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Abstract: In vehicular systems, driving is considered to be the most complex
task, involving many aspects of external sensory skills as well as cognitive
intelligence. External skills include the estimation of distance and speed,
time perception, visual and auditory perception, attention, the capability
to drive safely and action-reaction time. Cognitive intelligence works as an
internal mechanism that manages and holds the overall driver’s intelligent
system.These cognitive capacities constitute the frontiers for generating adap-
tive behaviour for dynamic environments. The parameters for understanding
intelligent behaviour are knowledge, reasoning, decision making, habit and
cognitive skill. Modelling intelligent behaviour reveals that many of these
parameters operate simultaneously to enable drivers to react to current sit-
uations. Environmental changes prompt the parameter values to change, a
process which continues unless and until all processes are completed. This
paper model intelligent behaviour by using a ‘driver behaviour model’ to
obtain accurate intelligent driving behaviour patterns. This model works on
layering patterns in which hierarchy and coherence are maintained to transfer
the data with accuracy from one module to another. These patterns constitute
the outcome of different modules that collaborate to generate appropri-
ate values. In this case, accurate patterns were acquired using ANN static
and dynamic non-linear autoregressive approach was used and for further
accuracy validation, time-series dynamic backpropagation artificial neural
network, multilayer perceptron and random sub-space on real-world data were
also applied.
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1 Introduction

Human error is the main cause of driving problems. Accordingly, driver behaviour modelling
has emerged to improve the driving experience by predicting environmental factors, driver intent,
and driver and vehicle state. Sensory information and other predictors can helpfully warn the
driver of potential dangers. Meanwhile, vehicle behaviour can determine driver state, measuring
elements including driving competence and attention level [1]. Understanding a driver’s cognitive
load is critical. Autonomous systems can help to automatically identify driver cognitive workload,
enabling the development of robust evaluation tools. Driver performance and physiological data
can be assessed and measurements collected in real-time. A classification system can detect cogni-
tive load, with physiological data allowing greater classification accuracy [2]. In vehicular systems,
drivers usually demonstrate different driving styles. To analyse explicit links between a driver’s
dynamic demand and driving style, driving style can be classified as low, moderate and high. This
involves recognising driving style according to the vehicle, driving route, design task and driver
selection [3].

All aspects of a human’s life are defined by their routine behaviour [4]. Routine describes
deliberate behaviour constituting goal-oriented actions performed in different situations [5], actions
that are acquired, learned and developed through repeated practice [6]. Good routines enable
efficient completion of frequently repeated tasks through predictable behaviours. Variations in
routine behaviour importantly indicate human response because behaviour is not static [7].

Current research is directed towards finding driver behaviour solutions that can avoid road
safety problems, especially by identifying and understanding the relationship between road safety
and driver behaviour. The major contributing factors to traffic accidents are weather, traffic,
vehicle control, and driver sensitivity to complex environments. However, traffic accidents are
ultimately largely dependent on the rational judgement and decision making of drivers [8].

Behaviour analysis involves two different approaches to understanding decision-making:
analysing the beliefs and the values behind the process and evaluating decision-making according
to personality traits and individual habits. This method is quantifiable and can be represented in
applications of classifying drivers based on their driving style [9].

2 Literature Review

Thinking essential to understanding the world and managing different situations, problems
and relationships [10]. To encourage environmentally responsive behaviour, researchers have used
people-oriented approaches which reduce feelings of helplessness and provide sources for motiva-
tions [11]. Such approaches allow people to accomplish repetitive tasks at different levels using
the human routines that are the blueprints of behaviour. Human routines are expressed through
actions performed in particular situations, with behaviour modelling enabling people to improve
their inexpert behaviour and change bad habits [4].

Driving output is determined by various factors, with drivers considered the most unstable
factors because they exhibit different driving styles. Driving style constitutes the habitual long-
term behaviour of drivers, contributing to the real-time adjustments they make to environmental
information [3]. Driver behaviour variables require analysis to represent concepts related to driving
habits. Defining driver behaviour as one of several different driving behaviours enables identifi-
cation of behavioural trends and allows accurate measurement of driving style, with the main
goal of driver style classification being to detect behaviour, recognise different techniques and
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enable learning [12]. For example, some researchers have classified eco-driving according to three
categories: trajectory planning, route planning and driver behaviour improvement [13].

Elsewhere, driving styles have been categorised as normal, safe, inattentive and aggressive [9].
Risky speeding is a behavioural pattern pertaining to an aggressive driving style, describing
irregular, abrupt or instantaneous changes in vehicle speed, improper vehicle positioning and
inconsistent acceleration or braking [14]. Aggressive driving behaviour increases the collision
risk and can arise from driver annoyance or attempts to minimise travel time [15]. Although
repeated behaviour in a stable context can promote automatic habits which are resistant to change
through information-based techniques, such behaviours are context-dependent, meaning a change
in context can weaken the habit’s strength and facilitate reflection on that behaviour [16].

Tab. 1 presents studies on the effects of emotional, sensorimotor, cognitive and mixed stres-
sors on driver behaviour and performance. Notably, another study recognised the effective copying
mechanism could reduce behavioural errors caused by cognitive or emotional conflict [17].

Table 1: Comparison of previous work

S. No Title of paper Author and year of publication Methodology used

1 Know your master: Driver [18] (Kwak et al., 2017) Driver’s behaviour patterns
profiling-based were formulated by game
Anti-theft method simulation and the Hidden

Markov Model.

2 A new formal approach to [19] (Bouhoute et al., 2014) The formalism of hybrid
model human driving behavior input-output automata was
in vehicular networks applied to observed driver

behaviour.

3 A study of individual [20] (Zhang et al., 2014) The Hidden Markov Model

characteristics of driving
behavior based on Hidden
Markov model

was employed to model the
individual characteristics of
driver behaviour.

A novel agent-based evidential
reasoning system using
contextual information was
used to process driver
behaviour information.

4 Improving driver assistance in
intelligent transportation
systems: An agent-based
evidential reasoning approach

[21] (Benalla et al., 2020)

3 Methodology

The methodology comprised multiple modules (see Fig. 1 for a visual representation): a data
acquisition and classification module, a driver ride profiling module, a decision-making module,
a memory management module, a route planning module, an assistance system module and
an Artificial neural network (ANN) module. Dataset validation involved a dynamic nonlinear
autoregressive approach.

3.1 Data Acquisition and Classification

Data acquisition and classification involves collecting environmental, vehicle and cognitive
data. Environmental data include weather condition and time of day. Vehicle data include
the condition of the vehicle, utilising inputs collected from all parts of the vehicle, including
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accelerator pressure, braking, steering wheel movement, gear changes and vehicle turns. Cognitive
inputs consider parameters such as intentions, motivations, emotions, knowledge, learning and
decision-making. This research only analysed environmental and vehicle data.
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Figure 1: Proposed driver behaviour model

3.2 Driver Ride Profiling

Driver ride profiling includes route preferences, driver skill, driver training and self-coaching.
Route preferences includes long, medium and short routes, as well as factors such as terrain.
Driver skill refers to driver expertise for a specific route. Driver training and self-coaching
incorporate iterative learning, which describes driving training for a specific route.

3.3 Decision-Making Module

The decision-making module incorporates incentive-based modelling, situation assessment
and behaviour prediction. Incentive-based modelling is responsible for decisions utilising working
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progress, which includes the driver’s past experience and how a driver operates a vehicle in a
particular scenario, with scenario describing speed and weather condition.

Situation assessment considers the current environment using inputs from the data acquisition
and classification, route planning and driver ride profiling modules. The behaviour prediction
sub-module predicts behaviour after each complete iteration. Behaviour prediction interacts with
the assistance system module to derive data patterns from that module’s personal assistance and
prediction systems.

3.4 Memory Management
Memory management stores relevant data and provides requested data to different modules.

3.5 Route Planning

Route planning considers speed limits, road types, traffic jams and weather conditions. Its
navigation system includes online maps, available paths and alternative paths, with road network
representation used to calculate the path according to road and location conditions.

3.6 Assistance System

The assistance system comprises the personal assistance system, prediction system and emer-
gency assistance system. The personal assistance system guides the driver along their selected
route, suggests changes to vehicle speed and assesses driver behaviour. The prediction system helps
the driver to predict the next best route, the time of arrival at the destination and the driver’s
behaviour in particular scenarios. The emergency assistance system is only activated in case of
emergencies, including sudden severe changes in the situation or the driver’s behaviour.

3.7 Driver Behaviour Model Empowered by an Artificial Neural Network

The driver behaviour model uses an ANN to enable smooth data flow and dynamic and
intelligent driver behaviour. The ANN is divided into static techniques and dynamic techniques.
A dynamic nonlinear autoregressive approach was used to validate the model because driver
behaviour is a constantly changing phenomenon. Other validation techniques used were multilayer
perceptron and random subspace.

The ANN applied recognised human activity using an artificial backpropagation neural net-
work and featured three layers: an input, output and hidden layer. Every neuron of the hidden
layer used the Sigmoid(x) activation function. The proposed ANN is represented mathemati-
cally as:

)

A=Y+ Y (tma %) (1)
m=1

= | here A=1,2,3 2

(oA_m where =L 245 ...,n ()

Combining Egs. (1) and (2)
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Eq. (3) provides backpropagation error, where wy & out; demonstrate the foreseen output and
assessed output. The output layer’s actuation function is described by Egs. (4) and (5)

1 .. .
(oA:W where Y =1,2,3,...,] 4)
1 2
S=2 3 (es ) ®
P

Weight change is described by Eq. (6):
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From Eq. (6), the chain rule method is applied:
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From Eq. (7), values are substituted to provide the value of weight change according to
Eq. (8)
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Upon rearranging the previous equations, the condition can be calculated as

Aetm’A = GVAgm (9)

Va= ZVY <QA,Y) x@p(1-94)
¥

QI’Y=QA,Y+FQATA,Y (10)

Eqs. (9) and (10) refresh the weights for the output and hidden layers; finally, Eq. (11) derives
the weights for the hidden and input layers.

th A = tm A+ FglTy (11)

This ANN included one hidden layer and 20 neurons, with six inputs and one output. This
ANN used the two-layer feed-forward method and was applied to test the framework using data
categorised as training, approval, or testing. The ANN’s execution was assessed using a regression
investigation. To assess outcomes, we analysed the mean square error and regression fit. If the
required result was not attained, the ANN was retrained with a different dataset.

3.8 Dynamic Environment

Dynamic environment incorporates vehicle status, traffic flow, weather conditions, road condi-
tions and the driver’s past behaviour.

4 Analysis and Results
The dataset was taken from [I18] and featured 54 parameters and 94,380 values. Validation
was conducted using the validation tools MATLAB and Weka.

4.1 Dataset Parameters
The dataset included two basic parameter types: input and output parameters.

4.2 Input Parameters
Tab. 2 presents the external parameters, which pertain to elements external to the driver.

4.3 Output Parameters
The output parameters presented in Tab. 3 pertain to driver elements.

4.4 Validation Techniques

Driver behaviour changes continuously and involves dynamic aspects. Accordingly, a dynamic
ANN was used to analyse input values, with results presented according to the real-time scenario.



3068

CMC, 2021, vol.68, no.3

Table 2: Input parameters [18]

S. No Variable

S. No Variable

1 Fuel_consumption

2 Accelerator_Pedal value

3 Throttle_position_signal

4 Short_Term_Fuel Trim_Bank1

5 Intake_air_pressure

6 Filtered_Accelerator_Pedal value
7 Absolute_throttle_position

8 Engine_soacking_time

9 Inhibition_of_engine_fuel_cut_off
10 Engine_in_fuel_cut_off

11 Fuel_Pressure

12 Long_Term_Fuel_Trim_Bank1

13 Engine_speed

14 Engine_torque_after_correction

15 Torque_of _friction

16 Flywheel_torque_(after_torque_interventions)
17 Current_spark_timing

18 Engine_coolent_temperature

19 Engine_Idel_Target_Speed
20 Engine_torque
21 Calculated_LOAD_value

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Minimum_indicated_engine_torque
Maximum_indicated_engine_torque
Flywheel_torque
Torque_scaling_factor(standardisation)
Standard_Torque_Ratio
Requested_spark_retard_angle_from_TCU
TCU_requests_engine_torque_limit_(ETL)
TCU_requested_engine_ RPM_increase
Target_engine_speed_used_in_lock-up_module
Glow_plug_control_request

Activation_of _Air_compressor
Torque_converter_speed

Current_Gear
Engine_coolant_temperature
Wheel_velocity_front_left-hand
Wheel_velocity_rear_right-hand
Wheel_velocity_front_right-hand
Wheel_velocity_rear_left-hand
Torque_converter_turbine_speed_-_Unfiltered
Clutch_operation_acknowledge
Converter_clutch

Table 3: Output parameters [18]

z
o

Variables

LTI UN R W~ |W

10 Time (s)
11 Class
12 PathOrder

Gear_Selection
Vehicle_speed
Acceleration_speed_-_Longitudinal
Indication_of brake_switch. ON/OFF
Master_cylinder_pressure
Calculated_road_gradient
Acceleration_speed_-_Lateral
Steering_wheel_speed
Steering_wheel_angle

4.5 Validation Using the MATLAB Time-Series Neural Network

The MATLAB time-series neural network was used to validate the dataset, as presented
in Tab. 4. This ANN was chosen because of its dynamic nature; given behaviour is a con-
stantly changing phenomenon, static techniques cannot provide accurate results. Furthermore, the
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scaled conjugate gradient was chosen for accuracy; this stops automatically when an ANN stops
improving following increases in validation values.

Table 4: Validation using MATLAB time-series neural network

Target values Mean square error R (regression values)

Training 361 1.07333 0.997687
Validation 78 0.00000 0.00000
Testing 78 1.64220 0.996836

4.5.1 Artificial Neural Network Training

The ANN was trained using scaled conjugate gradient. Data division was random, with results
presented for 636 epoch iterations. Results included performance, training state, error histogram,
regression, time-series response and error autocorrelation.

4.5.2 Training State

The training state graph shows results for epoch 636 and the validation checks at epoch 636.
Gradient is on the y-axis, and epoch is on the x-axis. The first graph indicates that values begin
at the peak and gradually decrease or minimise.

Best Training Performance is 1.0733 at epoch 174

= Train
= Test
Best

Mean Squared Error (mse)
=)

0 100 200 300 400 500 600
636 Epochs

Figure 2: Validation performance: Mean square error decreases as the number of iterations
increases

4.5.3 Best Validation Performance
The best validation performance was calculated, as presented in Fig. 2, with the x-axis at
epoch 174 and mean square error shown on the y-axis. The best validation performance was
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calculated as the point at which the best line and the validation line intersected. Overall mean
square error tended to decrease as the number of iterations increased.

4.5.4 Error Histogram

The error histogram was computed with 20 bins. At the beginning of the iterations, the
minimisation of error tended to increase gradually because training data values increased, and
error was totally removed, as shown by the plain orange line. Following the zero error, the training
process gradually minimised and totally stopped with only the training state remaining.

4.5.5 Regression Plots

Different regression outputs are shown in Fig. 3, with graph 1 showing the training of data
at regression value 0.99769, with the bunching of data indicating the fit line, graph 2 showing
the test for fittest data regression values—that is, values nearest to target values—at 0.99684, and
graph 3 showing the overall combined result for data flow and regression values at 0.99752; these
results are highly refined and accurate.
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Figure 3: Regression plots
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4.5.6 Time-Series Response

Fig. 4 shows the time-series values sequentially by showing the time-series gap between target
outputs and training outputs. Variations are indicated clearly for the first half of training; at the
beginning of the second half, fluctuations tended to stabilise again.

Response of Output Element 1 for Time-Series 1
I ) 1 | I
* Training Targets
= Training Outputs|
« Test Targets
40 -

50

Response

hpf
[1 /' a0
} L
|

i

"

Output and Target

Error

200 250 300 350 400 450 500

Figure 4: Time-series response showing the time-series gap between target outputs and training
outputs

4.6 Validation Using Weka Multilayer Perceptron

Weka is a tool for validating or training neural networks using different training algorithms.
This research also used Weka’s multilayer perceptron to train its data.

4.6.1 Pre-Processing

The first step for training in Weka first step is pre-processing the dataset. This involves
selecting all filters and attributes to direct classification and clustering.

4.6.2 Classification
The second step is classifying the dataset. There were 54 attributes that could be trained for
31 sigmoid nodes. Results are given in the following sections.

4.6.3 Classification Results

Tab. 5 presents the results for the classification of training data. The correlation coefficient
range was near zero; the closer the result is to zero, the more accurate the ANN training.
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Mean absolute error and root mean square error are the average means of the error values and
range from 0 to 100. Relative absolute error and root relative square error range from 0 to 10.

Table 5: Validation using Weka multilayer perceptron

Validation parameters Results
Correlation coefficient 0.9962
Mean absolute error 30.3982
Root mean squared error 69.4428
Relative absolute error 5.5875%
Root relative squared error 9.1207%
Total number of instances 94380

4.6.4 Cluster

The third step is to cluster the given attributes. This can be conducted using a simple
expectation maximisation class, which assigns probability distribution for each instance, indicating
the probability of its belonging a different cluster and involves the following steps:

1) The number of clusters is set to one.

2) The training set is split randomly into ten folds.

3) Expectation maximisation is performed ten times using the ten folds in the usual
CV manner.

4) The loglikelihood is averaged across the ten results.

5) If loglikelihood has increased, the number of clusters is increased by one, and the program
continues at step 2.

During simulation, the number of clusters selected by cross-validation was nine, the number
of iterations performed was three and the loglikelihood value was —47.07798. Tabs. 6 and 7
present the cluster and cluster instance results.

Table 6: Cluster results

Attributes Cluster

(0.17)
(0.02)
(0.01)
(0.12)
(0.23)
(0.06)
0.1)

(0.05)
(0.06)

0NN LN B W~ O
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Table 7: Cluster instances

Attributes Cluster  Percentage (%)

0 15062 16
1 1724 2
2 902 1
3 9543 10
4 31596 33
5 2445 3
6 3989 4
7 22693 24
8 6426 7

4.7 Validation Using Weka Random Subspace

The Weka random subspace approach constructs a decision-tree-based classifier that main-
tains the highest accuracy for training data and improves generalisation accuracy as it grows in
complexity. The classifier comprises multiple trees constructed systematically by pseudo-randomly
selecting subsets of components of the feature vector that is tree constructed in randomly

chosen subspace.

4.7.1 Classification Results

Results are shown for ten folds and cross-validation techniques. The total classes processed are
organised from A to J, with each class showing the individual output values of training iterations
in a hierarchical form that indicates tree format.
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Figure 5: Individual parameter evaluations
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The sequence of results for different parameters is shown in Fig. 5; each parameter is
evaluated individually for more refined results.

Tab. 8 shows the classification of training data, with the correlation coefficient range being
near zero; the closer the result is to zero, the more accurate the ANN training. Mean absolute
error and root mean square error are the average means of the error values and range from 0 to
300. Relative absolute error and root relative square error range from 0 to 150.

Table 8: Validation results for Weka random subspace

Validation parameters Results

Correlation coefficient 0.9261

Mean absolute error 194.895

Root mean squared error 287.5999

Relative absolute error 33.9581%

Root relative squared error 42.1055%

Total number of instances 94380
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Figure 6: Visualisation comparing time and predicted time: Patterns show the predicted time at
different iteration stages
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4.7.2 Visualisation

Fig. 6 presents a visualisation of the results in the form of time series. Time is given at the
x-axis and predicted time is given at the y-axis. Patterns show the predicted time at different
iteration stages.

4.8 Validation Using Linear Regression Analysis
Tab. 9 shows the simulation results for linear regression analysis.

Table 9: Validation using linear regression analysis

Validation parameters Results
Correlation coefficient 0.9855
Mean absolute error 64.6902
Root mean squared error 129.0136
Relative absolute error 11.8907%
Root relative squared error 16.9449%
Total Number of Instances 94380

4.9 Validation Using Decision Tree

Tab. 10 shows the simulation results for the decision-tree approach.

Table 10: Validation using the decision-tree approach

Validation parameters Results
Correlation coefficient 0.9884
Mean absolute error 62.5417
Root mean squared error 115.5902
Relative absolute error 11.4958%
Root relative squared error 15.1818%
Total number of instances 94380

Table 11: Comparison of results

Validation parameters Multilayer perceptron Random subspace Linear regression Decision tree

Correlation coefficient 0.9962 0.9261 0.9855 0.9884
Mean absolute error 30.3982 194.895 64.6902 62.5417
Root mean squared error 69.4428 287.5999 129.0136 115.5902
Relative absolute error 5.5875% 33.9581% 11.8907% 11.4958%
Root relative squared error  9.1207% 42.1055% 16.9449% 15.1818%
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5 Discussion

Tab. 11 combines the results of all of the validation techniques used: multilayer perceptron,
random subspace, linear regression analysis and decision tree. The differences between the results
are indicated by comparing mean absolute errors, root mean square errors, relative absolute errors
and root relative squared errors.

Tab. 11 clearly demonstrates that multilayer perceptron produces better results than the other
validation techniques.

6 Conclusion

Intelligent agents can represent most human properties due to the similarity in cognitive
processes, which enable the completion of deliberate, repetitive tasks ranging from routine to
specific tasks. These processes are expressed through intelligent behaviour and actions performed
in particular environments. Modelling intelligent driving behaviour is a complex task requiring
consideration of many internal and external parameters. These parameters are activated simulta-
neously to transfer driving patterns from one situation to another, with these patterns constantly
evolving to refine driving patterns.

This paper’s ‘driver behaviour model’ can model intelligent driver behaviour in vehicular
systems. According to this model, data from a dynamic environment is collected and refined
through combination with the driver’s profile and the route details. Refinements of behaviour
require intersecting of the model’s decision-making and assistance-system modules, which manage
mechanisms internal to driver behaviour and behaviour in emergency situations. The external
environment, a driver’s past experience and their current route strongly impact output patterns.

To validate this model, driver datasets comprising multiple values related to different vehicular
systems were evaluated, using Weka, by time-seriecs ANNs using MATLAB backpropagation,
multilayer perceptron, random subspace, linear regression and decision trees. Results produced
means, regressions and correlations using classification and clustering techniques and indicated
that the multilayer perceptron approach generates better results than other validation techniques.
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