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Abstract: Accelerated life testing has been widely used in product life testing
experiments because it can quickly provide information on the lifetime distri-
butions by testing products or materials at higher than basic conditional levels
of stress, such as pressure, temperature, vibration, voltage, or load to induce
early failures. In this paper, a step stress partially accelerated life test (SS-
PALT) is regarded under the progressive type-II censored data with random
removals. The removals from the test are considered to have the binomial
distribution. The life times of the testing items are assumed to follow length-
biased weighted Lomax distribution. Themaximum likelihoodmethod is used
for estimating the model parameters of length-biased weighted Lomax. The
asymptotic confidence interval estimates of the model parameters are evalu-
ated using the Fisher information matrix. The Bayesian estimators cannot be
obtained in the explicit form, so the Markov chain Monte Carlo method is
employed to address this problem, which ensures both obtaining the Bayesian
estimates as well as constructing the credible interval of the involved param-
eters. The precision of the Bayesian estimates and the maximum likelihood
estimates are compared by simulations. In addition, to compare the perfor-
mance of the considered confidence intervals for different parameter values
and sample sizes. TheBootstrap confidence intervals givemore accurate results
than the approximate confidence intervals since the lengths of the former are
less than the lengths of latter, for different sample sizes, observed failures,
and censoring schemes, in most cases. Also, the percentile Bootstrap confi-
dence intervals give more accurate results than Bootstrap-t since the lengths
of the former are less than the lengths of latter for different sample sizes,
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observed failures, and censoring schemes, in most cases. Further performance
comparison is conducted by the experiments with real data.

Keywords: Partially accelerated life testing; progressive type-II censoring;
length-biased weighted Lomax; Bayesian and bootstrap confidence intervals

1 Introduction

Technology developments have been continuously improving product manufacturing. There-
fore, it is difficult to obtain failure data for high-reliability items under normal operating con-
ditions. This makes the lifetime testing under normal conditions costly and time-consuming.
Consequently, under environmental conditions (stresses) that are normal conditions, the acceler-
ated life tests (ALTs) or partially accelerated life tests (PALTs) have been often used. In the ALT,
all test items are subjected to higher than usual stress levels, while, in the PALT, items are tested
at both accelerated and normal conditions. In [1], the stress was applied in various ways. The
constant-stress PALTs and step stress PALTs (SS-PALTs) are frequently used PALTs. In the SS-
PALT, a test item is first run under normal conditions, and if it does not fail for a specified stress
change time, then it is run under accelerated conditions until the end of the test.

In many cases, when the life data are analyzed, all units in the sample may not fail. This type
of data is called censored or incomplete data. The most common censoring schemes are the type-
I censored scheme (or time censored scheme) and type-II censored scheme (or failure-censored
scheme). These two censoring schemes do not allow for units to be removed from the experiments
while they are still alive. In [2], a more general censoring scheme was proposed, which is known as
progressive censoring; this scheme allows units to be removed from the test. Progressive censoring
is useful in a life-testing experiment because its ability to remove live units from the experiment
saves both time and money. The PALTs have been widely studied for step–stress schemes of type-I,
type-II, and progressive type-II censoring (PTIIC) schemes [3–12].

In this paper, a PTIIC with random removal is proposed to provide more economical and less
time-consuming testing. The PTIIC scheme is designed as follows. Suppose n units are placed on
a life test, and an experimenter decides beforehand m, which represents the number of units to be
failed. Then, at the time of the first failure, which is denoted as t(1), r1 of the remaining (n− 1)
surviving units are randomly removed from the experiment. The test continues until the mth failure
occurs, and at that moment, all the remaining surviving units rm = n−m− r1− r2 . . .− rm− 1 are
removed from the experiment. Many authors have studied the PTIIC application using different
lifetime distributions [13–15].

On another statistical level, the Lomax distribution is an important heavy-tail probability
distribution for lifetime analysis, and it has been often used in many different fields, including
business, economics, and actuarial modeling [16–21]. The cumulative distribution function (CDF)
and the probability density function (PDF) of the Lomax distribution with the shape parameter
θ and scale parameter λ are, respectively, given by:

G (x;λ, θ)= 1−
(
1+ x

λ

)−θ

, x,λ, θ > 0. (1)

g (x;λ, θ)= θ

λ

(
1+ x

λ

)−(θ+1)
, x,λ, θ > 0. (2)
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The weighted distributions arise in the context of unequal probability sampling. The weighted
distributions have prominent importance in reliability, biomedicine, ecology, and other fields. The
unified concept of the length-biased distribution can be used in the development of proper models
for lifetime data. The length-biased distribution represents a special case of the more general form
known as weighted distribution. In [22], a length-biased weighted Lomax (LBWL) distribution
was introduced, and its CDF and PDF are, respectively, given by:

F (x;λ, θ)= 1−
(
1+ x

λ

)−θ
(
1+ xθ

λ

)
, x,λ > 0, θ > 1. (3)

f (x;λ, θ)= θ (θ − 1)
λ2

(
1+ x

λ

)−θ
(
1+ xθ

λ

)
, x,λ > 0, θ > 1. (4)

Statistical properties and applications of the LBWL distribution to real data have been
presented in [22]. In [23], the estimation of stress strength reliability of the LBWL distribution in
the presence of outliers was studied and discussed.

In view of the importance of the weighted distributions and SS-PALT in reliability studies,
this paper applies the SS-PALT to items whose lifetimes under design conditions are assumed to
follow the LBWL distribution under a PTIIC scheme with random removals. The removals from
the test are considered to obey the binomial distribution. The maximum likelihood (ML) and
approximate confidence intervals (CIs) of the estimators are presented. The Bayesian estimators,
percentile bootstrap CIs, and bootstrap-t CIs are obtained. The Monte Carlo simulations, as well
as experiments with real data, are performed to verify the theoretical analysis results.

The rest of the paper is organized as follows. Test procedure and the assumptions of the
SS-PALT model are presented in Section 2. In Section 3, the ML and approximate CI estimators
of the model parameters are provided. The Bayesian estimators of the model parameters are
introduced in Section 4. The bootstrap CI estimates for ML and Bayesian estimation are given in
Section 5. In Section 6, the simulation results are presented to illustrate accuracy of the estimates.
The experiment with real data is introduced in Section 7. Finally, concluding remarks are given
in Section 8.

2 Model Description and Test Procedure

The following assumptions are adopted in this work:

� Assume n identical and independent units obey the LBWL distribution in the test.
� Progressive sample x(1) ≤ x(2) ≤ . . .≤ x(n) are generated, where m is prefixed and m≤ n.
� Each of n units is first run under normal operating conditions. If it does not fail or is

removed from the test by a pre-specified time τ, it is placed under accelerated conditions
(stress).

� At the ith failure, a random number of the surviving units ri, where i= 1, 2, . . . ,m−1., are
randomly removed from the test. Finally, at the mth failure, the remaining surviving units

Rm = n−m−∑m−1
i=1 Ri are all removed from the test, and the test is terminated.

� Suppose that an individual unit removed from the test is independent of the other units
but has the same removal probability p. Then, the number of removed units at each failure
time follows a binomial distribution, which is expressed as:
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Ri =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R1 = binomial (n−m,p)

Ri = binomial
(
n−m−∑i−1

j=1Rj
)
; i= 2, . . . ,m− 1

Rm = n−m−∑m−1
i=1 Ri.

. (5)

� The lifetime of a unit under the SS-PALT denoted as X can be expressed as:

X =
⎧⎨⎩T T ≤ τ

T + T−τ
β

T > τ
, (6)

where T denotes the lifetime of an item under normal conditions, and β represents the accelera-
tion factor. Thus, from the assumptions of the SS-PALT model, the PDF (3) of a total lifetime
of the test item can be expressed as:

f (x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1 (x)= θ (θ − 1)

λ2
x
(
1+ x

λ

)−(θ+1)
, 0< x≤ τ

f2 (x)= θβ (θ − 1)
λ2

(τ +β (x− τ ))

(
1+ τ +β (x− τ )

λ

)−(θ+1)

, x> τ

, (7)

where f2(x) is obtained by using the transformation-variable technique. The number of units
removed at each failure time follows a binomial distribution R1 ∼ binomial(n − m, p). For
i= 1, 2, . . . , (m− 1), the probability mass function is expressed as:

P (Ri = ri |Ri−1 = ri−1, . . . ,R1 = r1 )=

⎛⎜⎝n−m−
i−1∑
j=1

rj

ri

⎞⎟⎠pri (1− p)

n−m−
i∑

j=1

rj

, (8)

and Rm = n−m−
m−1∑
j=1

Rj. i.e., Ri ∼ binomial

⎛⎝n−m−
i−1∑
j=1

rj,p

⎞⎠ .

3 Maximum Likelihood Estimation

This section introduces the ML estimators of the population parameters and acceleration
factor based on the PTIIC data with binomial removal. Moreover, approximate CIs (ACIs) of the
population parameters and acceleration factor are also presented.
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Let (xi, ri, δ1i, δ2i) , i = 1, 2, . . . ,m, denote the observation obtained from a PTIIC sample
under a SS-PALT. For simplicity, in the following text, when referring to x(1) ≤ x(2) ≤ . . . ≤
x(m),xi will be used instead of x(i). The conditional likelihood function of observations x =
{(xi, ri, δ1i, δ2i) , i= 1, 2, . . . ,m} for a x = {(xi, ri,u1i,u2i) , i = 1, 2, . . . ,m} pre-determined number of
removals R=R1 = r1,R2 = r2, . . . ,Rm−1 = rm−1, can be expressed as:

L1 (xi,β,λ, θ , δ1i, δ2i |R= r) =
m∏
i=1

{
f1 (xi) (S1 (xi))ri

}δ1i {f2 (xi) (S2 (xi))ri
}δ2i , (9)

S1 (x)=
(
1+ x

λ

)−θ
(
1+ xθ

λ

)
, S2 (x)=

(
1+ τ +β (x− τ )

λ

)−θ (
1+ (τ +β (x− τ )) θ

λ

)
.

Suppose that R is independent of X for all i; then, the likelihood function can be expressed
as follows:

L (xi,β,λ, θ ,p)=L1 (xi,β,λ, θ , δ1i, δ2i |R= r) P (R= r) , (10)

where

L1 (xi,β,λ, θ , δ1i, δ2i |R= r) = θm (θ − 1)m βmaλ−2m

×
mu∏
i=1

(
xiDi

−θ(1+ri)−1ki
ri
) ma∏
i=1

[
(τ +β (xi− τ ))Wi

−θ(1+ri)−1hi
ri
]
,

(11)

Di =
(
1+ xi

λ

)
, ki =

(
1+ xiθ

λ

)
, Wi =

(
1+ τ +β (xi− τ )

λ

)
, hi =

(
1+ (τ +β (xi− τ )) θ

λ

)
,

P (R= r)=P (R1 = r1,R2 = r2, . . . ,Rm−1 = rm−1)

=P (Rm−1 = rm−1 |Rm−2 = rm−2, . . . ,R1 = r1 )

×P (Rm−2 = rm−2 |Rm−3 = rm−3, . . . ,R1 = r1 )

× . . . P (R2 = r2 |R1 = r1)P (R1 = r1 ) .

(12)

That is,

P (R= r)= (n−m) !(
n−m−

m−1∑
i=1

ri

)
!
∏m−1

i=1 ri

p

m−1∑
i=1

ri
(1− p)

(m−1)(n−m)−
m−1∑
i=1

(m− i) ri
. (13)
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Based on (11), the natural logarithm of the conditional likelihood function, denoted as lnL1,
is given by:

lnL1 =m ln θ (1− θ)− 2m lnλ+ma lnβ +
mu∑
i=1

lnxi−
mu∑
i=1

ln (Di)− θ

mu∑
i=1

(1+ ri) ln (Di)

+
mu∑
i=1

ri ln (ki)+
ma∑
i=1

ln (τ +β (xi− τ ))− θ

ma∑
i=1

(1+ ri) ln (Wi)−
ma∑
i=1

ln (Wi)+
ma∑
i=1

ri ln (hi) ,

(14)

where mu and ma are the numbers of unites under normal and accelerated conditions, respectively,
and m=∑mu

i=1 δ1i+
∑ma

i=1 δ2i.

Since P (R= r) does not involve parameters θ , λ and β their ML estimators, denoted as θ̂ , λ̂
and β̂ can be directly obtained by maximizing lnL1. Thus, the ML estimators of the population
parameters can be derived by solving the following non-linear equations:

∂ lnL1

∂θ
= m (1− 2θ)

θ (1− θ)
−

mu∑
i=1

(1+ ri) ln (Di)+
mu∑
i=1

rixi
λ

−
ma∑
i=1

(1+ ri) ln (Wi)+
ma∑
i=1

βri (xi− τ )

hiλ
, (15)

∂ lnL1

∂λ
= −2m

λ
+

mu∑
i=1

[θ (1+ ri)+ 1]
xi

λ2Di
−

mu∑
i=1

ri
θxi
λ2ki

−
ma∑
i=1

ri
θ (τ +β (xi− τ ))

hiλ2

+
ma∑
i=1

[θ (1+ ri)+ 1]
(τ +β (xi− τ ))

λ2Wi
,

(16)

∂ lnL1

∂β
= ma

β
+

ma∑
i=1

(xi− τ )

(τ +β (xi− τ ))
−

ma∑
i=1

[θ (1+ ri)+ 1]
(xi− τ )

λWi
+

ma∑
i=1

ri
θ (xi− τ )

λhi
. (17)

Eqs. (15)–(17) have no closed-form solutions, so an iterative technique has to be employed to
obtain the ML estimators of the parameters.

Similarly, since L1 (xi,β,λ, θ |R= r) does not involve the binomial parameter p, the ML esti-
mator of p can be directly obtained by maximizing (13). Thus, the ML estimator of p can be
obtained by solving the following equation:

p̂=
(
m−1∑
i=1

ri

)/[
(m− 1) (n−m)−

m−1∑
i=1

(m− i) ri

]
. (18)

Furthermore, the ACIs of the parameters using the PTIIC data based on the asymptotic
properties of the ML estimators can be obtained. The ACIs can be approximated by numerically
inverting Fisher’s information matrix. Accordingly, the approximate 100(1−α)% and the two-sided
ACIs for θ , λ, and β can be, respectively, obtained as:

θ̂ ± zα/2σθ̂
, λ̂± zα/2σλ̂

, β̂ ± zα/2σβ̂
, (19)

where zα/2 is the [100(1−α)/2]th standard normal quantile, and σ is the standard deviation of the
ML estimators.
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4 Bayesian Estimation

In this section, the Bayesian estimation of the population parameters and the acceleration
factor of the LBWL distribution based on the PTIIC data with binomial removal are presented.
The Bayesian estimation is considered under the squared error loss function (SELF).

Assume that the prior of θ ,λ, and β has an independent gamma distribution. Then, the joint
prior density of θ ,λ, and β can be expressed as:

π (θ ,λ,β)∝ θa1−1e−b1θλa2−1e−b2λβa3−1e−b3β ; a1,b1,a2,b2,a3,b3 > 0. (20)

To elicit the hyper-parameters of the informative priors, the same procedure as that presented
in [24] is conducted. Hence, these hyper-parameters of the informative priors are obtained from
the ML estimates of (θ ,λ,β) by equating their values with the mean and variance using the inverse

Fisher information matrix of
(
θ̂ , λ̂, β̂

)
.

V (θ ,λ,β)=

∣∣∣∣∣∣∣∣∣∣∣∣∣
−

⎡⎢⎢⎢⎢⎢⎢⎣

∂2l (θ ,λ,β)

∂θ2

∂2l (θ ,λ,β)

∂θ∂λ

∂2l (θ ,λ,β)

∂θ∂β
∂2l (θ ,λ,β)

∂λ2

∂2l (θ ,λ,β)

∂λ∂β
∂2l (θ ,λ,β)

∂β2

⎤⎥⎥⎥⎥⎥⎥⎦

−1∣∣∣∣∣∣∣∣∣∣∣∣∣
θ=θ̂ ,λ=λ̂,β=β̂

. (21)

By equating the mean and variance of
(
θ̂ , λ̂, β̂

)
for gamma priors, we get:

θ̂ = a1
b1

& V11 = a1
b1

2
, λ̂= a2

b2
& V22 = a2

b2
2
and β̂ = a3

b3
& V33 = a3

b3
2
. (22)

Hence, the estimated hyper-parameters can be expressed as:

a1 = θ̂2

V11
& b1 = θ̂

V11
, a2 = λ̂2

V22
& b2 = λ̂

V22
and a3 = β̂2

V33
& b3 = β̂

V33
. (23)

Based on the likelihood function (11) and the joint prior density (20), the joint posterior of
the SS-PALT of the LBWL distribution with parameters θ ,λ, and β is given by:

π (β,λ, θ |x,R= r)∝ θm+a1−1(θ−1)mβm2+a3−1

λ2m−a2+1 e−b1θ−b2λ−b3β
∏mu

i=1

(
xiDi

−θ(1+ri)−1ki
ri
)∏ma

i=1

[
(τ +β (xi− τ ))Wi

−θ(1+ri)−1hiri
]
,

(24)

Therefore, the Bayesian estimators of the parameters θ ,λ, and β under the SELF, which are
denoted as θ̃ , λ̃, and β̃, can be obtained as the posterior mean, which is expressed as follows:

θ̃ =
∫ ∞

0
θ π (β,λ, θ |x,R= r)dθ , λ̃=

∫ ∞

0
λπ (β,λ, θ |x,R= r)dλ, and

β̃ =
∫ ∞

0
β π (β,λ, θ |x,R= r)dβ. (25)
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The integrals presented in (25) are very difficult to solve analytically, so the Markov chain
Monte Carlo (MCMC) method is used in this paper for a numerical evaluation. An important
sub-class of the MCMC method is the Gibbs sampling and a more general Metropolis within
Gibbs samplers. The MCMC method was first introduced in [25,26]. The Metropolis–Hastings
(MH) algorithm and the Gibbs sampling are the two most popular variants of the MCMC
method. Similar to the acceptance-rejection sampling, the MH method considers that for each
iteration of the algorithm, a candidate value can be generated from a proposal distribution. The
MH algorithm generates a sequence of draws from this distribution by conducting the following
steps:

1. Set the initial value
(
�

〈0〉
l

)
;�= (β,λ, θ) ; l= 1, 2, 3 satisfying the condition of π

(
�

〈0〉
l

)
> 0.

2. Using the initial value, sample a candidate point (�∗) from proposal q (�∗).
3. Given the candidate point (�∗), calculate the acceptance probability by:

Al =min

(
1,
L1
(
�∗
l |x ,R= r

)
π
(
�∗
l

)
L1 (x|�l,R= r)π (�l)

q (�l)

q
(
�∗
l

)) ; l= 1, 2, 3 (26)

4. Draw a value of u from the uniform (0, 1) distribution; if u≤Al, accept �∗
l as �

〈j〉
l .

5. Otherwise, reject �∗
l and set �

〈j〉
l =�

〈j−1〉
l .

6. Repeat Steps 2–5 (j+ 1) times until j draws.

7. Obtain the Bayes estimate of �l with respect to the SELF by
∑J

j=1

(
�
〈j−1〉
l

)
j

J .
8. Repeat Steps (1–7) l times to obtain the Bayesian estimate of �l.

According to [26], the BCIs of the parameters �= (β,λ, θ) can be obtained through the following
steps:

(1) Arrange �l
〈j〉; l= 1, 2, 3 as β [1],β [2], . . . ,β [M], λ[1],λ[2], . . . ,λ[M], and θ [1], θ [2], . . . , θ [M], where

M denotes the length of the generated simulation.
(2) The 100 (1−α)% symmetric credible intervals of β,λ, and θ are obtained as:(

β[M
α
2 ],β[M(1− α

2 )]
)

,
(
λ[M

α
2 ],λ[M(1− α

2 )]
)

and
(
θ [M

α
2 ], θ [M(1− α

2 )]
)
. (27)

5 Bootstrap Confidence Intervals

In this section, different bootstrap CIs of population parameters and acceleration factor based
on the PTIIC data with binomial removal are proposed for the LBWL distribution.

5.1 Percentile Bootstrap (PB) Confidence Intervals
(i) Compute estimates of θ ,λ, and β by the ML and Bayesian methods.
(ii) Generate bootstrap samples of θ ,λ, and β to obtain the bootstrap estimate of βk, λk, and

θk denoted as β̂bk , λ̂
b
k, and θ̂bk , respectively.

(iii) Repeat Step (ii) B times to obtain
(
β
b(1)
k ,βb(2)k , . . . ,βb(B)

k

)
,
(
λ
b(1)
k ,λb(2)k , . . . ,λb(B)

k

)
, and(

θ
b(1)
k , θb(2)k , . . . , θb(B)

k

)
.
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(iv) Arrange
(
β
b(1)
k ,βb(2)k , . . . ,βb(B)

k

)
,
(
λ
b(1)
k ,λb(2)k , . . . ,λb(B)

k

)
, and

(
θ
b(1)
k , θb(2)k , . . . , θb(B)

k

)
in

ascending order as
(
β
b[1]
k ,βb[2]k , . . . ,βb[B]k

)
,
(
λ
b[1]
k ,λb[2]k , . . . ,λb[B]k

)
, and

(
θ
b[1]
k , θb[2]k , . . . , θb[B]k

)
.

(v) A two-sided 100 (1−α)% percentile bootstrap CIs for unknown parameters β,λ, and θ are

given by
(

β̂
b[B α

2 ]
k , β̂

b[B(1− α
2 )]

k

)
,
(

λ̂
b[B α

2 ]
k , λ̂

b[B(1− α
2 )]

k

)
, and

(
θ̂
b[B α

2 ]
k , θ̂

b[B(1− α
2 )]

k

)
, respectively.

5.2 Bootstrap-t (BT) Confidence Interval
Steps 1 and 2 are the same as Steps (i) and (ii) in the previous BP algorithm, respectively.

Step 3. Compute the t-statistic of β,λ, and θ by T =
(
�̂b
k− �̂k

)
/

(√
V
(
�̂b
k

))
.

Step 4. Repeat Steps 1–3 B times and obtain T (1), T (2), . . . ,T (B).

Step 5. Arrange T (1), T (2), . . . ,T (B) in ascending order as T [1], T [2], . . . ,T [B].

Step 6. A two-sided 100 (1−α)% BT-CIs for the population parameters β,λ, and θ are
given by(

β̂k−T
[B α

2 ]
k

√
V
(
β̂k

)
, β̂k+T

[B(1− α
2 )]

k

√
V
(
β̂k

))
,
(

λ̂k−T
[B α

2 ]
k

√
V
(
λ̂k

)
, λ̂k+T

[B(1− α
2 )]

k

√
V
(
λ̂k

))
,

and
(

θ̂k−T
[B α

2 ]
k

√
V
(
θ̂k

)
, θ̂k+T

[B(1− α
2 )]

k

√
V
(
θ̂k

))
, respectively.

6 Simulation Study

The performance of the proposed methods for estimation of the LBWL distribution based
on the SS-PALT under PTIIC was verified by the Monte-Carlo simulation via R-package. The
Bayesian estimators were obtained using the gamma priors under the SELF. The main difficulty
in the Bayesian procedure was obtaining the posterior distribution. The MH algorithm and the
Gibbs sampling were used to simulate deviates from the posterior density. The simulation steps
were as follows:

� Generate 10000 random samples of size n= 50, 100 from the LBWL distribution based on
the SS-PALT under the PTIIC.

� Use the CDF of the LBWL distribution and the uni-root function in the R-package to
generate the random number of the LBWL distribution in the numerical algorithm.

� For different parameters and τ , select two sets of parameters’ values as:

◦ Set I: (β = 1.5,λ= 0.5, θ = 1.5, τ = 2) , (β = 3,λ= 0.5, θ = 1.5, τ = 2),
◦ Set II: (β = 1.5,λ= 0.5, θ = 3, τ = 0.75) , (β = 3,λ= 0.5, θ = 3, τ = 0.75);

� In the PTIIC, select the sample size (failure items) m as m= 35, 45 at n= 50, and m= 70,
80, 90 at n= 100. Set the binomial parameter p as p= 0.25 and 0.75.

� Calculate the ML estimates and associated ACIs, and the Bayesian estimates and associated
credible intervals at α = 0.05.

� Evaluate the performance of the estimates based on the accuracy measures, including
biases, mean square errors (MSEs), and lengths of CIs (L.CIs). The simulation results are
presented in Tabs. 1–4.
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Table 1: ML and Bayesian estimates of LBWL parameters and acceleration factor based on
PTIIC data with p= 0.25 for Set I

p= 0.25 β = 3 β = 1.5

ML Bayesian ML Bayesian

n m θ̂ λ̂ β̂ θ̃ λ̃ β̃ θ̂ λ̂ β̂ θ̃ λ̃ β̃

50 35 Bias 0.1163 0.2855 −0.0745 0.0635 0.2074 0.5616 0.0964 0.2694 0.0630 0.0480 0.2125 0.3562
MSE 0.0790 0.2850 1.6826 0.0441 0.1113 1.7911 0.0935 0.2597 0.7398 0.0140 0.1146 0.6540
L.CI 1.0033 1.7692 5.0790 0.7854 1.0250 4.7642 1.1341 1.7994 3.3602 0.4246 1.0332 2.8476
BP 0.1401 0.2436 0.6924 0.1429 0.2444 0.7288 0.1617 0.2568 0.4502 0.1278 0.2442 0.4479
BT 0.1642 0.2643 0.7215 0.1627 0.2712 0.7693 0.1843 0.2803 0.4773 0.1473 0.2707 0.4659

45 Bias 0.0834 0.1597 −0.0896 0.0553 0.1343 0.4907 0.0993 0.2218 0.0760 0.0479 0.1708 0.3242
MSE 0.0468 0.1380 1.2659 0.0237 0.0588 1.4221 0.0625 0.2521 0.7194 0.0128 0.0817 0.5071
L.CI 0.7829 1.3152 4.3987 0.5722 0.7923 4.2626 0.9045 1.6620 3.3172 0.4029 0.8988 2.4867
BP 0.1121 0.1819 0.6282 0.1070 0.1854 0.6072 0.1282 0.2318 0.4364 0.1696 0.2644 0.4557
BT 0.1264 0.1974 0.6527 0.1197 0.2015 0.6112 0.1424 0.2565 0.4674 0.2013 0.2962 0.4901

100 70 Bias 0.0559 0.1506 −0.1022 0.0305 0.1229 0.3555 0.0579 0.1536 −0.0087 0.0277 0.1181 0.2036
MSE 0.0190 0.0764 0.7218 0.0052 0.0390 0.7188 0.0210 0.0802 0.2958 0.0046 0.0355 0.2417
L.CI 0.4947 0.9089 3.3078 0.2551 0.6064 3.2410 0.5214 0.9331 2.1326 0.2421 0.5757 1.7552
BP 0.0535 0.0966 0.3440 0.0513 0.0918 0.3253 0.0519 0.0934 0.2157 0.0519 0.0918 0.2084
BT 0.0546 0.0965 0.3365 0.0532 0.0950 0.3210 0.0549 0.0984 0.2157 0.0517 0.0909 0.2107

80 Bias 0.0387 0.0954 −0.0234 0.0241 0.0830 0.1366 0.0465 0.1116 −0.0021 0.0237 0.0923 0.1982
MSE 0.0134 0.0506 0.4896 0.0037 0.0223 0.4831 0.0163 0.0563 0.2548 0.0039 0.0254 0.1899
L.CI 0.4285 0.7986 2.7428 0.2182 0.4870 2.7030 0.4666 0.8211 1.9796 0.2267 0.5098 1.5222
BP 0.0426 0.0800 0.2800 0.0459 0.0779 0.2862 0.0481 0.0853 0.1949 0.0460 0.0815 0.1995
BT 0.0433 0.0800 0.2832 0.0463 0.0805 0.2855 0.0476 0.0879 0.2008 0.0476 0.0828 0.2008

90 Bias 0.0296 0.0632 −0.0782 0.0229 0.0678 0.1274 0.0385 0.0740 −0.0262 0.0217 0.0688 0.1545
MSE 0.0102 0.0344 0.4635 0.0034 0.0168 0.4633 0.0128 0.0355 0.2475 0.0031 0.0167 0.1650
L.CI 0.3782 0.6833 2.6523 0.2108 0.4327 2.5930 0.4176 0.6799 1.9486 0.2001 0.4286 1.4733
BP 0.0390 0.0692 0.2689 0.0371 0.0662 0.2660 0.0419 0.0679 0.1867 0.0405 0.0715 0.1886
BT 0.0393 0.0711 0.2756 0.0390 0.0671 0.2712 0.0424 0.0703 0.1943 0.0421 0.0713 0.1940

Based on the obtained simulation results, the following conclusions can be drawn:

• For fixed values of n and p, the biases, MSE values, and L.CIs values of the parameter
estimates decreased for both estimation methods with m.

• For fixed values of m and p, the biases, MSE values, and the L.CIs values of the parameter
estimates decreased for both estimation methods with n.

• For fixed n and m, the biases, MSE values, and the L.CIs values of the parameter estimates
decreased for both estimation methods with p.

• In most sets of parameters, for fixed values of λ, θ , and τ , the biases, MSE values, and the
L.CI values of estimates of λ and θ decreased for both estimation methods with β, while
those of estimate of β increased with β.

• For fixed n, m, p, and sets of parameters, the biases, MSE values, and the L.CIs values of
estimates increased for both estimation methods with τ .
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• In most situations, the measures of Bayesian estimates were better than those of the
ML estimates.

Table 2: ML and Bayesian estimates of LBWL parameters and acceleration factor based on
PTIIC data with p= 0.75 for Set I

p= 0.75 β = 3 β = 1.5

ML Bayesian ML Bayesian

n m θ̂ λ̂ β̂ θ̃ λ̃ β̃ θ̂ λ̂ β̂ θ̃ λ̃ β̃

50 35 Bias 0.1045 0.2351 −0.0962 0.0851 0.1866 0.5419 0.1061 0.2383 0.0879 0.0560 0.1870 0.3544
MSE 0.0585 0.2149 1.5883 0.6514 0.1003 1.7584 0.0687 0.2131 0.7568 0.0149 0.0912 0.5757
L.CI 0.8556 1.5672 4.9284 3.1477 1.0034 4.7467 0.9399 1.5505 3.3945 0.4246 0.9303 2.6313
BP 0.1248 0.2241 0.7027 0.1156 0.2154 0.7226 0.1274 0.2180 0.4610 0.1321 0.2132 0.4626
BT 0.1378 0.2568 0.7506 0.1318 0.2300 0.7165 0.1373 0.2383 0.4843 0.1462 0.2392 0.4966

45 Bias 0.0724 0.1374 −0.1044 0.0486 0.1295 0.4656 0.0746 0.1368 0.0337 0.0439 0.1291 0.3008
MSE 0.0379 0.1035 1.3028 0.0228 0.0549 1.4474 0.0409 0.1133 0.5681 0.0110 0.0593 0.5028
L.CI 0.7090 1.1406 4.4577 0.5609 0.7655 4.3507 0.7372 1.2065 2.9532 0.3728 0.8094 2.5183
BP 0.0985 0.1589 0.6030 0.0998 0.1571 0.6115 0.1025 0.1635 0.4318 0.1068 0.1664 0.4127
BT 0.1060 0.1735 0.6538 0.1111 0.1708 0.6213 0.1107 0.1844 0.4287 0.1132 0.1778 0.4320

100 70 Bias 0.0554 0.1271 −0.1011 0.0325 0.1068 0.3239 0.0492 0.1168 0.0153 0.0271 0.0989 0.2042
MSE 0.0239 0.0798 0.7203 0.0057 0.0341 0.8516 0.0192 0.0654 0.3318 0.0048 0.0292 0.2323
L.CI 0.5664 0.9897 3.3048 0.2662 0.5908 3.3891 0.5073 0.8919 2.2584 0.2487 0.5469 1.7122
BP 0.0558 0.1002 0.3229 0.0543 0.0979 0.3176 0.0516 0.0908 0.2248 0.0512 0.0920 0.2229
BT 0.0598 0.1066 0.3316 0.0594 0.1022 0.3242 0.0528 0.0919 0.2292 0.0543 0.0963 0.2280

80 Bias 0.0415 0.0878 −0.0895 0.0280 0.0830 0.3100 0.0416 0.0816 −0.0205 0.0238 0.0748 0.1725
MSE 0.0149 0.0481 0.5109 0.0043 0.0236 0.7193 0.0160 0.0440 0.2872 0.0042 0.0199 0.1962
L.CI 0.4510 0.7879 2.7813 0.2331 0.5069 3.0960 0.4678 0.7580 2.1002 0.2350 0.4694 1.6001
BP 0.0455 0.0821 0.2757 0.0456 0.0763 0.2881 0.0454 0.0761 0.2074 0.0453 0.0750 0.1983
BT 0.0485 0.0810 0.2788 0.0476 0.0789 0.2874 0.0471 0.0759 0.2049 0.0474 0.0790 0.2032

90 Bias 0.0337 0.0654 −0.0493 0.0230 0.0642 0.3268 0.0405 0.0725 0.0076 0.0243 0.0658 0.1825
MSE 0.0123 0.0363 0.4597 0.0032 0.0162 0.7179 0.0131 0.0361 0.2438 0.0034 0.0152 0.1957
L.CI 0.4153 0.7021 2.6521 0.2043 0.4317 3.0660 0.4194 0.6893 1.9361 0.2074 0.4091 1.5806
BP 0.0401 0.0723 0.2608 0.0402 0.0686 0.2610 0.0399 0.0690 0.1979 0.0406 0.0665 0.1903
BT 0.0422 0.0749 0.2710 0.0428 0.0718 0.2639 0.0418 0.0698 0.1969 0.0421 0.0684 0.1961

7 Application to Real Data

In order to further demonstrate the performance of the proposed method, a real data set
was used. The R-statistical programming language was used for computation. The dataset was
an uncensored dataset consisting of the remission times (in months) of a random observation
of 128 bladder cancer patients reported in [27]. The LBWL distribution was fitted to real data
using the Kolmogorov-Smirnov goodness of the fit test. The estimated values of parameters were:
θ̂ = 4.325, λ̂ = 10.974, and p= 0.9983. The empirical CDF, the histogram of the PDF, PP plots,
and QQ plots are displayed in Fig. 1.
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Table 3: ML and Bayesian estimates of LBWL parameters and acceleration factor based on
PTIIC data with p= 0.25 for Set II

p= 0.25 β = 3 β = 1.5

ML Bayesian ML Bayesian

n m θ̂ λ̂ β̂ θ̃ λ̃ β̃ θ̂ λ̂ β̂ θ̃ λ̃ β̃

50 35 Bias 1.2179 0.4533 0.0846 0.7050 0.2937 0.2897 1.4356 0.5339 −0.1055 0.7714 0.3238 0.5260
MSE 5.6031 0.7057 0.6773 1.5621 0.2039 0.4696 6.3702 0.8539 1.6049 1.8459 0.2482 1.6412
L.CI 7.9605 2.7739 3.2106 4.0475 1.3455 2.4356 8.1415 2.9579 4.9513 4.3864 1.4848 4.5813
BP 1.0753 0.3777 0.4688 1.1813 0.4138 0.4666 1.1691 0.4313 0.6963 1.1846 0.4264 0.7239
BT 1.2008 0.4141 0.4898 1.2680 0.4446 0.4587 1.2989 0.4809 0.7300 1.2855 0.4579 0.7698

45 Bias 0.7448 0.2492 0.0743 0.7058 0.2448 0.2233 0.8013 0.2662 −0.0751 0.5727 0.2162 0.3990
MSE 2.8757 0.3102 0.5028 1.7947 0.1939 0.6439 3.3029 0.3520 1.1263 1.0225 0.1278 1.3917
L.CI 5.9748 1.9535 2.7657 4.4656 1.4353 3.0227 6.3976 2.0793 4.1518 3.2684 1.1165 4.3541
BP 0.8531 0.2843 0.4046 0.8129 0.2680 0.4024 0.8832 0.2942 0.5621 0.8853 0.2928 0.5765
BT 0.9565 0.3190 0.4268 0.9027 0.2991 0.4181 1.0657 0.3558 0.5737 1.0282 0.3291 0.5940

100 70 Bias 0.6470 0.2326 −0.0179 0.4846 0.1994 0.1737 0.5900 0.2089 −0.0791 0.4906 0.1943 0.2991
MSE 1.6544 0.1912 0.3188 0.7836 0.1077 0.2602 1.4936 0.1715 0.8438 0.8360 0.1078 0.7666
L.CI 4.3598 1.4522 2.2135 2.9054 1.0221 1.8811 4.1977 1.4027 3.5892 3.0262 1.0380 3.2273
BP 0.4084 0.1387 0.2146 0.4362 0.1462 0.2181 0.4045 0.1356 0.3698 0.4234 0.1425 0.3670
BT 0.4297 0.1527 0.2205 0.4614 0.1551 0.2217 0.4186 0.1438 0.3664 0.4439 0.1487 0.3664

80 Bias 0.4714 0.1582 −0.0047 0.4066 0.1553 0.1321 0.5382 0.1847 −0.0593 0.4416 0.1705 0.2739
MSE 1.1551 0.1141 0.2768 0.5583 0.0689 0.1606 1.3707 0.1467 0.7824 0.6872 0.0872 0.6455
L.CI 3.7880 1.1702 2.0635 2.4586 0.8299 1.4839 4.0778 1.3156 3.4613 2.7515 0.9454 2.9623
BP 0.4120 0.1248 0.2115 0.3610 0.1111 0.2012 0.4050 0.1284 0.3450 0.3951 0.1221 0.3428
BT 0.4214 0.1270 0.2169 0.3768 0.1161 0.2088 0.4261 0.1326 0.3546 0.4107 0.1313 0.3524

90 Bias 0.3966 0.1270 −0.0065 0.3582 0.1321 0.1175 0.3510 0.1172 −0.0282 0.3329 0.1232 0.2536
MSE 1.0418 0.0960 0.2337 0.5229 0.0600 0.1375 0.8271 0.0886 0.5825 0.4740 0.0563 0.5787
L.CI 3.6885 1.1083 1.8958 2.4636 0.8092 1.3795 3.2906 1.0729 2.9913 2.3635 0.7948 2.8129
BP 0.3579 0.1128 0.1867 0.3353 0.1026 0.1743 0.3382 0.1108 0.3055 0.3263 0.1077 0.2854
BT 0.3806 0.1157 0.1900 0.3650 0.1058 0.1759 0.3584 0.1185 0.3040 0.3520 0.1114 0.2935

Based on the real data, the SS-PALT of the LBWL distribution under the PTIIC with
binomial removals was considered. The ML and Bayesian estimates of parameters and accelerated
factor were calculated. In addition, the ACIs for parameters and accelerated factor of the LBWL
distribution at a different significant level for n= 70, β = 8, and p= 0.75 were also calculated.

Tab. 5 presents the ML and Bayesian estimates of θ , λ, and β and their standard errors (SEs)
at τ = 9,β = 8 and τ = 9,β = 15.

The history plots, approximate marginal posterior density, and MCMC convergence of θ , λ,
and β are represented in Fig. 2.

The ACIs for parameters of the LBWL distribution based on the SS-PALT under the PTIIC
data with binomial removals at a different level of significance for n= 70, β = 8, and p= 0.75 are
presented in Fig. 3.
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Table 4: ML and Bayesian estimates of LBWL parameters and acceleration factor based on
PTIIC data with p= 0.75 for Set II

p= 0.75 β = 3 β = 1.5

ML Bayesian ML Bayesian

n m θ̂ λ̂ β̂ θ̃ λ̃ β̃ θ̂ λ̂ β̂ θ̃ λ̃ β̃

50 35 Bias 1.0128 0.3503 0.0577 0.6533 0.2534 0.2685 1.1666 0.4031 −0.0919 0.6373 0.2523 1.0128
MSE 4.3978 0.5125 0.6634 1.3490 0.1713 0.4901 5.3027 0.6070 1.6960 1.2438 0.1579 4.3978
L.CI 7.2019 2.4488 3.1864 3.7663 1.2834 2.5357 7.7865 2.6147 5.0949 3.5897 1.2040 7.2019
BP 0.9604 0.3267 0.4338 1.0201 0.3403 0.4283 1.0927 0.3657 0.7062 1.1202 0.3828 0.9604
BT 1.0822 0.3700 0.4649 1.0934 0.3875 0.4630 1.2372 0.4215 0.7171 1.3084 0.4241 1.0822

45 Bias 0.6903 0.2277 0.0882 0.6393 0.2194 0.2590 0.8294 0.2734 −0.0967 0.6338 0.2270 0.6903
MSE 2.7967 0.3019 0.5431 1.6704 0.1725 0.7200 3.2640 0.3657 1.1745 1.4751 0.1595 2.7967
L.CI 5.9741 1.9613 2.8696 4.4053 1.3830 3.1690 6.2948 2.1155 4.2335 4.0634 1.2884 5.9741
BP 0.8230 0.2714 0.4074 0.8494 0.2699 0.3903 0.8798 0.2942 0.6169 0.8707 0.2881 0.8230
BT 0.9137 0.3074 0.4189 0.9569 0.3132 0.4233 0.9962 0.3506 0.6370 0.9763 0.3226 0.9137

100 70 Bias 0.5706 0.1912 −0.0066 0.4841 0.1830 0.1736 0.5619 0.1885 −0.1175 0.4911 0.1850 0.5706
MSE 1.5067 0.1583 0.3454 0.8220 0.0994 0.2654 1.6568 0.1778 0.7943 0.7772 0.0975 1.5067
L.CI 4.2624 1.3687 2.3050 3.0066 1.0067 1.9025 4.5418 1.4793 3.4649 2.8716 0.9870 4.2624
BP 0.4258 0.1383 0.2312 0.4354 0.1412 0.2364 0.4200 0.1436 0.3446 0.4762 0.1570 0.4258
BT 0.4726 0.1513 0.2319 0.4631 0.1470 0.2440 0.4807 0.1561 0.3449 0.5112 0.1646 0.4726

80 Bias 0.4964 0.1621 −0.0086 0.4005 0.1483 0.1423 0.4234 0.1434 −0.0314 0.4171 0.1549 0.4964
MSE 1.2415 0.1291 0.2751 0.5713 0.0684 0.1589 1.0769 0.1202 0.6752 0.5825 0.0711 1.2415
L.CI 3.9123 1.2575 2.0567 2.5139 0.8450 1.4602 3.7157 1.2377 3.2204 2.5066 0.8509 3.9123
BP 0.3966 0.1256 0.2079 0.3765 0.1233 0.2090 0.3612 0.1181 0.3158 0.3910 0.1279 0.3966
BT 0.4095 0.1299 0.2113 0.3981 0.1293 0.2092 0.3902 0.1281 0.3211 0.4113 0.1334 0.4095

90 Bias 0.4219 0.1304 −0.0107 0.3645 0.1266 0.1284 0.3574 0.1176 −0.0630 0.3378 0.1244 0.4219
MSE 1.0500 0.1046 0.2377 0.5126 0.0577 0.1604 0.8826 0.0934 0.6297 0.4146 0.0502 1.0500
L.CI 3.6623 1.1610 1.9119 2.4169 0.8003 1.4880 3.4075 1.1062 3.1024 2.1500 0.7308 3.6623
BP 0.3730 0.1186 0.1935 0.3590 0.1111 0.1916 0.3468 0.1142 0.3107 0.3419 0.1088 0.3730
BT 0.3915 0.1283 0.2020 0.3766 0.1157 0.1954 0.3495 0.1181 0.3123 0.3649 0.1151 0.3915
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Figure 1: Plots of empirical cdf, histogram, PP-plots and QQ-plots for the LBWL distribution
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Table 5: ML, Bayesian estimates and their SEs based on SS-PALT under PTIIC data with
binomial removals for real data

m p Methods τ = 9,β = 8 τ = 9,β = 15

θ̂ λ̂ β̂ θ̃ λ̃ β̃

70 0.25 ML Estimates 7.6616 24.0890 7.9564 3.4136 7.1470 15.6050
SE 6.3438 24.3121 3.2046 1.1863 4.1016 7.2071

Bayesian Estimates 11.6077 39.4794 8.0091 3.9091 9.1546 17.1497
SE 4.7009 17.9081 3.1449 1.2401 4.5333 8.2739

0.5 ML Estimates 3.0285 6.3043 12.2879 3.0321 6.3173 22.9839
SE 0.8693 3.2489 5.0929 0.8708 3.2558 9.5087

Bayesian Estimates 3.0573 6.5321 13.7553 3.2284 7.2684 25.0118
SE 0.5837 2.1964 5.0300 0.6934 2.7585 8.9943

0.75 ML Estimates 3.5528 7.7159 8.5280 3.5571 7.7294 15.9533
SE 1.2798 4.4997 4.0122 1.2818 4.5065 7.4926

Bayesian Estimates 3.8300 9.0410 10.3091 3.6750 8.4149 19.1855
SE 0.9736 3.6979 4.0303 0.9067 3.4011 7.4354

100 0.25 ML Estimates 3.7854 9.0819 9.9502 3.7825 9.0720 18.6744
SE 1.2215 4.5667 3.5475 1.2194 4.5592 6.6596

Bayesian Estimates 4.1864 10.9759 10.8710 4.2122 10.8904 18.7347
SE 1.0984 4.1604 3.5064 0.9592 3.7099 5.4908

0.5 ML Estimates 4.0116 9.6960 8.5389 4.0172 9.7184 15.9979
SE 1.3900 5.1062 3.0495 1.3972 5.1340 5.7210

Bayesian Estimates 4.8383 13.1819 8.5757 4.4484 11.5132 16.4234
SE 1.5162 5.0121 2.4670 1.2147 4.8149 4.5385

0.75 ML Estimates 4.1199 10.0591 7.0695 4.1182 10.0534 13.2684
SE 1.5367 5.6271 2.6016 1.5377 5.6304 4.8911

Bayesian Estimates 4.3458 11.1512 7.9142 4.9837 13.5235 13.1067
SE 1.2083 4.7402 2.4686 1.3139 5.0768 4.2847

Figure 2: The MCMC plots for data based on SS-PALT under PTIIC data with binomial removals
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Figure 3: Plots of ACIs for SS-PALT under PTIIC data with binomial removals of real data

8 Conclusion

In this paper, the Bayesian and maximum likelihood estimation methods for the LBWL
distribution are discussed based on SS-PALT using the PTIIC data with binomial removals. The
approximate confidence intervals of the ML estimators of the model parameters are assessed
based on the Fisher information matrix. In addition, the percentile bootstrap and bootstrap-
t confidence intervals are determined. Moreover, the effects of sample size n, failure size m,
and removal probability p on the accuracy of estimates are studied by simulation studies. The
application of the proposed methods to real data is given for illustration purposes.

The simulation results show that, for fixed values of m and p, the performances of both
estimation methods improve with n, and for fixed n and p, their performances improve with m,
also for fixed n and m, their performances improve with p. Generally, the Bayesian estimates are
better than the ML estimates in most situations. The lengths of the percentile bootstrap and
bootstrap-t are smaller than those of the corresponding ACIs. For small sample sizes, Bootstrap-
t CIs are better than the Bootstrap-p CIs in the sense of having smaller widths. However, the
differences between the lengths of CIs using both methods decrease when sample sizes increase. In
fact, the removal probability p is an important factor on the accuracy of the parameter estimates.
When p is large, n–m of the n test units would be dropped out at the early stage of the life test.

As a future work, this study can be extended to explore the situation under type-I progressive
censoring. Evaluation of the coverage probabilities can also be computed rather than the lengths
of the CIs.
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