1 69.8 71.9 71.3 64.5 67.7 66.2 52.8 58.7
JMEE 80.2 72.1 75.9 76.3 71.3 73.7 71.4 65.6 68.4 66.8 54.9 60.3
Ours 81.0 73.1 76.8 77.1 73.5 75.3 72.1 65.9 68.8 65.4 55.4 59.9

Tab. 2 illustrates the performance (F1 scores) of JMEE [9], JRNN [7], DMCNN [2], and our
framework (with and without ETP layer) in the trigger classification subtask and argument role
classification subtask. From the table we can see that our framework with the ETP layer achieved
the best F1 scores, they were 1.6% higher than those of the best-reported models. However, the
F1 scores decreased from 75.3% to 73.1% when without the ETP layer. The results indicate that
the proposed ETP layer is effective.

Table 2: System performance on single event sentences (1/1) and multiple event sentences (1/N)

Stage Model 1/1 1/N All

Trigger DMCNN 74.3 50.9 69.1
JRNN 75.6 64.8 69.3
JMEE 75.2 72.7 73.7
Ours 74.7 71.2 73.1
Ours + ERP 75.9 74.4 75.3

Argument DMCNN 54.6 48.7 53.5
JRNN 50.0 55.2 55.4
JMEE 59.3 57.6 60.3
Ours 59.1 57.2 59.9

4.4 Analysis of Attention Mechanism
As Tab. 3 shows the results were not ideal when table filling alone was used for event

argument extraction. The F1 value increased by 5.2% when the attention mechanism was added
to the table filling, indicating that the attention mechanism can help improve the event extraction
of arguments.

We used the sentence “In Baghdad, a cameraman died when an American tank fired on the
Palestine Hotel” as an example to illustrate the capture feature in our attention mechanism by
attention scores for the heat map in Fig. 2. There were two events in the sentence: an Attacked
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event triggered by fired and a Die event triggered by died. Additionally, the entities Baghdad,
Cameraman, Tank, and Palestine Hotel played an important role in Die and Attacked.

Table 3: Experimental comparison of table filling and table filling plus attention mechanism

Method P R F1

Table_Filing 55.3 54.3 54.7
Table_Filing + att 59.1 57.2 59.9

As Fig. 4 shows, the trigger words “died” and “fired” had relatively strong connections with
Baghdad, Cameraman, Tank, and Palestine Hotel in the Die and Attacked event, which may
potentially be because of the capture information between triggers and the arguments through the
attention mechanism.

Figure 4: Illustration of token pair attention

5 Conclusion

In this work, we proposed a global event type guidance and attention enhancement to improve
event detection and argument extraction. The enhancement exploits the pre-predicted event types
to guide event detection, which strengthens the interdependencies of relations of multiple events in
a sentence. Moreover, for argument extraction, we use the table filling method with the attention
mechanism to obtain the correlation information between triggers and arguments. The experimen-
tal results on the ACE 2005 dataset indicate that our proposed model is effective, which superior
to several strong baseline methods.

As the relationship between arguments among multiple events has not yet been considered,
we will examine its influence on the extraction of arguments in the future.
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